Tag Archives: partners
#435806 Boston Dynamics’ Spot Robot Dog ...
Boston Dynamics is announcing this morning that Spot, its versatile quadruped robot, is now for sale. The machine’s animal-like behavior regularly electrifies crowds at tech conferences, and like other Boston Dynamics’ robots, Spot is a YouTube sensation whose videos amass millions of views.
Now anyone interested in buying a Spot—or a pack of them—can go to the company’s website and submit an order form. But don’t pull out your credit card just yet. Spot may cost as much as a luxury car, and it is not really available to consumers. The initial sale, described as an “early adopter program,” is targeting businesses. Boston Dynamics wants to find customers in select industries and help them deploy Spots in real-world scenarios.
“What we’re doing is the productization of Spot,” Boston Dynamics CEO Marc Raibert tells IEEE Spectrum. “It’s really a milestone for us going from robots that work in the lab to these that are hardened for work out in the field.”
Boston Dynamics has always been a secretive company, but last month, in preparation for launching Spot (formerly SpotMini), it allowed our photographers into its headquarters in Waltham, Mass., for a special shoot. In that session, we captured Spot and also Atlas—the company’s highly dynamic humanoid—in action, walking, climbing, and jumping.
You can see Spot’s photo interactives on our Robots Guide. (The Atlas interactives will appear in coming weeks.)
Gif: Bob O’Connor/Robots.ieee.org
And if you’re in the market for a robot dog, here’s everything we know about Boston Dynamics’ plans for Spot.
Who can buy a Spot?
If you’re interested in one, you should go to Boston Dynamics’ website and take a look at the information the company requires from potential buyers. Again, the focus is on businesses. Boston Dynamics says it wants to get Spots out to initial customers that “either have a compelling use case or a development team that we believe can do something really interesting with the robot,” says VP of business development Michael Perry. “Just because of the scarcity of the robots that we have, we’re going to have to be selective about which partners we start working together with.”
What can Spot do?
As you’ve probably seen on the YouTube videos, Spot can walk, trot, avoid obstacles, climb stairs, and much more. The robot’s hardware is almost completely custom, with powerful compute boards for control, and five sensor modules located on every side of Spot’s body, allowing it to survey the space around itself from any direction. The legs are powered by 12 custom motors with a reduction, with a top speed of 1.6 meters per second. The robot can operate for 90 minutes on a charge. In addition to the basic configuration, you can integrate up to 14 kilograms of extra hardware to a payload interface. Among the payload packages Boston Dynamics plans to offer are a 6 degrees-of-freedom arm, a version of which can be seen in some of the YouTube videos, and a ring of cameras called SpotCam that could be used to create Street View–type images inside buildings.
Image: Boston Dynamics
How do you control Spot?
Learning to drive the robot using its gaming-style controller “takes 15 seconds,” says CEO Marc Raibert. He explains that while teleoperating Spot, you may not realize that the robot is doing a lot of the work. “You don’t really see what that is like until you’re operating the joystick and you go over a box and you don’t have to do anything,” he says. “You’re practically just thinking about what you want to do and the robot takes care of everything.” The control methods have evolved significantly since the company’s first quadruped robots, machines like BigDog and LS3. “The control in those days was much more monolithic, and now we have what we call a sequential composition controller,” Raibert says, “which lets the system have control of the dynamics in a much broader variety of situations.” That means that every time one of Spot’s feet touches or doesn’t touch the ground, this different state of the body affects the basic physical behavior of the robot, and the controller adjusts accordingly. “Our controller is designed to understand what that state is and have different controls depending upon the case,” he says.
How much does Spot cost?
Boston Dynamics would not give us specific details about pricing, saying only that potential customers should contact them for a quote and that there is going to be a leasing option. It’s understandable: As with any expensive and complex product, prices can vary on a case by case basis and depend on factors such as configuration, availability, level of support, and so forth. When we pressed the company for at least an approximate base price, Perry answered: “Our general guidance is that the total cost of the early adopter program lease will be less than the price of a car—but how nice a car will depend on the number of Spots leased and how long the customer will be leasing the robot.”
Can Spot do mapping and SLAM out of the box?
The robot’s perception system includes cameras and 3D sensors (there is no lidar), used to avoid obstacles and sense the terrain so it can climb stairs and walk over rubble. It’s also used to create 3D maps. According to Boston Dynamics, the first software release will offer just teleoperation. But a second release, to be available in the next few weeks, will enable more autonomous behaviors. For example, it will be able to do mapping and autonomous navigation—similar to what the company demonstrated in a video last year, showing how you can drive the robot through an environment, create a 3D point cloud of the environment, and then set waypoints within that map for Spot to go out and execute that mission. For customers that have their own autonomy stack and are interested in using those on Spot, Boston Dynamics made it “as plug and play as possible in terms of how third-party software integrates into Spot’s system,” Perry says. This is done mainly via an API.
How does Spot’s API works?
Boston Dynamics built an API so that customers can create application-level products with Spot without having to deal with low-level control processes. “Rather than going and building joint-level kinematic access to the robot,” Perry explains, “we created a high-level API and SDK that allows people who are used to Web app development or development of missions for drones to use that same scope, and they’ll be able to build applications for Spot.”
What applications should we see first?
Boston Dynamics envisions Spot as a platform: a versatile mobile robot that companies can use to build applications based on their needs. What types of applications? The company says the best way to find out is to put Spot in the hands of as many users as possible and let them develop the applications. Some possibilities include performing remote data collection and light manipulation in construction sites; monitoring sensors and infrastructure at oil and gas sites; and carrying out dangerous missions such as bomb disposal and hazmat inspections. There are also other promising areas such as security, package delivery, and even entertainment. “We have some initial guesses about which markets could benefit most from this technology, and we’ve been engaging with customers doing proof-of-concept trials,” Perry says. “But at the end of the day, that value story is really going to be determined by people going out and exploring and pushing the limits of the robot.”
Photo: Bob O'Connor
How many Spots have been produced?
Last June, Boston Dynamics said it was planning to build about a hundred Spots by the end of the year, eventually ramping up production to a thousand units per year by the middle of this year. The company admits that it is not quite there yet. It has built close to a hundred beta units, which it has used to test and refine the final design. This version is now being mass manufactured, but the company is still “in the early tens of robots,” Perry says.
How did Boston Dynamics test Spot?
The company has tested the robots during proof-of-concept trials with customers, and at least one is already using Spot to survey construction sites. The company has also done reliability tests at its facility in Waltham, Mass. “We drive around, not quite day and night, but hundreds of miles a week, so that we can collect reliability data and find bugs,” Raibert says.
What about competitors?
In recent years, there’s been a proliferation of quadruped robots that will compete in the same space as Spot. The most prominent of these is ANYmal, from ANYbotics, a Swiss company that spun out of ETH Zurich. Other quadrupeds include Vision from Ghost Robotics, used by one of the teams in the DARPA Subterranean Challenge; and Laikago and Aliengo from Unitree Robotics, a Chinese startup. Raibert views the competition as a positive thing. “We’re excited to see all these companies out there helping validate the space,” he says. “I think we’re more in competition with finding the right need [that robots can satisfy] than we are with the other people building the robots at this point.”
Why is Boston Dynamics selling Spot now?
Boston Dynamics has long been an R&D-centric firm, with most of its early funding coming from military programs, but it says commercializing robots has always been a goal. Productizing its machines probably accelerated when the company was acquired by Google’s parent company, Alphabet, which had an ambitious (and now apparently very dead) robotics program. The commercial focus likely continued after Alphabet sold Boston Dynamics to SoftBank, whose famed CEO, Masayoshi Son, is known for his love of robots—and profits.
Which should I buy, Spot or Aibo?
Don’t laugh. We’ve gotten emails from individuals interested in purchasing a Spot for personal use after seeing our stories on the robot. Alas, Spot is not a bigger, fancier Aibo pet robot. It’s an expensive, industrial-grade machine that requires development and maintenance. If you’re maybe Jeff Bezos you could probably convince Boston Dynamics to sell you one, but otherwise the company will prioritize businesses.
What’s next for Boston Dynamics?
On the commercial side of things, other than Spot, Boston Dynamics is interested in the logistics space. Earlier this year it announced the acquisition of Kinema Systems, a startup that had developed vision sensors and deep-learning software to enable industrial robot arms to locate and move boxes. There’s also Handle, the mobile robot on whegs (wheels + legs), that can pick up and move packages. Boston Dynamics is hiring both in Waltham, Mass., and Mountain View, Calif., where Kinema was located.
Okay, can I watch a cool video now?
During our visit to Boston Dynamics’ headquarters last month, we saw Atlas and Spot performing some cool new tricks that we unfortunately are not allowed to tell you about. We hope that, although the company is putting a lot of energy and resources into its commercial programs, Boston Dynamics will still find plenty of time to improve its robots, build new ones, and of course, keep making videos. [Update: The company has just released a new Spot video, which we’ve embedded at the top of the post.][Update 2: We should have known. Boston Dynamics sure knows how to create buzz for itself: It has just released a second video, this time of Atlas doing some of those tricks we saw during our visit and couldn’t tell you about. Enjoy!]
[ Boston Dynamics ] Continue reading →
#435714 Universal Robots Introduces Its ...
Universal Robots, already the dominant force in collaborative robots, is flexing its muscles in an effort to further expand its reach in the cobots market. The Danish company is introducing today the UR16e, its strongest robotic arm yet, with a payload capability of 16 kilograms (35.3 lbs), reach of 900 millimeters, and repeatability of +/- 0.05 mm.
Universal says the new “heavy duty payload cobot” will allow customers to automate a broader range of processes, including packaging and palletizing, nut and screw driving, and high-payload and CNC machine tending.
In early 2015, Universal introduced the UR3, its smallest robot, which joined the UR5 and the flagship UR10, offering a payload capability of 3, 5, and 10 kg, respectively. Now the company is going in the other direction, announcing a bigger, stronger arm.
“With Universal joining its competitors in extending the reach and payload capacity of its cobots, a new standard of capability is forming,” Rian Whitton, a senior analyst at ABI Research, in London, tweeted.
Like its predecessors, the UR16e is part of Universal’s e-Series platform, which features 6 degrees of freedom and force/torque sensing on the tool flange. The UR family of cobots have stood out from the competition by being versatile in a variety of applications and, most important, easy to deploy and program. Universal didn’t release UR16e’s price, saying only that it is about 10 percent higher than that of the UR10e, which is about $50,000, depending on the configuration.
Jürgen von Hollen, president of Universal Robots, says the company decided to launch the UR16e after studying the market and talking to customers about their needs. “What came out of that process is we understood payload was a true barrier for a lot of customers,” he tells IEEE Spectrum. The 16 kg payload will be particularly useful for applications that require mounting specialized tools on the arm to perform tasks like screw driving and machine tending, he explains. Customers that could benefit from such applications include manufacturing, material handling, and automotive companies.
“We’ve added the payload, and that will open up that market for us,” von Hollen says.
The difference between Universal and Rethink
Universal has grown by leaps and bounds since its founding in 2008. By 2015, it had sold more than 5,000 robots; that number was close to 40,000 as of last year. During the same period, revenue more than doubled from about $100 million to $234 million. At a time when a string of robot makers have shuttered, including most notably Rethink Robotics, a cobots pioneer and Universal’s biggest rival, Universal finds itself in an enviable position, having amassed a commanding market share, estimated at between 50 to 60 percent.
About Rethink, von Hollen says the Boston-based company was a “good competitor,” helping disseminate the advantages and possibilities of cobots. “When Rethink basically ended it was more of a negative than a positive, from my perspective,” he says. In his view, a major difference between the two companies is that Rethink focused on delivering full-fledged applications to customers, whereas Universal focused on delivering a product to the market and letting the system integrators and sales partners deploy the robots to the customer base.
“We’ve always been very focused on delivering the product, whereas I think Rethink was much more focused on applications, very early on, and they added a level of complexity to their company that made it become very de-focused,” he says.
The collaborative robots market: massive growth
And yet, despite its success, Universal is still tiny when you compare it to the giants of industrial automation, which include companies like ABB, Fanuc, Yaskawa, and Kuka, with revenue in the billions of dollars. Although some of these companies have added cobots to their product portfolios—ABB’s YuMi, for example—that market represents a drop in the bucket when you consider global robot sales: The size of the cobots market was estimated at $700 million in 2018, whereas the global market for industrial robot systems (including software, peripherals, and system engineering) is close to $50 billion.
Von Hollen notes that cobots are expected to go through an impressive growth curve—nearly 50 percent year after year until 2025, when sales will reach between $9 to $12 billion. If Universal can maintain its dominance and capture a big slice of that market, it’ll add up to a nice sum. To get there, Universal is not alone: It is backed by U.S. electronics testing equipment maker Teradyne, which acquired Universal in 2015 for $285 million.
“The amount of resources we invest year over year matches the growth we had on sales,” von Hollen says. Universal currently has more than 650 employees, most based at its headquarters in Odense, Denmark, and the rest scattered in 27 offices in 18 countries. “No other company [in the cobots segment] is so focused on one product.”
[ Universal Robots ] Continue reading →
#435676 Intel’s Neuromorphic System Hits 8 ...
At the DARPA Electronics Resurgence Initiative Summit today in Detroit, Intel plans to unveil an 8-million-neuron neuromorphic system comprising 64 Loihi research chips—codenamed Pohoiki Beach. Loihi chips are built with an architecture that more closely matches the way the brain works than do chips designed to do deep learning or other forms of AI. For the set of problems that such “spiking neural networks” are particularly good at, Loihi is about 1,000 times as fast as a CPU and 10,000 times as energy efficient. The new 64-Loihi system represents the equivalent of 8-million neurons, but that’s just a step to a 768-chip, 100-million-neuron system that the company plans for the end of 2019.
Intel and its research partners are just beginning to test what massive neural systems like Pohoiki Beach can do, but so far the evidence points to even greater performance and efficiency, says Mike Davies, director of neuromorphic research at Intel.
“We’re quickly accumulating results and data that there are definite benefits… mostly in the domain of efficiency. Virtually every one that we benchmark…we find significant gains in this architecture,” he says.
Going from a single-Loihi to 64 of them is more of a software issue than a hardware one. “We designed scalability into the Loihi chip from the beginning,” says Davies. “The chip has a hierarchical routing interface…which allows us to scale to up to 16,000 chips. So 64 is just the next step.”
Photo: Tim Herman/Intel Corporation
One of Intel’s Nahuku boards, each of which contains 8 to 32 Intel Loihi neuromorphic chips, shown here interfaced to an Intel Arria 10 FPGA development kit. Intel’s latest neuromorphic system, Pohoiki Beach, is made up of multiple Nahuku boards and contains 64 Loihi chips.
Finding algorithms that run well on an 8-million-neuron system and optimizing those algorithms in software is a considerable effort, he says. Still, the payoff could be huge. Neural networks that are more brain-like, such as Loihi, could be immune to some of the artificial intelligence’s—for lack of a better word—dumbness.
For example, today’s neural networks suffer from something called catastrophic forgetting. If you tried to teach a trained neural network to recognize something new—a new road sign, say—by simply exposing the network to the new input, it would disrupt the network so badly that it would become terrible at recognizing anything. To avoid this, you have to completely retrain the network from the ground up. (DARPA’s Lifelong Learning, or L2M, program is dedicated to solving this problem.)
(Here’s my favorite analogy: Say you coached a basketball team, and you raised the net by 30 centimeters while nobody was looking. The players would miss a bunch at first, but they’d figure things out quickly. If those players were like today’s neural networks, you’d have to pull them off the court and teach them the entire game over again—dribbling, passing, everything.)
Loihi can run networks that might be immune to catastrophic forgetting, meaning it learns a bit more like a human. In fact, there’s evidence through a research collaboration with Thomas Cleland’s group at Cornell University, that Loihi can achieve what’s called one-shot learning. That is, learning a new feature after being exposed to it only once. The Cornell group showed this by abstracting a model of the olfactory system so that it would run on Loihi. When exposed to a new virtual scent, the system not only didn't catastrophically forget everything else it had smelled, it learned to recognize the new scent just from the single exposure.
Loihi might also be able to run feature-extraction algorithms that are immune to the kinds of adversarial attacks that befuddle today’s image recognition systems. Traditional neural networks don’t really understand the features they’re extracting from an image in the way our brains do. “They can be fooled with simplistic attacks like changing individual pixels or adding a screen of noise that wouldn’t fool a human in any way,” Davies explains. But the sparse-coding algorithms Loihi can run work more like the human visual system and so wouldn’t fall for such shenanigans. (Disturbingly, humans are not completely immune to such attacks.)
Photo: Tim Herman/Intel Corporation
A close-up shot of Loihi, Intel’s neuromorphic research chip. Intel’s latest neuromorphic system, Pohoiki Beach, will be comprised of 64 of these Loihi chips.
Researchers have also been using Loihi to improve real-time control for robotic systems. For example, last week at the Telluride Neuromorphic Cognition Engineering Workshop—an event Davies called “summer camp for neuromorphics nerds”—researchers were hard at work using a Loihi-based system to control a foosball table. “It strikes people as crazy,” he says. “But it’s a nice illustration of neuromorphic technology. It’s fast, requires quick response, quick planning, and anticipation. These are what neuromorphic chips are good at.” Continue reading →
#435626 Video Friday: Watch Robots Make a Crepe ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. Every week, we also post a calendar of upcoming robotics events; here's what we have so far (send us your events!):
Robotronica – August 18, 2019 – Brisbane, Australia
CLAWAR 2019 – August 26-28, 2019 – Kuala Lumpur, Malaysia
IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi
Humanoids 2019 – October 15-17, 2019 – Toronto
ARSO 2019 – October 31-November 2, 2019 – Beijing
ROSCon 2019 – October 31-November 1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today's videos.
Team CoSTAR (JPL, MIT, Caltech, KAIST, LTU) has one of the more diverse teams of robots that we’ve seen:
[ Team CoSTAR ]
A team from Carnegie Mellon University and Oregon State University is sending ground and aerial autonomous robots into a Pittsburgh-area mine to prepare for this month’s DARPA Subterranean Challenge.
“Look at that fire extinguisher, what a beauty!” Expect to hear a lot more of that kind of weirdness during SubT.
[ CMU ]
Unitree Robotics is starting to batch-manufacture Laikago Pro quadrupeds, and if you buy four of them, they can carry you around in a chair!
I’m also really liking these videos from companies that are like, “We have a whole bunch of robot dogs now—what weird stuff can we do with them?”
[ Unitree Robotics ]
Why take a handful of pills every day for all the stuff that's wrong with you, when you could take one custom pill instead? Because custom pills are time-consuming to make, that’s why. But robots don’t care!
Multiply Labs’ factory is designed to operate in parallel. All the filling robots and all the quality-control robots are operating at the same time. The robotic arm, in the meanwhile, shuttles dozens of trays up and down the production floor, making sure that each capsule is filled with the right drugs. The manufacturing cell shown in this article can produce 10,000 personalized capsules in an 8-hour shift. A single cell occupies just 128 square feet (12 square meters) on the production floor. This means that a regular production facility (~10,000 square feet, or 929 m2 ) can house 78 cells, for an overall output of 780,000 capsules per shift. This exceeds the output of most traditional manufacturers—while producing unique personalized capsules!
[ Multiply Labs ]
Thanks Fred!
If you’re getting tired of all those annoying drones that sound like giant bees, just have a listen to this turbine-powered one:
[ Malloy Aeronautics ]
In retrospect, it’s kind of amazing that nobody has bothered to put a functional robotic dog head on a quadruped robot before this, right?
Equipped with sensors, high-tech radar imaging, cameras and a directional microphone, this 100-pound (45-kilogram) super-robot is still a “puppy-in-training.” Just like a regular dog, he responds to commands such as “sit,” “stand,” and “lie down.” Eventually, he will be able to understand and respond to hand signals, detect different colors, comprehend many languages, coordinate his efforts with drones, distinguish human faces, and even recognize other dogs.
As an information scout, Astro’s key missions will include detecting guns, explosives and gun residue to assist police, the military, and security personnel. This robodog’s talents won’t just end there, he also can be programmed to assist as a service dog for the visually impaired or to provide medical diagnostic monitoring. The MPCR team also is training Astro to serve as a first responder for search-and-rescue missions such as hurricane reconnaissance as well as military maneuvers.
[ FAU ]
And now this amazing video, “The Coke Thief,” from ICRA 2005 (!):
[ Paper ]
CYBATHLON Series put the focus on one or two of the six disciplines and are organized in cooperation with international universities and partners. The CYBATHLON Arm and Leg Prosthesis Series took place in Karlsruhe, Germany, from 16 to 18 May and was organized in cooperation with the Karlsruhe Institute of Technology (KIT) and the trade fair REHAB Karlsruhe.
The CYBATHLON Wheelchair Series took place in Kawasaki, Japan on 5 May 2019 and was organized in cooperation with the CYBATHLON Wheelchair Series Japan Organizing Committee and supported by the Swiss Embassy.
[ Cybathlon ]
Rainbow crepe robot!
There’s also this other robot, which I assume does something besides what's in the video, because otherwise it appears to be a massively overengineered way of shaping cooked rice into a chubby triangle.
[ PC Watch ]
The Weaponized Plastic Fighting League at Fetch Robotics has had another season of shardation, deintegration, explodification, and other -tions. Here are a couple fan favorite match videos:
[ Fetch Robotics ]
This video is in German, but it’s worth watching for the three seconds of extremely satisfying footage showing a robot twisting dough into pretzels.
[ Festo ]
Putting brains into farming equipment is a no-brainer, since it’s a semi-structured environment that's generally clear of wayward humans driving other vehicles.
[ Lovol ]
Thanks Fan!
Watch some robots assemble suspiciously Lego-like (but definitely not actually Lego) minifigs.
[ DevLinks ]
The Robotics Innovation Facility (RIFBristol) helps businesses, entrepreneurs, researchers and public sector bodies to embrace the concept of ‘Industry 4.0'. From training your staff in robotics, and demonstrating how automation can improve your manufacturing processes, to prototyping and validating your new innovations—we can provide the support you need.
[ RIF ]
Ryan Gariepy from Clearpath Robotics (and a bunch of other stuff) gave a talk at ICRA with the title of “Move Fast and (Don’t) Break Things: Commercializing Robotics at the Speed of Venture Capital,” which is more interesting when you know that this year’s theme was “Notable Failures.”
[ Clearpath Robotics ]
In this week’s episode of Robots in Depth, Per interviews Michael Nielsen, a computer vision researcher at the Danish Technological Institute.
Michael worked with a fusion of sensors like stereo vision, thermography, radar, lidar and high-frame-rate cameras, merging multiple images for high dynamic range. All this, to be able to navigate the tricky situation in a farm field where you need to navigate close to or even in what is grown. Multibaseline cameras were also used to provide range detection over a wide range of distances.
We also learn about how he expanded his work into sorting recycling, a very challenging problem. We also hear about the problems faced when using time of flight and sheet of light cameras. He then shares some good results using stereo vision, especially combined with blue light random dot projectors.
[ Robots in Depth ] Continue reading →
#435145 How Big Companies Can Simultaneously Run ...
We live in the age of entrepreneurs. New startups seem to appear out of nowhere and challenge not only established companies, but entire industries. Where startup unicorns were once mythical creatures, they now seem abundant, not only increasing in numbers but also in the speed with which they can gain the minimum one-billion-dollar valuations to achieve this status.
But no matter how well things go for innovative startups, how many new success stories we hear, and how much space they take up in the media, the story that they are the best or only source of innovation isn’t entirely accurate.
Established organizations, or legacy organizations, can be incredibly innovative too. And while innovation is much more difficult in established organizations than in startups because they have much more complex systems—nobody is more likely to succeed in their innovation efforts than established organizations.
Unlike startups, established organizations have all the resources. They have money, customers, data, suppliers, partners, and infrastructure, which put them in a far better position to transform new ideas into concrete, value-creating, successful offerings than startups.
However, for established organizations, becoming an innovation champion in these times of rapid change requires new rules of engagement.
Many organizations commit the mistake of engaging in innovation as if it were a homogeneous thing that should be approached in the same way every time, regardless of its purpose. In my book, Transforming Legacy Organizations, I argue that innovation in established organizations must actually be divided into three different tracks: optimizing, augmenting, and mutating innovation.
All three are important, and to complicate matters further, organizations must execute all three types of innovation at the same time.
Optimizing Innovation
The first track is optimizing innovation. This type of innovation is the majority of what legacy organizations already do today. It is, metaphorically speaking, the extra blade on the razor. A razor manufacturer might launch a new razor that has not just three, but four blades, to ensure an even better, closer, and more comfortable shave. Then one or two years later, they say they are now launching a razor that has not only four, but five blades for an even better, closer, and more comfortable shave. That is optimizing innovation.
Adding extra blades on the razor is where the established player reigns.
No startup with so much as a modicum of sense would even try to beat the established company in this type of innovation. And this continuous optimization, both on the operational and customer facing sides, is important. In the short term. It pays the rent. But it’s far from enough. There are limits to how many blades a razor needs, and optimizing innovation only improves upon the past.
Augmenting Innovation
Established players must also go beyond optimization and prepare for the future through augmenting innovation.
The digital transformation projects that many organizations are initiating can be characterized as augmenting innovation. In the first instance, it is about upgrading core offerings and processes from analog to digital. Or, if you’re born digital, you’ve probably had to augment the core to become mobile-first. Perhaps you have even entered the next augmentation phase, which involves implementing artificial intelligence. Becoming AI-first, like the Amazons, Microsofts, Baidus, and Googles of the world, requires great technological advancements. And it’s difficult. But technology may, in fact, be a minor part of the task.
The biggest challenge for augmenting innovation is probably culture.
Only legacy organizations that manage to transform their cultures from status quo cultures—cultures with a preference for things as they are—into cultures full of incremental innovators can thrive in constant change.
To create a strong innovation culture, an organization needs to thoroughly understand its immune systems. These are the mechanisms that protect the organization and operate around the clock to keep it healthy and stable, just as the body’s immune system operates to keep the body healthy and stable. But in a rapidly changing world, many of these defense mechanisms are no longer appropriate and risk weakening organizations’ innovation power.
When talking about organizational immune systems, there is a clear tendency to simply point to the individual immune system, people’s unwillingness to change.
But this is too simplistic.
Of course, there is human resistance to change, but the organizational immune system, consisting of a company’s key performance indicators (KPIs), rewards systems, legacy IT infrastructure and processes, and investor and shareholder demands, is far more important. So is the organization’s societal immune system, such as legislative barriers, legacy customers and providers, and economic climate.
Luckily, there are many culture hacks that organizations can apply to strengthen their innovation cultures by upgrading their physical and digital workspaces, transforming their top-down work processes into decentralized, agile ones, and empowering their employees.
Mutating Innovation
Upgrading your core and preparing for the future by augmenting innovation is crucial if you want success in the medium term. But to win in the long run and be as or more successful 20 to 30 years from now, you need to invent the future, and challenge your core, through mutating innovation.
This requires involving radical innovators who have a bold focus on experimenting with that which is not currently understood and for which a business case cannot be prepared.
Here you must also physically move away from the core organization when you initiate and run such initiatives. This is sometimes called “innovation on the edges” because the initiatives will not have a chance at succeeding within the core. It will be too noisy as they challenge what currently exists—precisely what the majority of the organization’s employees are working to optimize or augment.
Forward-looking organizations experiment to mutate their core through “X divisions,” sometimes called skunk works or innovation labs.
Lowe’s Innovation Labs, for instance, worked with startups to build in-store robot assistants and zero-gravity 3D printers to explore the future. Mutating innovation might include pursuing partnerships across all imaginable domains or establishing brand new companies, rather than traditional business units, as we see automakers such as Toyota now doing to build software for autonomous vehicles. Companies might also engage in radical open innovation by sponsoring others’ ingenuity. Japan’s top airline ANA is exploring a future of travel that does not involve flying people from point A to point B via the ANA Avatar XPRIZE competition.
Increasing technological opportunities challenge the core of any organization but also create unprecedented potential. No matter what product, service, or experience you create, you can’t rest on your laurels. You have to bring yourself to a position where you have a clear strategy for optimizing, augmenting, and mutating your core and thus transforming your organization.
It’s not an easy job. But, hey, if it were easy, everyone would be doing it. Those who make it, on the other hand, will be the innovation champions of the future.
Image Credit: rock-the-stock / Shutterstock.com
We are a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for us to earn fees by linking to Amazon.com and affiliated sites. Continue reading →