Tag Archives: part

#437610 How Intel’s OpenBot Wants to Make ...

You could make a pretty persuasive argument that the smartphone represents the single fastest area of technological progress we’re going to experience for the foreseeable future. Every six months or so, there’s something with better sensors, more computing power, and faster connectivity. Many different areas of robotics are benefiting from this on a component level, but over at Intel Labs, they’re taking a more direct approach with a project called OpenBot that turns US $50 worth of hardware and your phone into a mobile robot that can support “advanced robotics workloads such as person following and real-time autonomous navigation in unstructured environments.”

This work aims to address two key challenges in robotics: accessibility and scalability. Smartphones are ubiquitous and are becoming more powerful by the year. We have developed a combination of hardware and software that turns smartphones into robots. The resulting robots are inexpensive but capable. Our experiments have shown that a $50 robot body powered by a smartphone is capable of person following and real-time autonomous navigation. We hope that the presented work will open new opportunities for education and large-scale learning via thousands of low-cost robots deployed around the world.

Smartphones point to many possibilities for robotics that we have not yet exploited. For example, smartphones also provide a microphone, speaker, and screen, which are not commonly found on existing navigation robots. These may enable research and applications at the confluence of human-robot interaction and natural language processing. We also expect the basic ideas presented in this work to extend to other forms of robot embodiment, such as manipulators, aerial vehicles, and watercraft.

One of the interesting things about this idea is how not-new it is. The highest profile phone robot was likely the $150 Romo, from Romotive, which raised a not-insignificant amount of money on Kickstarter in 2012 and 2013 for a little mobile chassis that accepted one of three different iPhone models and could be controlled via another device or operated somewhat autonomously. It featured “computer vision, autonomous navigation, and facial recognition” capabilities, but was really designed to be a toy. Lack of compatibility hampered Romo a bit, and there wasn’t a lot that it could actually do once the novelty wore off.

As impressive as smartphone hardware was in a robotics context (even back in 2013), we’re obviously way, way beyond that now, and OpenBot figures that smartphones now have enough clout and connectivity that turning them into mobile robots is a good idea. You know, again. We asked Intel Labs’ Matthias Muller why now was the right time to launch OpenBot, and he mentioned things like the existence of a large maker community with broad access to 3D printing as well as open source software that makes broader development easier.

And of course, there’s the smartphone hardware: “Smartphones have become extremely powerful and feature dedicated AI processors in addition to CPUs and GPUs,” says Mueller. “Almost everyone owns a very capable smartphone now. There has been a big boost in sensor performance, especially in cameras, and a lot of the recent developments for VR applications are well aligned with robotic requirements for state estimation.” OpenBot has been tested with 10 recent Android phones, and since camera placement tends to be similar and USB-C is becoming the charging and communications standard, compatibility is less of an issue nowadays.

Image: OpenBot

Intel researchers created this table comparing OpenBot to other wheeled robot platforms, including Amazon’s DeepRacer, MIT’s Duckiebot, iRobot’s Create-2, and Thymio. The top group includes robots based on RC trucks; the bottom group includes navigation robots for deployment at scale and in education. Note that the cost of the smartphone needed for OpenBot is not included in this comparison.

If you’d like an OpenBot of your own, you don’t need to know all that much about robotics hardware or software. For the hardware, you probably need some basic mechanical and electronics experience—think Arduino project level. The software is a little more complicated; there’s a pretty good walkthrough to get some relatively sophisticated behaviors (like autonomous person following) up and running, but things rapidly degenerate into a command line interface that could be intimidating for new users. We did ask about why OpenBot isn’t ROS-based to leverage the robustness and reach of that community, and Muller said that ROS “adds unnecessary overhead,” although “if someone insists on using ROS with OpenBot, it should not be very difficult.”

Without building OpenBot to explicitly be part of an existing ecosystem, the challenge going forward is to make sure that the project is consistently supported, lest it wither and die like so many similar robotics projects have before it. “We are committed to the OpenBot project and will do our best to maintain it,” Mueller assures us. “We have a good track record. Other projects from our group (e.g. CARLA, Open3D, etc.) have also been maintained for several years now.” The inherently open source nature of the project certainly helps, although it can be tricky to rely too much on community contributions, especially when something like this is first starting out.

The OpenBot folks at Intel, we’re told, are already working on a “bigger, faster and more powerful robot body that will be suitable for mass production,” which would certainly help entice more people into giving this thing a go. They’ll also be focusing on documentation, which is probably the most important but least exciting part about building a low-cost community focused platform like this. And as soon as they’ve put together a way for us actual novices to turn our phones into robots that can do cool stuff for cheap, we’ll definitely let you know. Continue reading

Posted in Human Robots

#437600 Brain-Inspired Robot Controller Uses ...

Robots operating in the real world are starting to find themselves constrained by the amount of computing power they have available. Computers are certainly getting faster and more efficient, but they’re not keeping up with the potential of robotic systems, which have access to better sensors and more data, which in turn makes decision making more complex. A relatively new kind of computing device called a memristor could potentially help robotics smash through this barrier, through a combination of lower complexity, lower cost, and higher speed.

In a paper published today in Science Robotics, a team of researchers from the University of Southern California in Los Angeles and the Air Force Research Laboratory in Rome, N.Y., demonstrate a simple self-balancing robot that uses memristors to form a highly effective analog control system, inspired by the functional structure of the human brain.

First, we should go over just what the heck a memristor is. As the name suggests, it’s a type of memory that is resistance-based. That is, the resistance of a memristor can be programmed, and the memristor remembers that resistance even after it’s powered off (the resistance depends on the magnitude of the voltage applied to the memristor’s two terminals and the length of time that voltage has been applied). Memristors are potentially the ideal hybrid between RAM and flash memory, offering high speed, high density, non-volatile storage. So that’s cool, but what we’re most interested in as far as robot control systems go is that memristors store resistance, making them analog devices rather than digital ones.

By adding a memristor to an analog circuit with inputs from a gyroscope and an accelerometer, the researchers created a completely analog Kalman filter, which coupled to a second memristor functioned as a PD controller.

Nowadays, the word “analog” sounds like a bad thing, but robots are stuck in an analog world, and any physical interactions they have with the world (mediated through sensors) are fundamentally analog in nature. The challenge is that an analog signal is often “messy”—full of noise and non-linearities—and as such, the usual approach now is to get it converted to a digital signal and then processed to get anything useful out of it. This is fine, but it’s also not particularly fast or efficient. Where memristors come in is that they’re inherently analog, and in addition to storing data, they can also act as tiny analog computers, which is pretty wild.

By adding a memristor to an analog circuit with inputs from a gyroscope and an accelerometer, the researchers, led by Wei Wu, an associate professor of electrical engineering at USC, created a completely analog and completely physical Kalman filter to remove noise from the sensor signal. In addition, they used a second memristor can be used to turn that sensor data into a proportional-derivative (PD) controller. Next they put those two components together to build an analogy system that can do a bunch of the work required to keep an inverted pendulum robot upright far more efficiently than a traditional system. The difference in performance is readily apparent:

The shaking you see in the traditionally-controlled robot on the bottom comes from the non-linearity of the dynamic system, which changes faster than the on-board controller can keep up with. The memristors substantially reduce the cycle time, so the robot can balance much more smoothly. Specifically, cycle time is reduced from 3,034 microseconds to just 6 microseconds.

Of course, there’s more going on here, like motor drivers and a digital computer to talk to them, so this robot is really a hybrid system. But guess what? As the researchers point out, so are we!

The human brain consists of the cerebrum, the cerebellum, and the brainstem. The cerebrum is a major part of the brain in charge of vision, hearing, and thinking, whereas the cerebellum plays an important role in motion control. Through this cooperation of the cerebrum and the cerebellum, the human brain can conduct multiple tasks simultaneously with extremely low power consumption. Inspired by this, we developed a hybrid analog-digital computation platform, in which the digital component runs the high-level algorithm, whereas the analog component is responsible for sensor fusion and motion control.

By offloading a bunch of computation onto the memristors, the higher brain functions of the robot have more breathing room. Overall, you reduce power, space, and cost, while substantially improving performance. This has only become possible relatively recently due to memristor advances and availability, and the researchers expect that memristor-based hybrid computing will soon be able to “improve the robustness and the performance of mobile robotic systems with higher” degrees of freedom.

“A memristor-based hybrid analog-digital computing platform for mobile robotics,” by Buyun Chen, Hao Yang, Boxiang Song, Deming Meng, Xiaodong Yan, Yuanrui Li, Yunxiang Wang, Pan Hu, Tse-Hsien Ou, Mark Barnell, Qing Wu, Han Wang, and Wei Wu, from USC Viterbi and AFRL, was published in Science Robotics. Continue reading

Posted in Human Robots

#437598 Video Friday: Sarcos Is Developing a New ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

IROS 2020 – October 25-29, 2020 – [Online]
ROS World 2020 – November 12, 2020 – [Online]
CYBATHLON 2020 – November 13-14, 2020 – [Online]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today's videos.

NASA’s Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx) spacecraft unfurled its robotic arm Oct. 20, 2020, and in a first for the agency, briefly touched an asteroid to collect dust and pebbles from the surface for delivery to Earth in 2023.

[ NASA ]

New from David Zarrouk’s lab at BGU is AmphiSTAR, which Zarrouk describes as “a kind of a ground-water drone inspired by the cockroaches (sprawling) and by the Basilisk lizard (running over water). The robot hovers due to the collision of its propellers with the water (hydrodynamics not aerodynamics). The robot can crawl and swim at high and low speeds and smoothly transition between the two. It can reach 3.5 m/s on ground and 1.5m/s in water.”

AmphiSTAR will be presented at IROS, starting next week!

[ BGU ]

This is unfortunately not a great video of a video that was taken at a SoftBank Hawks baseball game in Japan last week, but it’s showing an Atlas robot doing an honestly kind of impressive dance routine to support the team.

ロボット応援団に人型ロボット『ATLAS』がアメリカからリモートで緊急参戦!!!
ホークスビジョンの映像をお楽しみ下さい♪#sbhawks #Pepper #spot pic.twitter.com/6aTYn8GGli
— 福岡ソフトバンクホークス(公式) (@HAWKS_official)
October 16, 2020

Editor’s Note: The tweet embed above is not working for some reason—see the video here.

[ SoftBank Hawks ]

Thanks Thomas!

Sarcos is working on a new robot, which looks to be the torso of their powered exoskeleton with the human relocated somewhere else.

[ Sarcos ]

The biggest holiday of the year, International Sloth Day, was on Tuesday! To celebrate, here’s Slothbot!

[ NSF ]

This is one of those simple-seeming tasks that are really difficult for robots.

I love self-resetting training environments.

[ MIT CSAIL ]

The Chiel lab collaborates with engineers at the Center for Biologically Inspired Robotics Research at Case Western Reserve University to design novel worm-like robots that have potential applications in search-and-rescue missions, endoscopic medicine, or other scenarios requiring navigation through narrow spaces.

[ Case Western ]

ANYbotics partnered with Losinger Marazzi to explore ANYmal’s potential of patrolling construction sites to identify and report safety issues. With such a complex environment, only a robot designed to navigate difficult terrain is able to bring digitalization to such a physically demanding industry.

[ ANYbotics ]

Happy 2018 Halloween from Clearpath Robotics!

[ Clearpath ]

Overcoming illumination variance is a critical factor in vision-based navigation. Existing methods tackled this radical illumination variance issue by proposing camera control or high dynamic range (HDR) image fusion. Despite these efforts, we have found that the vision-based approaches still suffer from overcoming darkness. This paper presents real-time image synthesizing from carefully controlled seed low dynamic range (LDR) image, to enable visual simultaneous localization and mapping (SLAM) in an extremely dark environment (less than 10 lux).

[ KAIST ]

What can MoveIt do? Who knows! Let's find out!

[ MoveIt ]

Thanks Dave!

Here we pick a cube from a starting point, manipulate it within the hand, and then put it back. To explore the capabilities of the hand, no sensors were used in this demonstration. The RBO Hand 3 uses soft pneumatic actuators made of silicone. The softness imparts considerable robustness against variations in object pose and size. This lets us design manipulation funnels that work reliably without needing sensor feedback. We take advantage of this reliability to chain these funnels into more complex multi-step manipulation plans.

[ TU Berlin ]

If this was a real solar array, King Louie would have totally cleaned it. Mostly.

[ BYU ]

Autonomous exploration is a fundamental problem for various applications of unmanned aerial vehicles(UAVs). Existing methods, however, were demonstrated to have low efficiency, due to the lack of optimality consideration, conservative motion plans and low decision frequencies. In this paper, we propose FUEL, a hierarchical framework that can support Fast UAV ExpLoration in complex unknown environments.

[ HKUST ]

Countless precise repetitions? This is the perfect task for a robot, thought researchers at the University of Liverpool in the Department of Chemistry, and without further ado they developed an automation solution that can carry out and monitor research tasks, making autonomous decisions about what to do next.

[ Kuka ]

This video shows a demonstration of central results of the SecondHands project. In the context of maintenance and repair tasks, in warehouse environments, the collaborative humanoid robot ARMAR-6 demonstrates a number of cognitive and sensorimotor abilities such as 1) recognition of the need of help based on speech, force, haptics and visual scene and action interpretation, 2) collaborative bimanual manipulation of large objects, 3) compliant mobile manipulation, 4) grasping known and unknown objects and tools, 5) human-robot interaction (object and tool handover) 6) natural dialog and 7) force predictive control.

[ SecondHands ]

In celebration of Ada Lovelace Day, Silicon Valley Robotics hosted a panel of Women in Robotics.

[ Robohub ]

As part of the upcoming virtual IROS conference, HEBI robotics is putting together a tutorial on robotics actuation. While I’m sure HEBI would like you to take a long look at their own actuators, we’ve been assured that no matter what kind of actuators you use, this tutorial will still be informative and useful.

[ YouTube ] via [ HEBI Robotics ]

Thanks Dave!

This week’s UMD Lockheed Martin Robotics Seminar comes from Julie Shah at MIT, on “Enhancing Human Capability with Intelligent Machine Teammates.”

Every team has top performers- people who excel at working in a team to find the right solutions in complex, difficult situations. These top performers include nurses who run hospital floors, emergency response teams, air traffic controllers, and factory line supervisors. While they may outperform the most sophisticated optimization and scheduling algorithms, they cannot often tell us how they do it. Similarly, even when a machine can do the job better than most of us, it can’t explain how. In this talk I share recent work investigating effective ways to blend the unique decision-making strengths of humans and machines. I discuss the development of computational models that enable machines to efficiently infer the mental state of human teammates and thereby collaborate with people in richer, more flexible ways.

[ UMD ]

Matthew Piccoli gives a talk to the UPenn GRASP Lab on “Trading Complexities: Smart Motors and Dumb Vehicles.”

We will discuss my research journey through Penn making the world's smallest, simplest flying vehicles, and in parallel making the most complex brushless motors. What do they have in common? We'll touch on why the quadrotor went from an obscure type of helicopter to the current ubiquitous drone. Finally, we'll get into my life after Penn and what tools I'm creating to further drone and robot designs of the future.

[ UPenn ] Continue reading

Posted in Human Robots

#437592 Coordinated Robotics Wins DARPA SubT ...

DARPA held the Virtual Cave Circuit event of the Subterranean Challenge on Tuesday in the form of a several hour-long livestream. We got to watch (along with all of the competing teams) as virtual robots explored virtual caves fully autonomously, dodging rockfalls, spotting artifacts, scoring points, and sometimes running into stuff and falling over.

Expert commentary was provided by DARPA, and we were able to watch multiple teams running at once, skipping from highlight to highlight. It was really very well done (you can watch an archive of the entire stream here), but they made us wait until the very end to learn who won: First place went to Coordinated Robotics, with BARCS taking second, and third place going to newcomer Team Dynamo.

Huge congratulations to Coordinated Robotics! It’s worth pointing out that the top three teams were separated by an incredibly small handful of points, and on a slightly different day, with slightly different artifact positions, any of them could have come out on top. This doesn’t diminish Coordinated Robotics’ victory in the least—it means that the competition was fierce, and that the problem of autonomous cave exploration with robots has been solved (virtually, at least) in several different but effective ways.

We know Coordinated Robotics pretty well at this point, but here’s an introduction video:

You heard that right—Coordinated Robotics is just Kevin Knoedler, all by himself. This would be astonishing, if we weren’t already familiar with Kevin’s abilities: He won NASA’s virtual Space Robotics Challenge by himself in 2017, and Coordinated Robotics placed first in the DARPA SubT Virtual Tunnel Circuit and second in the Virtual Urban Circuit. We asked Kevin how he managed to do so spectacularly well (again), and here’s what he told us:

IEEE Spectrum: Can you describe what it was like to watch your team of robots on the live stream, and to see them score the most points?

Kevin Knoedler: It was exciting and stressful watching the live stream. It was exciting as the top few scores were quite close for the cave circuit. It was stressful because I started out behind and worked my way up, but did not do well on the final world. Luckily, not doing well on the first and last worlds was offset by better scores on many of the runs in between. DARPA did a very nice job with their live stream of the cave circuit results.

How did you decide on the makeup of your team, and on what sensors to use?

To decide on the makeup of the team I experimented with quite a few different vehicles. I had a lot of trouble with the X2 and other small ground vehicles flipping over. Based on that I looked at the larger ground vehicles that also had a sensor capable of identifying drop-offs. The vehicles that met those criteria for me were the Marble HD2, Marble Husky, Ozbot ATR, and the Absolem. Of those ground vehicles I went with the Marble HD2. It had a downward looking depth camera that I could use to detect drop-offs and was much more stable on the varied terrain than the X2. I had used the X3 aerial vehicle before and so that was my first choice for an aerial platform.

What were some things that you learned in Tunnel and Urban that you were able to incorporate into your strategy for Cave?

In the Tunnel circuit I had learned a strategy to use ground vehicles and in the Urban circuit I had learned a strategy to use aerial vehicles. At a high level that was the biggest thing I learned from the previous circuits that I was able to apply to the Cave circuit. At a lower level I was able to apply many of the development and testing strategies from the previous circuits to the Cave circuit.

What aspect of the cave environment was most challenging for your robots?

I would say it wasn't just one aspect of the cave environment that was challenging for the robots. There were quite a few challenging aspects of the cave environment. For the ground vehicles there were frequently paths that looked good as the robot started on the path, but turned into drop-offs or difficult boulder crawls. While it was fun to see the robot plan well enough to slowly execute paths over the boulders, I was wishing that the robot was smart enough to try a different path rather than wasting so much time crawling over the large boulders. For the aerial vehicles the combination of tight paths along with large vertical spaces was the biggest challenge in the environment. The large open vertical areas were particularly challenging for my aerial robots. They could easily lose track of their position without enough nearby features to track and it was challenging to find the correct path in and out of such large vertical areas.

How will you be preparing for the SubT Final?

To prepare for the SubT Final the vehicles will be getting a lot smarter. The ground vehicles will be better at navigation and communicating with one another. The aerial vehicles will be better able to handle large vertical areas both from a positioning and a planning point of view. Finally, all of the vehicles will do a better job coordinating what areas have been explored and what areas have good leads for further exploration.

Image: DARPA

The final score for the DARPA SubT Cave Circuit virtual competition.

We also had a chance to ask SubT program manager Tim Chung a few questions at yesterday’s post-event press conference, about the course itself and what he thinks teams should have learned from the competition:

IEEE Spectrum: Having looked through some real caves, can you give some examples of some of the most significant differences between this simulation and real caves? And with the enormous variety of caves out there, how generalizable are the solutions that teams came up with?

Tim Chung: Many of the caves that I’ve had to crawl through and gotten bumps and scrapes from had a couple of different features that I’ll highlight. The first is the variations in moisture— a lot of these caves were naturally formed with streams and such, so many of the caves we went to had significant mud, flowing water, and such. And so one of the things we're not capturing in the SubT simulator is explicitly anything that would submerge the robots, or otherwise short any of their systems. So from that perspective, that's one difference that's certainly notable.

And then the other difference I think is the granularity of the terrain, whether it's rubble, sand, or just raw dirt, friction coefficients are all across the board, and I think that's one of the things that any terrestrial simulator will both struggle with and potentially benefit from— that is, terramechanics simulation abilities. Given the emphasis on mobility in the SubT simulation, we’re capturing just a sliver of the complexity of terramechanics, but I think that's probably another take away that you'll certainly see— where there’s that distinction between physical and virtual technologies.

To answer your second question about generalizability— that’s the multi-million dollar question! It’s definitely at the crux of why we have eight diverse worlds, both in size verticality, dimensions, constraint passageways, etc. But this is eight out of countless variations, and the goal of course is to be able to investigate what those key dependencies are. What I'll say is that the out of the seventy three different virtual cave tiles, which are the building blocks that make up these virtual worlds, quite a number of them were not only inspired by real world caves, but were specifically designed so that we can essentially use these tiles as unit tests going forward. So, if I want to simulate vertical inclines, here are the tiles that are the vertical vertical unit tests for robots, and that’s how we’re trying to to think through how to tease out that generalizability factor.

What are some observations from this event that you think systems track teams should pay attention to as they prepare for the final event?

One of the key things about the virtual competition is that you submit your software, and that's it. So you have to design everything from state management to failure mode triage, really thinking about what could go wrong and then building out your autonomous capabilities either to react to some of those conditions, or to anticipate them. And to be honest I think that the humans in the loop that we have in the systems competition really are key enablers of their capability, but also could someday (if not already) be a crutch that we might not be able to develop.

Thinking through some of the failure modes in a fully autonomous software deployed setting are going to be incredibly valuable for the systems competitors, so that for example the human supervisor doesn't have to worry about those failure modes as much, or can respond in a more supervisory way rather than trying to joystick the robot around. I think that's going to be one of the greatest impacts, thinking through what it means to send these robots off to autonomously get you the information you need and complete the mission

This isn’t to say that the humans aren't going to be useful and continue to play a role of course, but I think this shifting of the role of the human supervisor from being a state manager to being more of a tactical commander will dramatically highlight the impact of the virtual side on the systems side.

What, if anything, should we take away from one person teams being able to do so consistently well in the virtual circuit?

It’s a really interesting question. I think part of it has to do with systems integration versus software integration. There's something to be said for the richness of the technologies that can be developed, and how many people it requires to be able to develop some of those technologies. With the systems competitors, having one person try to build, manage, deploy, service, and operate all of those robots is still functionally quite challenging, whereas in the virtual competition, it really is a software deployment more than anything else. And so I think the commonality of single person teams may just be a virtue of the virtual competition not having some of those person-intensive requirements.

In terms of their strong performance, I give credit to all of these really talented folks who are taking upon themselves to jump into the competitor pool and see how well they do, and I think that just goes to show you that whether you're one person or ten people people or a hundred people on a team, a good idea translated and executed well really goes a long way.

Looking ahead, teams have a year to prepare for the final event, which is still scheduled to be held sometime in fall 2021. And even though there was no cave event for systems track teams, the fact that the final event will be a combination of tunnel, urban, and cave circuits means that systems track teams have been figuring out how to get their robots to work in caves anyway, and we’ll be bringing you some of their stories over the next few weeks.

[ DARPA SubT ] Continue reading

Posted in Human Robots

#437571 Video Friday: Snugglebot Is What We All ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

IROS 2020 – October 25-25, 2020 – [Online]
Robotica 2020 – November 10-14, 2020 – [Online]
ROS World 2020 – November 12, 2020 – [Online]
CYBATHLON 2020 – November 13-14, 2020 – [Online]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Bay Area Robotics Symposium – November 20, 2020 – [Online]
Let us know if you have suggestions for next week, and enjoy today's videos.

Snugglebot is what we all need right now.

[ Snugglebot ]

In his video message on his prayer intention for November, Pope Francis emphasizes that progress in robotics and artificial intelligence (AI) be oriented “towards respecting the dignity of the person and of Creation”.

[ Vatican News ]

KaPOW!

Apparently it's supposed to do that—the disruptor flies off backwards to reduce recoil on the robot, and has its own parachute to keep it from going too far.

[ Ghost Robotics ]

Animals have many muscles, receptors, and neurons which compose feedback loops. In this study, we designed artificial muscles, receptors, and neurons without any microprocessors, or software-based controllers. We imitate the reflexive rule observed in walking experiments of cats, as a result, the Pneumatic Brainless Robot II emerged running motion (a leg trajectory and a gait pattern) through the interaction between the body, the ground, and the artificial reflexes. We envision that the simple reflex circuit we discovered will be a candidate for a minimal model for describing the principles of animal locomotion.

Find the paper, “Brainless Running: A Quasi-quadruped Robot with Decentralized Spinal Reflexes by Solely Mechanical Devices,” on IROS On-Demand.

[ IROS ]

Thanks Yoichi!

I have no idea what these guys are saying, but they're talking about robots that serve chocolate!

The world of experience of the Zotter Schokoladen Manufaktur of managing director Josef Zotter counts more than 270,000 visitors annually. Since March 2019, this world of chocolate in Bergl near Riegersburg in Austria has been enriched by a new attraction: the world's first chocolate and praline robot from KUKA delights young and old alike and serves up chocolate and pralines to guests according to their personal taste.

[ Zotter ]

This paper proposes a systematic solution that uses an unmanned aerial vehicle (UAV) to aggressively and safely track an agile target. The solution properly handles the challenging situations where the intent of the target and the dense environments are unknown to the UAV. The proposed solution is integrated into an onboard quadrotor system. We fully test the system in challenging real-world tracking missions. Moreover, benchmark comparisons validate that the proposed method surpasses the cutting-edge methods on time efficiency and tracking effectiveness.

[ FAST Lab ]

Southwest Research Institute developed a cable management system for collaborative robotics, or “cobots.” Dress packs used on cobots can create problems when cables are too tight (e-stops) or loose (tangling). SwRI developed ADDRESS, or the Adaptive DRESing System, to provide smarter cobot dress packs that address e-stops and tangling.

[ SWRI ]

A quick demonstration of the acoustic contact sensor in the RBO Hand 2. An embedded microphone records the sound inside of the pneumatic finger. Depending on which part of the finger makes contact, the sound is a little bit different. We create a sensor that recognizes these small changes and predicts the contact location from the sound. The visualization on the left shows the recorded sound (top) and which of the nine contact classes the sensor is currently predicting (bottom).

[ TU Berlin ]

The MAVLab won the prize for the “most innovative design” in the IMAV 2018 indoor competition, in which drones had to fly through windows, gates, and follow a predetermined flight path. The prize was awarded for the demonstration of a fully autonomous version of the “DelFly Nimble”, a tailless flapping wing drone.

In order to fly by itself, the DelFly Nimble was equipped with a single, small camera and a small processor allowing onboard vision processing and control. The jury of international experts in the field praised the agility and autonomous flight capabilities of the DelFly Nimble.

[ MAVLab ]

A reactive walking controller for the Open Dynamic Robot Initiative's skinny quadruped.

[ ODRI ]

Mobile service robots are already able to recognize people and objects while navigating autonomously through their operating environments. But what is the ideal position of the robot to interact with a user? To solve this problem, Fraunhofer IPA developed an approach that connects navigation, 3D environment modeling, and person detection to find the optimal goal pose for HRI.

[ Fraunhofer ]

Yaskawa has been in robotics for a very, very long time.

[ Yaskawa ]

Black in Robotics IROS launch event, featuring Carlotta Berry.

[ Black in Robotics ]

What is AI? I have no idea! But these folks have some opinions.

[ MIT ]

Aerial-based Observations of Volcanic Emissions (ABOVE) is an international collaborative project that is changing the way we sample volcanic gas emissions. Harnessing recent advances in drone technology, unoccupied aerial systems (UAS) in the ABOVE fleet are able to acquire aerial measurements of volcanic gases directly from within previously inaccessible volcanic plumes. In May 2019, a team of 30 researchers undertook an ambitious field deployment to two volcanoes – Tavurvur (Rabaul) and Manam in Papua New Guinea – both amongst the most prodigious emitters of sulphur dioxide on Earth, and yet lacking any measurements of how much carbon they emit to the atmosphere.

[ ABOVE ]

A talk from IHMC's Robert Griffin for ICCAS 2020, including a few updates on their Nadia humanoid.

[ IHMC ] Continue reading

Posted in Human Robots