Tag Archives: part

#435583 Soft Self-Healing Materials for Robots ...

If there’s one thing we know about robots, it’s that they break. They break, like, literally all the time. The software breaks. The hardware breaks. The bits that you think could never, ever, ever possibly break end up breaking just when you need them not to break the most, and then you have to try to explain what happened to your advisor who’s been standing there watching your robot fail and then stay up all night fixing the thing that seriously was not supposed to break.

While most of this is just a fundamental characteristic of robots that can’t be helped, the European Commission is funding a project called SHERO (Self HEaling soft RObotics) to try and solve at least some of those physical robot breaking problems through the use of structural materials that can autonomously heal themselves over and over again.

SHERO is a three year, €3 million collaboration between Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris), and Swiss Federal Laboratories for Materials Science and Technology (Empa). As the name SHERO suggests, the goal of the project is to develop soft materials that can completely recover from the kinds of damage that robots are likely to suffer in day to day operations, as well as the occasional more extreme accident.

Most materials, especially soft materials, are fixable somehow, whether it’s with super glue or duct tape. But fixing things involves a human first identifying when they’re broken, and then performing a potentially skill, labor, time, and money intensive task. SHERO’s soft materials will, eventually, make this entire process autonomous, allowing robots to self-identify damage and initiate healing on their own.

Photos: SHERO Project

The damaged robot finger [top] can operate normally after healing itself.

How the self-healing material works
What these self-healing materials can do is really pretty amazing. The researchers are actually developing two different types—the first one heals itself when there’s an application of heat, either internally or externally, which gives some control over when and how the healing process starts. For example, if the robot is handling stuff that’s dirty, you’d want to get it cleaned up before healing it so that dirt doesn’t become embedded in the material. This could mean that the robot either takes itself to a heating station, or it could activate some kind of embedded heating mechanism to be more self-sufficient.

The second kind of self-healing material is autonomous, in that it will heal itself at room temperature without any additional input, and is probably more suitable for relatively minor scrapes and cracks. Here are some numbers about how well the healing works:

Autonomous self-healing polymers do not require heat. They can heal damage at room temperature. Developing soft robotic systems from autonomous self-healing polymers excludes the need of additional heating devices… The healing however takes some time. The healing efficiency after 3 days, 7 days and 14 days is respectively 62 percent, 91 percent and 97 percent.

This material was used to develop a healable soft pneumatic hand. Relevant large cuts can be healed entirely without the need of external heat stimulus. Depending on the size of the damage and even more on the location of damage, the healing takes only seconds or up to a week. Damage on locations on the actuator that are subjected to very small stresses during actuation was healed instantaneously. Larger damages, like cutting the actuator completely in half, took 7 days to heal. But even this severe damage could be healed completely without the need of any external stimulus.

Applications of self-healing robots
Both of these materials can be mixed together, and their mechanical properties can be customized so that the structure that they’re a part of can be tuned to move in different ways. The researchers also plan on introducing flexible conductive sensors into the material, which will help sense damage as well as providing position feedback for control systems. A lot of development will happen over the next few years, and for more details, we spoke with Bram Vanderborght at Vrije Universiteit in Brussels.

IEEE Spectrum: How easy or difficult or expensive is it to produce these materials? Will they add significant cost to robotic grippers?

Bram Vanderborght: They are definitely more expensive materials, but it’s also a matter of size of production. At the moment, we’ve made a few kilograms of the material (enough to make several demonstrators), and the price already dropped significantly from when we ordered 100 grams of the material in the first phase of the project. So probably the cost of the gripper will be higher [than a regular gripper], but you won’t need to replace the gripper as often as other grippers that need to be replaced due to wear, so it can be an advantage.

Moreover due to the method of 3D printing the material, the surface is smoother and airtight (so no post-processing is required to make it airtight). Also, the smooth surface is better to avoid contamination for food handling, for example.

In commercial or industrial applications, gradual fatigue seems to be a more common issue than more abrupt trauma like cuts. How well does the self-healing work to improve durability over long periods of time?

We did not test for gradual fatigue over very long times. But both macroscopic and microscopic damage can be healed. So hopefully it can provide an answer here as well.

Image: SHERO Project

After developing a self-healing robot gripper, the researchers plan to use similar materials to build parts that can be used as the skeleton of robots, allowing them to repair themselves on a regular basis.

How much does the self-healing capability restrict the material properties? What are the limits for softness or hardness or smoothness or other characteristics of the material?

Typically the mechanical properties of networked polymers are much better than thermoplastics. Our material is a networked polymer but in which the crosslinks are reversible. We can change quite a lot of parameters in the design of the materials. So we can develop very stiff (fracture strain at 1.24 percent) and very elastic materials (fracture strain at 450 percent). The big advantage that our material has is we can mix it to have intermediate properties. Moreover, at the interface of the materials with different mechanical properties, we have the same chemical bonds, so the interface is perfect. While other materials, they may need to glue it, which gives local stresses and a weak spot.

When the material heals itself, is it less structurally sound in that spot? Can it heal damage that happens to the same spot over and over again?

In theory we can heal it an infinite amount of times. When the wound is not perfectly aligned, of course in that spot it will become weaker. Also too high temperatures lead to irreversible bonds, and impurities lead to weak spots.

Besides grippers and skins, what other potential robotics applications would this technology be useful for?

Most of self healing materials available now are used for coatings. What we are developing are structural components, therefore the mechanical properties of the material need to be good for such applications. So maybe part of the skeleton of the robot can be developed with such materials to make it lighter, since can be designed for regular repair. And for exceptional loads, it breaks and can be repaired like our human body.

[ SHERO Project ] Continue reading

Posted in Human Robots

#435575 How an AI Startup Designed a Drug ...

Discovering a new drug can take decades, billions of dollars, and untold man hours from some of the smartest people on the planet. Now a startup says it’s taken a significant step towards speeding the process up using AI.

The typical drug discovery process involves carrying out physical tests on enormous libraries of molecules, and even with the help of robotics it’s an arduous process. The idea of sidestepping this by using computers to virtually screen for promising candidates has been around for decades. But progress has been underwhelming, and it’s still not a major part of commercial pipelines.

Recent advances in deep learning, however, have reignited hopes for the field, and major pharma companies have started tying up with AI-powered drug discovery startups. And now Insilico Medicine has used AI to design a molecule that effectively targets a protein involved in fibrosis—the formation of excess fibrous tissue—in mice in just 46 days.

The platform the company has developed combines two of the hottest sub-fields of AI: the generative adversarial networks, or GANs, which power deepfakes, and reinforcement learning, which is at the heart of the most impressive game-playing AI advances of recent years.

In a paper in Nature Biotechnology, the company’s researchers describe how they trained their model on all the molecules already known to target this protein as well as many other active molecules from various datasets. The model was then used to generate 30,000 candidate molecules.

Unlike most previous efforts, they went a step further and selected the most promising molecules for testing in the lab. The 30,000 candidates were whittled down to just 6 using more conventional drug discovery approaches and were then synthesized in the lab. They were put through increasingly stringent tests, but the leading candidate was found to be effective at targeting the desired protein and behaved as one would hope a drug would.

The authors are clear that the results are just a proof-of-concept, which company CEO Alex Zhavoronkov told Wired stemmed from a challenge set by a pharma partner to design a drug as quickly as possible. But they say they were able to carry out the process faster than traditional methods for a fraction of the cost.

There are some caveats. For a start, the protein being targeted is already very well known and multiple effective drugs exist for it. That gave the company a wealth of data to train their model on, something that isn’t the case for many of the diseases where we urgently need new drugs.

The company’s platform also only targets the very initial stages of the drug discovery process. The authors concede in their paper that the molecules would still take considerable optimization in the lab before they’d be true contenders for clinical trials.

“And that is where you will start to begin to commence to spend the vast piles of money that you will eventually go through in trying to get a drug to market,” writes Derek Lowe in his blog In The Pipeline. The part of the discovery process that the platform tackles represents a tiny fraction of the total cost of drug development, he says.

Nonetheless, the research is a definite advance for virtual screening technology and an important marker of the potential of AI for designing new medicines. Zhavoronkov also told Wired that this research was done more than a year ago, and they’ve since adapted the platform to go after harder drug targets with less data.

And with big pharma companies desperate to slash their ballooning development costs and find treatments for a host of intractable diseases, they can use all the help they can get.

Image Credit: freestocks.org / Unsplash Continue reading

Posted in Human Robots

#435541 This Giant AI Chip Is the Size of an ...

People say size doesn’t matter, but when it comes to AI the makers of the largest computer chip ever beg to differ. There are plenty of question marks about the gargantuan processor, but its unconventional design could herald an innovative new era in silicon design.

Computer chips specialized to run deep learning algorithms are a booming area of research as hardware limitations begin to slow progress, and both established players and startups are vying to build the successor to the GPU, the specialized graphics chip that has become the workhorse of the AI industry.

On Monday Californian startup Cerebras came out of stealth mode to unveil an AI-focused processor that turns conventional wisdom on its head. For decades chip makers have been focused on making their products ever-smaller, but the Wafer Scale Engine (WSE) is the size of an iPad and features 1.2 trillion transistors, 400,000 cores, and 18 gigabytes of on-chip memory.

The Cerebras Wafer-Scale Engine (WSE) is the largest chip ever built. It measures 46,225 square millimeters and includes 1.2 trillion transistors. Optimized for artificial intelligence compute, the WSE is shown here for comparison alongside the largest graphics processing unit. Image Credit: Used with permission from Cerebras Systems.
There is a method to the madness, though. Currently, getting enough cores to run really large-scale deep learning applications means connecting banks of GPUs together. But shuffling data between these chips is a major drain on speed and energy efficiency because the wires connecting them are relatively slow.

Building all 400,000 cores into the same chip should get round that bottleneck, but there are reasons it’s not been done before, and Cerebras has had to come up with some clever hacks to get around those obstacles.

Regular computer chips are manufactured using a process called photolithography to etch transistors onto the surface of a wafer of silicon. The wafers are inches across, so multiple chips are built onto them at once and then split up afterwards. But at 8.5 inches across, the WSE uses the entire wafer for a single chip.

The problem is that while for standard chip-making processes any imperfections in manufacturing will at most lead to a few processors out of several hundred having to be ditched, for Cerebras it would mean scrapping the entire wafer. To get around this the company built in redundant circuits so that even if there are a few defects, the chip can route around them.

The other big issue with a giant chip is the enormous amount of heat the processors can kick off—so the company has had to design a proprietary water-cooling system. That, along with the fact that no one makes connections and packaging for giant chips, means the WSE won’t be sold as a stand-alone component, but as part of a pre-packaged server incorporating the cooling technology.

There are no details on costs or performance so far, but some customers have already been testing prototypes, and according to Cerebras results have been promising. CEO and co-founder Andrew Feldman told Fortune that early tests show they are reducing training time from months to minutes.

We’ll have to wait until the first systems ship to customers in September to see if those claims stand up. But Feldman told ZDNet that the design of their chip should help spur greater innovation in the way engineers design neural networks. Many cornerstones of this process—for instance, tackling data in batches rather than individual data points—are guided more by the hardware limitations of GPUs than by machine learning theory, but their chip will do away with many of those obstacles.

Whether that turns out to be the case or not, the WSE might be the first indication of an innovative new era in silicon design. When Google announced it’s AI-focused Tensor Processing Unit in 2016 it was a wake-up call for chipmakers that we need some out-of-the-box thinking to square the slowing of Moore’s Law with skyrocketing demand for computing power.

It’s not just tech giants’ AI server farms driving innovation. At the other end of the spectrum, the desire to embed intelligence in everyday objects and mobile devices is pushing demand for AI chips that can run on tiny amounts of power and squeeze into the smallest form factors.

These trends have spawned renewed interest in everything from brain-inspired neuromorphic chips to optical processors, but the WSE also shows that there might be mileage in simply taking a sideways look at some of the other design decisions chipmakers have made in the past rather than just pumping ever more transistors onto a chip.

This gigantic chip might be the first exhibit in a weird and wonderful new menagerie of exotic, AI-inspired silicon.

Image Credit: Used with permission from Cerebras Systems. Continue reading

Posted in Human Robots

#435535 This Week’s Awesome Tech Stories From ...

ARTIFICIAL INTELLIGENCE
To Power AI, This Startup Built a Really, Really Big Chip
Tom Simonite | Wired
“The silicon monster is almost 22 centimeters—roughly 9 inches—on each side, making it likely the largest computer chip ever, and a monument to the tech industry’s hopes for artificial intelligence.”

COMPUTING
You Won’t See the Quantum Internet Coming
Ryan F. Mandelbaum | Gizmodo
“The quantum internet is coming sooner than you think—even sooner than quantum computing itself. When things change over, you might not even notice. But when they do, new rules will protect your data against attacks from computers that don’t even exist yet.”

LONGEVITY
What If Aging Weren’t Inevitable, But a Curable Disease
David Adam | MIT Technology Review
“…a growing number of scientists are questioning our basic conception of aging. What if you could challenge your death—or even prevent it altogether? What if the panoply of diseases that strike us in old age are symptoms, not causes? What would change if we classified aging itself as the disease?”

ROBOTICS
Thousands of Autonomous Delivery Robots Are About to Descend on College Campuses
Andrew J. Hawkins | The Verge
“The quintessential college experience of getting pizza delivered to your dorm room is about to get a high-tech upgrade. On Tuesday, Starship Technologies announced its plan to deploy thousands of its autonomous six-wheeled delivery robots on college campuses around the country over the next two years, after raising $40 million in Series A funding.”

TRANSPORTATION
Volocopter Reveals Its First Commercial Autonomous Flying Taxi
Christine Fisher | Endgadget
“It’s a race to the skies in terms of which company actually deploys an on-demand air taxi service based around electric vertical take-off and landing aircraft. For its part, German startup Volocopter is taking another key step with the revelation of its first aircraft designed for actual commercial use, the VoloCity.”

Image Credit: Colin Carter / Unsplash Continue reading

Posted in Human Robots

#435520 These Are the Meta-Trends Shaping the ...

Life is pretty different now than it was 20 years ago, or even 10 years ago. It’s sort of exciting, and sort of scary. And hold onto your hat, because it’s going to keep changing—even faster than it already has been.

The good news is, maybe there won’t be too many big surprises, because the future will be shaped by trends that have already been set in motion. According to Singularity University co-founder and XPRIZE founder Peter Diamandis, a lot of these trends are unstoppable—but they’re also pretty predictable.

At SU’s Global Summit, taking place this week in San Francisco, Diamandis outlined some of the meta-trends he believes are key to how we’ll live our lives and do business in the (not too distant) future.

Increasing Global Abundance
Resources are becoming more abundant all over the world, and fewer people are seeing their lives limited by scarcity. “It’s hard for us to realize this as we see crisis news, but what people have access to is more abundant than ever before,” Diamandis said. Products and services are becoming cheaper and thus available to more people, and having more resources then enables people to create more, thus producing even more resources—and so on.

Need evidence? The proportion of the world’s population living in extreme poverty is currently lower than it’s ever been. The average human life expectancy is longer than it’s ever been. The costs of day-to-day needs like food, energy, transportation, and communications are on a downward trend.

Take energy. In most of the world, though its costs are decreasing, it’s still a fairly precious commodity; we turn off our lights and our air conditioners when we don’t need them (ideally, both to save money and to avoid wastefulness). But the cost of solar energy has plummeted, and the storage capacity of batteries is improving, and solar technology is steadily getting more efficient. Bids for new solar power plants in the past few years have broken each other’s records for lowest cost per kilowatt hour.

“We’re not far from a penny per kilowatt hour for energy from the sun,” Diamandis said. “And if you’ve got energy, you’ve got water.” Desalination, for one, will be much more widely feasible once the cost of the energy needed for it drops.

Knowledge is perhaps the most crucial resource that’s going from scarce to abundant. All the world’s knowledge is now at the fingertips of anyone who has a mobile phone and an internet connection—and the number of people connected is only going to grow. “Everyone is being connected at gigabit connection speeds, and this will be transformative,” Diamandis said. “We’re heading towards a world where anyone can know anything at any time.”

Increasing Capital Abundance
It’s not just goods, services, and knowledge that are becoming more plentiful. Money is, too—particularly money for business. “There’s more and more capital available to invest in companies,” Diamandis said. As a result, more people are getting the chance to bring their world-changing ideas to life.

Venture capital investments reached a new record of $130 billion in 2018, up from $84 billion in 2017—and that’s just in the US. Globally, VC funding grew 21 percent from 2017 to a total of $207 billion in 2018.

Through crowdfunding, any person in any part of the world can present their idea and ask for funding. That funding can come in the form of a loan, an equity investment, a reward, or an advanced purchase of the proposed product or service. “Crowdfunding means it doesn’t matter where you live, if you have a great idea you can get it funded by people from all over the world,” Diamandis said.

All this is making a difference; the number of unicorns—privately-held startups valued at over $1 billion—currently stands at an astounding 360.

One of the reasons why the world is getting better, Diamandis believes, is because entrepreneurs are trying more crazy ideas—not ideas that are reasonable or predictable or linear, but ideas that seem absurd at first, then eventually end up changing the world.

Everyone and Everything, Connected
As already noted, knowledge is becoming abundant thanks to the proliferation of mobile phones and wireless internet; everyone’s getting connected. In the next decade or sooner, connectivity will reach every person in the world. 5G is being tested and offered for the first time this year, and companies like Google, SpaceX, OneWeb, and Amazon are racing to develop global satellite internet constellations, whether by launching 12,000 satellites, as SpaceX’s Starlink is doing, or by floating giant balloons into the stratosphere like Google’s Project Loon.

“We’re about to reach a period of time in the next four to six years where we’re going from half the world’s people being connected to the whole world being connected,” Diamandis said. “What happens when 4.2 billion new minds come online? They’re all going to want to create, discover, consume, and invent.”

And it doesn’t stop at connecting people. Things are becoming more connected too. “By 2020 there will be over 20 billion connected devices and more than one trillion sensors,” Diamandis said. By 2030, those projections go up to 500 billion and 100 trillion. Think about it: there’s home devices like refrigerators, TVs, dishwashers, digital assistants, and even toasters. There’s city infrastructure, from stoplights to cameras to public transportation like buses or bike sharing. It’s all getting smart and connected.

Soon we’ll be adding autonomous cars to the mix, and an unimaginable glut of data to go with them. Every turn, every stop, every acceleration will be a data point. Some cars already collect over 25 gigabytes of data per hour, Diamandis said, and car data is projected to generate $750 billion of revenue by 2030.

“You’re going to start asking questions that were never askable before, because the data is now there to be mined,” he said.

Increasing Human Intelligence
Indeed, we’ll have data on everything we could possibly want data on. We’ll also soon have what Diamandis calls just-in-time education, where 5G combined with artificial intelligence and augmented reality will allow you to learn something in the moment you need it. “It’s not going and studying, it’s where your AR glasses show you how to do an emergency surgery, or fix something, or program something,” he said.

We’re also at the beginning of massive investments in research working towards connecting our brains to the cloud. “Right now, everything we think, feel, hear, or learn is confined in our synaptic connections,” Diamandis said. What will it look like when that’s no longer the case? Companies like Kernel, Neuralink, Open Water, Facebook, Google, and IBM are all investing billions of dollars into brain-machine interface research.

Increasing Human Longevity
One of the most important problems we’ll use our newfound intelligence to solve is that of our own health and mortality, making 100 years old the new 60—then eventually, 120 or 150.

“Our bodies were never evolved to live past age 30,” Diamandis said. “You’d go into puberty at age 13 and have a baby, and by the time you were 26 your baby was having a baby.”

Seeing how drastically our lifespans have changed over time makes you wonder what aging even is; is it natural, or is it a disease? Many companies are treating it as one, and using technologies like senolytics, CRISPR, and stem cell therapy to try to cure it. Scaffolds of human organs can now be 3D printed then populated with the recipient’s own stem cells so that their bodies won’t reject the transplant. Companies are testing small-molecule pharmaceuticals that can stop various forms of cancer.

“We don’t truly know what’s going on inside our bodies—but we can,” Diamandis said. “We’re going to be able to track our bodies and find disease at stage zero.”

Chins Up
The world is far from perfect—that’s not hard to see. What’s less obvious but just as true is that we’re living in an amazing time. More people are coming together, and they have more access to information, and that information moves faster, than ever before.

“I don’t think any of us understand how fast the world is changing,” Diamandis said. “Most people are fearful about the future. But we should be excited about the tools we now have to solve the world’s problems.”

Image Credit: spainter_vfx / Shutterstock.com Continue reading

Posted in Human Robots