Tag Archives: own
#433807 The How, Why, and Whether of Custom ...
A digital afterlife may soon be within reach, but it might not be for your benefit.
The reams of data we’re creating could soon make it possible to create digital avatars that live on after we die, aimed at comforting our loved ones or sharing our experience with future generations.
That may seem like a disappointing downgrade from the vision promised by the more optimistic futurists, where we upload our consciousness to the cloud and live forever in machines. But it might be a realistic possibility in the not-too-distant future—and the first steps have already been taken.
After her friend died in a car crash, Eugenia Kuyda, co-founder of Russian AI startup Luka, trained a neural network-powered chatbot on their shared message history to mimic him. Journalist and amateur coder James Vlahos took a more involved approach, carrying out extensive interviews with his terminally ill father so that he could create a digital clone of him when he died.
For those of us without the time or expertise to build our own artificial intelligence-powered avatar, startup Eternime is offering to take your social media posts and interactions as well as basic personal information to build a copy of you that could then interact with relatives once you’re gone. The service is so far only running a private beta with a handful of people, but with 40,000 on its waiting list, it’s clear there’s a market.
Comforting—Or Creepy?
The whole idea may seem eerily similar to the Black Mirror episode Be Right Back, in which a woman pays a company to create a digital copy of her deceased husband and eventually a realistic robot replica. And given the show’s focus on the emotional turmoil she goes through, people might question whether the idea is a sensible one.
But it’s hard to say at this stage whether being able to interact with an approximation of a deceased loved one would be a help or a hindrance in the grieving process. The fear is that it could make it harder for people to “let go” or “move on,” but others think it could play a useful therapeutic role, reminding people that just because someone is dead it doesn’t mean they’re gone, and providing a novel way for them to express and come to terms with their feelings.
While at present most envisage these digital resurrections as a way to memorialize loved ones, there are also more ambitious plans to use the technology as a way to preserve expertise and experience. A project at MIT called Augmented Eternity is investigating whether we could use AI to trawl through someone’s digital footprints and extract both their knowledge and elements of their personality.
Project leader Hossein Rahnama says he’s already working with a CEO who wants to leave behind a digital avatar that future executives could consult with after he’s gone. And you wouldn’t necessarily have to wait until you’re dead—experts could create virtual clones of themselves that could dispense advice on demand to far more people. These clones could soon be more than simple chatbots, too. Hollywood has already started spending millions of dollars to create 3D scans of its most bankable stars so that they can keep acting beyond the grave.
It’s easy to see the appeal of the idea; imagine if we could bring back Stephen Hawking or Tim Cook to share their wisdom with us. And what if we could create a digital brain trust combining the experience and wisdom of all the world’s greatest thinkers, accessible on demand?
But there are still huge hurdles ahead before we could create truly accurate representations of people by simply trawling through their digital remains. The first problem is data. Most peoples’ digital footprints only started reaching significant proportions in the last decade or so, and cover a relatively small period of their lives. It could take many years before there’s enough data to create more than just a superficial imitation of someone.
And that’s assuming that the data we produce is truly representative of who we are. Carefully-crafted Instagram profiles and cautiously-worded work emails hardly capture the messy realities of most peoples’ lives.
Perhaps if the idea is simply to create a bank of someone’s knowledge and expertise, accurately capturing the essence of their character would be less important. But these clones would also be static. Real people continually learn and change, but a digital avatar is a snapshot of someone’s character and opinions at the point they died. An inability to adapt as the world around them changes could put a shelf life on the usefulness of these replicas.
Who’s Calling the (Digital) Shots?
It won’t stop people trying, though, and that raises a potentially more important question: Who gets to make the calls about our digital afterlife? The subjects, their families, or the companies that hold their data?
In most countries, the law is currently pretty hazy on this topic. Companies like Google and Facebook have processes to let you choose who should take control of your accounts in the event of your death. But if you’ve forgotten to do that, the fate of your virtual remains comes down to a tangle of federal law, local law, and tech company terms of service.
This lack of regulation could create incentives and opportunities for unscrupulous behavior. The voice of a deceased loved one could be a highly persuasive tool for exploitation, and digital replicas of respected experts could be powerful means of pushing a hidden agenda.
That means there’s a pressing need for clear and unambiguous rules. Researchers at Oxford University recently suggested ethical guidelines that would treat our digital remains the same way museums and archaeologists are required to treat mortal remains—with dignity and in the interest of society.
Whether those kinds of guidelines are ever enshrined in law remains to be seen, but ultimately they may decide whether the digital afterlife turns out to be heaven or hell.
Image Credit: frankie’s / Shutterstock.com Continue reading
#433799 The First Novel Written by AI Is ...
Last year, a novelist went on a road trip across the USA. The trip was an attempt to emulate Jack Kerouac—to go out on the road and find something essential to write about in the experience. There is, however, a key difference between this writer and anyone else talking your ear off in the bar. This writer is just a microphone, a GPS, and a camera hooked up to a laptop and a whole bunch of linear algebra.
People who are optimistic that artificial intelligence and machine learning won’t put us all out of a job say that human ingenuity and creativity will be difficult to imitate. The classic argument is that, just as machines freed us from repetitive manual tasks, machine learning will free us from repetitive intellectual tasks.
This leaves us free to spend more time on the rewarding aspects of our work, pursuing creative hobbies, spending time with loved ones, and generally being human.
In this worldview, creative works like a great novel or symphony, and the emotions they evoke, cannot be reduced to lines of code. Humans retain a dimension of superiority over algorithms.
But is creativity a fundamentally human phenomenon? Or can it be learned by machines?
And if they learn to understand us better than we understand ourselves, could the great AI novel—tailored, of course, to your own predispositions in fiction—be the best you’ll ever read?
Maybe Not a Beach Read
This is the futurist’s view, of course. The reality, as the jury-rigged contraption in Ross Goodwin’s Cadillac for that road trip can attest, is some way off.
“This is very much an imperfect document, a rapid prototyping project. The output isn’t perfect. I don’t think it’s a human novel, or anywhere near it,” Goodwin said of the novel that his machine created. 1 The Road is currently marketed as the first novel written by AI.
Once the neural network has been trained, it can generate any length of text that the author desires, either at random or working from a specific seed word or phrase. Goodwin used the sights and sounds of the road trip to provide these seeds: the novel is written one sentence at a time, based on images, locations, dialogue from the microphone, and even the computer’s own internal clock.
The results are… mixed.
The novel begins suitably enough, quoting the time: “It was nine seventeen in the morning, and the house was heavy.” Descriptions of locations begin according to the Foursquare dataset fed into the algorithm, but rapidly veer off into the weeds, becoming surreal. While experimentation in literature is a wonderful thing, repeatedly quoting longitude and latitude coordinates verbatim is unlikely to win anyone the Booker Prize.
Data In, Art Out?
Neural networks as creative agents have some advantages. They excel at being trained on large datasets, identifying the patterns in those datasets, and producing output that follows those same rules. Music inspired by or written by AI has become a growing subgenre—there’s even a pop album by human-machine collaborators called the Songularity.
A neural network can “listen to” all of Bach and Mozart in hours, and train itself on the works of Shakespeare to produce passable pseudo-Bard. The idea of artificial creativity has become so widespread that there’s even a meme format about forcibly training neural network ‘bots’ on human writing samples, with hilarious consequences—although the best joke was undoubtedly human in origin.
The AI that roamed from New York to New Orleans was an LSTM (long short-term memory) neural net. By default, information contained in individual neurons is preserved, and only small parts can be “forgotten” or “learned” in an individual timestep, rather than neurons being entirely overwritten.
The LSTM architecture performs better than previous recurrent neural networks at tasks such as handwriting and speech recognition. The neural net—and its programmer—looked further in search of literary influences, ingesting 60 million words (360 MB) of raw literature according to Goodwin’s recipe: one third poetry, one third science fiction, and one third “bleak” literature.
In this way, Goodwin has some creative control over the project; the source material influences the machine’s vocabulary and sentence structuring, and hence the tone of the piece.
The Thoughts Beneath the Words
The problem with artificially intelligent novelists is the same problem with conversational artificial intelligence that computer scientists have been trying to solve from Turing’s day. The machines can understand and reproduce complex patterns increasingly better than humans can, but they have no understanding of what these patterns mean.
Goodwin’s neural network spits out sentences one letter at a time, on a tiny printer hooked up to the laptop. Statistical associations such as those tracked by neural nets can form words from letters, and sentences from words, but they know nothing of character or plot.
When talking to a chatbot, the code has no real understanding of what’s been said before, and there is no dataset large enough to train it through all of the billions of possible conversations.
Unless restricted to a predetermined set of options, it loses the thread of the conversation after a reply or two. In a similar way, the creative neural nets have no real grasp of what they’re writing, and no way to produce anything with any overarching coherence or narrative.
Goodwin’s experiment is an attempt to add some coherent backbone to the AI “novel” by repeatedly grounding it with stimuli from the cameras or microphones—the thematic links and narrative provided by the American landscape the neural network drives through.
Goodwin feels that this approach (the car itself moving through the landscape, as if a character) borrows some continuity and coherence from the journey itself. “Coherent prose is the holy grail of natural-language generation—feeling that I had somehow solved a small part of the problem was exhilarating. And I do think it makes a point about language in time that’s unexpected and interesting.”
AI Is Still No Kerouac
A coherent tone and semantic “style” might be enough to produce some vaguely-convincing teenage poetry, as Google did, and experimental fiction that uses neural networks can have intriguing results. But wading through the surreal AI prose of this era, searching for some meaning or motif beyond novelty value, can be a frustrating experience.
Maybe machines can learn the complexities of the human heart and brain, or how to write evocative or entertaining prose. But they’re a long way off, and somehow “more layers!” or a bigger corpus of data doesn’t feel like enough to bridge that gulf.
Real attempts by machines to write fiction have so far been broadly incoherent, but with flashes of poetry—dreamlike, hallucinatory ramblings.
Neural networks might not be capable of writing intricately-plotted works with charm and wit, like Dickens or Dostoevsky, but there’s still an eeriness to trying to decipher the surreal, Finnegans’ Wake mish-mash.
You might see, in the odd line, the flickering ghost of something like consciousness, a deeper understanding. Or you might just see fragments of meaning thrown into a neural network blender, full of hype and fury, obeying rules in an occasionally striking way, but ultimately signifying nothing. In that sense, at least, the RNN’s grappling with metaphor feels like a metaphor for the hype surrounding the latest AI summer as a whole.
Or, as the human author of On The Road put it: “You guys are going somewhere or just going?”
Image Credit: eurobanks / Shutterstock.com Continue reading
#433776 Why We Should Stop Conflating Human and ...
It’s common to hear phrases like ‘machine learning’ and ‘artificial intelligence’ and believe that somehow, someone has managed to replicate a human mind inside a computer. This, of course, is untrue—but part of the reason this idea is so pervasive is because the metaphor of human learning and intelligence has been quite useful in explaining machine learning and artificial intelligence.
Indeed, some AI researchers maintain a close link with the neuroscience community, and inspiration runs in both directions. But the metaphor can be a hindrance to people trying to explain machine learning to those less familiar with it. One of the biggest risks of conflating human and machine intelligence is that we start to hand over too much agency to machines. For those of us working with software, it’s essential that we remember the agency is human—it’s humans who build these systems, after all.
It’s worth unpacking the key differences between machine and human intelligence. While there are certainly similarities, it’s by looking at what makes them different that we can better grasp how artificial intelligence works, and how we can build and use it effectively.
Neural Networks
Central to the metaphor that links human and machine learning is the concept of a neural network. The biggest difference between a human brain and an artificial neural net is the sheer scale of the brain’s neural network. What’s crucial is that it’s not simply the number of neurons in the brain (which reach into the billions), but more precisely, the mind-boggling number of connections between them.
But the issue runs deeper than questions of scale. The human brain is qualitatively different from an artificial neural network for two other important reasons: the connections that power it are analogue, not digital, and the neurons themselves aren’t uniform (as they are in an artificial neural network).
This is why the brain is such a complex thing. Even the most complex artificial neural network, while often difficult to interpret and unpack, has an underlying architecture and principles guiding it (this is what we’re trying to do, so let’s construct the network like this…).
Intricate as they may be, neural networks in AIs are engineered with a specific outcome in mind. The human mind, however, doesn’t have the same degree of intentionality in its engineering. Yes, it should help us do all the things we need to do to stay alive, but it also allows us to think critically and creatively in a way that doesn’t need to be programmed.
The Beautiful Simplicity of AI
The fact that artificial intelligence systems are so much simpler than the human brain is, ironically, what enables AIs to deal with far greater computational complexity than we can.
Artificial neural networks can hold much more information and data than the human brain, largely due to the type of data that is stored and processed in a neural network. It is discrete and specific, like an entry on an excel spreadsheet.
In the human brain, data doesn’t have this same discrete quality. So while an artificial neural network can process very specific data at an incredible scale, it isn’t able to process information in the rich and multidimensional manner a human brain can. This is the key difference between an engineered system and the human mind.
Despite years of research, the human mind still remains somewhat opaque. This is because the analog synaptic connections between neurons are almost impenetrable to the digital connections within an artificial neural network.
Speed and Scale
Consider what this means in practice. The relative simplicity of an AI allows it to do a very complex task very well, and very quickly. A human brain simply can’t process data at scale and speed in the way AIs need to if they’re, say, translating speech to text, or processing a huge set of oncology reports.
Essential to the way AI works in both these contexts is that it breaks data and information down into tiny constituent parts. For example, it could break sounds down into phonetic text, which could then be translated into full sentences, or break images into pieces to understand the rules of how a huge set of them is composed.
Humans often do a similar thing, and this is the point at which machine learning is most like human learning; like algorithms, humans break data or information into smaller chunks in order to process it.
But there’s a reason for this similarity. This breakdown process is engineered into every neural network by a human engineer. What’s more, the way this process is designed will be down to the problem at hand. How an artificial intelligence system breaks down a data set is its own way of ‘understanding’ it.
Even while running a highly complex algorithm unsupervised, the parameters of how an AI learns—how it breaks data down in order to process it—are always set from the start.
Human Intelligence: Defining Problems
Human intelligence doesn’t have this set of limitations, which is what makes us so much more effective at problem-solving. It’s the human ability to ‘create’ problems that makes us so good at solving them. There’s an element of contextual understanding and decision-making in the way humans approach problems.
AIs might be able to unpack problems or find new ways into them, but they can’t define the problem they’re trying to solve.
Algorithmic insensitivity has come into focus in recent years, with an increasing number of scandals around bias in AI systems. Of course, this is caused by the biases of those making the algorithms, but underlines the point that algorithmic biases can only be identified by human intelligence.
Human and Artificial Intelligence Should Complement Each Other
We must remember that artificial intelligence and machine learning aren’t simply things that ‘exist’ that we can no longer control. They are built, engineered, and designed by us. This mindset puts us in control of the future, and makes algorithms even more elegant and remarkable.
Image Credit: Liu zishan/Shutterstock Continue reading