Tag Archives: Original
#437964 How Explainable Artificial Intelligence ...
The field of artificial intelligence has created computers that can drive cars, synthesize chemical compounds, fold proteins, and detect high-energy particles at a superhuman level.
However, these AI algorithms cannot explain the thought processes behind their decisions. A computer that masters protein folding and also tells researchers more about the rules of biology is much more useful than a computer that folds proteins without explanation.
Therefore, AI researchers like me are now turning our efforts toward developing AI algorithms that can explain themselves in a manner that humans can understand. If we can do this, I believe that AI will be able to uncover and teach people new facts about the world that have not yet been discovered, leading to new innovations.
Learning From Experience
One field of AI, called reinforcement learning, studies how computers can learn from their own experiences. In reinforcement learning, an AI explores the world, receiving positive or negative feedback based on its actions.
This approach has led to algorithms that have independently learned to play chess at a superhuman level and prove mathematical theorems without any human guidance. In my work as an AI researcher, I use reinforcement learning to create AI algorithms that learn how to solve puzzles such as the Rubik’s Cube.
Through reinforcement learning, AIs are independently learning to solve problems that even humans struggle to figure out. This has got me and many other researchers thinking less about what AI can learn and more about what humans can learn from AI. A computer that can solve the Rubik’s Cube should be able to teach people how to solve it, too.
Peering Into the Black Box
Unfortunately, the minds of superhuman AIs are currently out of reach to us humans. AIs make terrible teachers and are what we in the computer science world call “black boxes.”
AI simply spits out solutions without giving reasons for its solutions. Computer scientists have been trying for decades to open this black box, and recent research has shown that many AI algorithms actually do think in ways that are similar to humans. For example, a computer trained to recognize animals will learn about different types of eyes and ears and will put this information together to correctly identify the animal.
The effort to open up the black box is called explainable AI. My research group at the AI Institute at the University of South Carolina is interested in developing explainable AI. To accomplish this, we work heavily with the Rubik’s Cube.
The Rubik’s Cube is basically a pathfinding problem: Find a path from point A—a scrambled Rubik’s Cube—to point B—a solved Rubik’s Cube. Other pathfinding problems include navigation, theorem proving and chemical synthesis.
My lab has set up a website where anyone can see how our AI algorithm solves the Rubik’s Cube; however, a person would be hard-pressed to learn how to solve the cube from this website. This is because the computer cannot tell you the logic behind its solutions.
Solutions to the Rubik’s Cube can be broken down into a few generalized steps—the first step, for example, could be to form a cross while the second step could be to put the corner pieces in place. While the Rubik’s Cube itself has over 10 to the 19th power possible combinations, a generalized step-by-step guide is very easy to remember and is applicable in many different scenarios.
Approaching a problem by breaking it down into steps is often the default manner in which people explain things to one another. The Rubik’s Cube naturally fits into this step-by-step framework, which gives us the opportunity to open the black box of our algorithm more easily. Creating AI algorithms that have this ability could allow people to collaborate with AI and break down a wide variety of complex problems into easy-to-understand steps.
A step-by-step refinement approach can make it easier for humans to understand why AIs do the things they do. Forest Agostinelli, CC BY-ND
Collaboration Leads to Innovation
Our process starts with using one’s own intuition to define a step-by-step plan thought to potentially solve a complex problem. The algorithm then looks at each individual step and gives feedback about which steps are possible, which are impossible and ways the plan could be improved. The human then refines the initial plan using the advice from the AI, and the process repeats until the problem is solved. The hope is that the person and the AI will eventually converge to a kind of mutual understanding.
Currently, our algorithm is able to consider a human plan for solving the Rubik’s Cube, suggest improvements to the plan, recognize plans that do not work and find alternatives that do. In doing so, it gives feedback that leads to a step-by-step plan for solving the Rubik’s Cube that a person can understand. Our team’s next step is to build an intuitive interface that will allow our algorithm to teach people how to solve the Rubik’s Cube. Our hope is to generalize this approach to a wide range of pathfinding problems.
People are intuitive in a way unmatched by any AI, but machines are far better in their computational power and algorithmic rigor. This back and forth between man and machine utilizes the strengths from both. I believe this type of collaboration will shed light on previously unsolved problems in everything from chemistry to mathematics, leading to new solutions, intuitions and innovations that may have, otherwise, been out of reach.
This article is republished from The Conversation under a Creative Commons license. Read the original article.
Image Credit: Serg Antonov / Unsplash Continue reading
#437957 Meet Assembloids, Mini Human Brains With ...
It’s not often that a twitching, snowman-shaped blob of 3D human tissue makes someone’s day.
But when Dr. Sergiu Pasca at Stanford University witnessed the tiny movement, he knew his lab had achieved something special. You see, the blob was evolved from three lab-grown chunks of human tissue: a mini-brain, mini-spinal cord, and mini-muscle. Each individual component, churned to eerie humanoid perfection inside bubbling incubators, is already a work of scientific genius. But Pasca took the extra step, marinating the three components together inside a soup of nutrients.
The result was a bizarre, Lego-like human tissue that replicates the basic circuits behind how we decide to move. Without external prompting, when churned together like ice cream, the three ingredients physically linked up into a fully functional circuit. The 3D mini-brain, through the information highway formed by the artificial spinal cord, was able to make the lab-grown muscle twitch on demand.
In other words, if you think isolated mini-brains—known formally as brain organoids—floating in a jar is creepy, upgrade your nightmares. The next big thing in probing the brain is assembloids—free-floating brain circuits—that now combine brain tissue with an external output.
The end goal isn’t to freak people out. Rather, it’s to recapitulate our nervous system, from input to output, inside the controlled environment of a Petri dish. An autonomous, living brain-spinal cord-muscle entity is an invaluable model for figuring out how our own brains direct the intricate muscle movements that allow us stay upright, walk, or type on a keyboard.
It’s the nexus toward more dexterous brain-machine interfaces, and a model to understand when brain-muscle connections fail—as in devastating conditions like Lou Gehrig’s disease or Parkinson’s, where people slowly lose muscle control due to the gradual death of neurons that control muscle function. Assembloids are a sort of “mini-me,” a workaround for testing potential treatments on a simple “replica” of a person rather than directly on a human.
From Organoids to Assembloids
The miniature snippet of the human nervous system has been a long time in the making.
It all started in 2014, when Dr. Madeleine Lancaster, then a post-doc at Stanford, grew a shockingly intricate 3D replica of human brain tissue inside a whirling incubator. Revolutionarily different than standard cell cultures, which grind up brain tissue to reconstruct as a flat network of cells, Lancaster’s 3D brain organoids were incredibly sophisticated in their recapitulation of the human brain during development. Subsequent studies further solidified their similarity to the developing brain of a fetus—not just in terms of neuron types, but also their connections and structure.
With the finding that these mini-brains sparked with electrical activity, bioethicists increasingly raised red flags that the blobs of human brain tissue—no larger than the size of a pea at most—could harbor the potential to develop a sense of awareness if further matured and with external input and output.
Despite these concerns, brain organoids became an instant hit. Because they’re made of human tissue—often taken from actual human patients and converted into stem-cell-like states—organoids harbor the same genetic makeup as their donors. This makes it possible to study perplexing conditions such as autism, schizophrenia, or other brain disorders in a dish. What’s more, because they’re grown in the lab, it’s possible to genetically edit the mini-brains to test potential genetic culprits in the search for a cure.
Yet mini-brains had an Achilles’ heel: not all were made the same. Rather, depending on the region of the brain that was reverse engineered, the cells had to be persuaded by different cocktails of chemical soups and maintained in isolation. It was a stark contrast to our own developing brains, where regions are connected through highways of neural networks and work in tandem.
Pasca faced the problem head-on. Betting on the brain’s self-assembling capacity, his team hypothesized that it might be possible to grow different mini-brains, each reflecting a different brain region, and have them fuse together into a synchronized band of neuron circuits to process information. Last year, his idea paid off.
In one mind-blowing study, his team grew two separate portions of the brain into blobs, one representing the cortex, the other a deeper part of the brain known to control reward and movement, called the striatum. Shockingly, when put together, the two blobs of human brain tissue fused into a functional couple, automatically establishing neural highways that resulted in one of the most sophisticated recapitulations of a human brain. Pasca crowned this tissue engineering crème-de-la-crème “assembloids,” a portmanteau between “assemble” and “organoids.”
“We have demonstrated that regionalized brain spheroids can be put together to form fused structures called brain assembloids,” said Pasca at the time.” [They] can then be used to investigate developmental processes that were previously inaccessible.”
And if that’s possible for wiring up a lab-grown brain, why wouldn’t it work for larger neural circuits?
Assembloids, Assemble
The new study is the fruition of that idea.
The team started with human skin cells, scraped off of eight healthy people, and transformed them into a stem-cell-like state, called iPSCs. These cells have long been touted as the breakthrough for personalized medical treatment, before each reflects the genetic makeup of its original host.
Using two separate cocktails, the team then generated mini-brains and mini-spinal cords using these iPSCs. The two components were placed together “in close proximity” for three days inside a lab incubator, gently floating around each other in an intricate dance. To the team’s surprise, under the microscope using tracers that glow in the dark, they saw highways of branches extending from one organoid to the other like arms in a tight embrace. When stimulated with electricity, the links fired up, suggesting that the connections weren’t just for show—they’re capable of transmitting information.
“We made the parts,” said Pasca, “but they knew how to put themselves together.”
Then came the ménage à trois. Once the mini-brain and spinal cord formed their double-decker ice cream scoop, the team overlaid them onto a layer of muscle cells—cultured separately into a human-like muscular structure. The end result was a somewhat bizarre and silly-looking snowman, made of three oddly-shaped spherical balls.
Yet against all odds, the brain-spinal cord assembly reached out to the lab-grown muscle. Using a variety of tools, including measuring muscle contraction, the team found that this utterly Frankenstein-like snowman was able to make the muscle component contract—in a way similar to how our muscles twitch when needed.
“Skeletal muscle doesn’t usually contract on its own,” said Pasca. “Seeing that first twitch in a lab dish immediately after cortical stimulation is something that’s not soon forgotten.”
When tested for longevity, the contraption lasted for up to 10 weeks without any sort of breakdown. Far from a one-shot wonder, the isolated circuit worked even better the longer each component was connected.
Pasca isn’t the first to give mini-brains an output channel. Last year, the queen of brain organoids, Lancaster, chopped up mature mini-brains into slices, which were then linked to muscle tissue through a cultured spinal cord. Assembloids are a step up, showing that it’s possible to automatically sew multiple nerve-linked structures together, such as brain and muscle, sans slicing.
The question is what happens when these assembloids become more sophisticated, edging ever closer to the inherent wiring that powers our movements. Pasca’s study targets outputs, but what about inputs? Can we wire input channels, such as retinal cells, to mini-brains that have a rudimentary visual cortex to process those examples? Learning, after all, depends on examples of our world, which are processed inside computational circuits and delivered as outputs—potentially, muscle contractions.
To be clear, few would argue that today’s mini-brains are capable of any sort of consciousness or awareness. But as mini-brains get increasingly more sophisticated, at what point can we consider them a sort of AI, capable of computation or even something that mimics thought? We don’t yet have an answer—but the debates are on.
Image Credit: christitzeimaging.com / Shutterstock.com Continue reading
#437753 iRobot’s New Education Robot Makes ...
iRobot has been on a major push into education robots recently. They acquired Root Robotics in 2019, and earlier this year, launched an online simulator and associated curriculum designed to work in tandem with physical Root robots. The original Root was intended to be a classroom robot, with one of its key features being the ability to stick to (and operate on) magnetic virtual surfaces, like whiteboards. And as a classroom robot, at $200, it’s relatively affordable, if you can buy one or two and have groups of kids share them.
For kids who are more focused on learning at home, though, $200 is a lot for a robot that doesn't even keep your floors clean. And as nice as it is to have a free simulator, any kid will tell you that it’s way cooler to have a real robot to mess around with. Today, iRobot is announcing a new version of Root that’s been redesigned for home use, with a $129 price that makes it significantly more accessible to folks outside of the classroom.
The Root rt0 is a second version of the Root robot—the more expensive, education-grade Root rt1 is still available. To bring the cost down, the rt0 is missing some features that you can still find in the rt1. Specifically, you don’t get the internal magnets to stick the robot to vertical surfaces, there are no cliff sensors, and you don’t get a color scanner or an eraser. But for home use, the internal magnets are probably not necessary anyway, and the rest of that stuff seems like a fair compromise for a cost reduction of 30 percent.
Photo: iRobot
One of the new accessories for the iRobot Root rt0 is a “Brick Top” that snaps onto the upper face the robot via magnets. The accessory can be used with LEGOs and other LEGO-compatible bricks, opening up an enormous amount of customization.
It’s not all just taking away, though. There’s also a new $20 accessory, a LEGO-ish “Brick Top” that snaps onto the upper face of Root (either version) via magnets. The plate can be used with LEGO bricks and other LEGO-compatible things. This opens up an enormous amount of customization, and it’s for more than just decoration, since Root rt0 has the ability to interact with whatever’s on top of it via its actuated marker. Root can move the marker up and down, the idea being that you can programmatically turn lines on and off. By replacing the marker with a plastic thingy that sticks up through the body of the robot, the marker up/down command can be used to actuate something on the brick top. In the video, that’s what triggers the catapult.
Photo: iRobot
By attaching a marker, you can program Root to draw. The robot has a motor that can move the marker up and down.
This less expensive version of Root still has access to the online simulator, as well as the multi-level coding interface that allows kids to seamlessly transition through multiple levels of coding complexity, from graphical to text. There’s a new Android app coming out today, and you can access everything through web-based apps on Chrome OS, Windows and macOS, as well as on iOS. iRobot tells us that they’ve also recently expanded their online learning library full of Root-based educational activities. In particular, they’ve added a new category on “Social Emotional Learning,” the goal of which is to help kids develop things like social awareness, self-management, decision making, and relationship skills. We’re not quite sure how you teach those things with a little hexagonal robot, but we like that iRobot is giving it a try.
Root coding robots are designed for kids age 6 and up, ships for free, and is available now.
[ iRobot Root ] Continue reading
#437709 iRobot Announces Major Software Update, ...
Since the release of the very first Roomba in 2002, iRobot’s long-term goal has been to deliver cleaner floors in a way that’s effortless and invisible. Which sounds pretty great, right? And arguably, iRobot has managed to do exactly this, with its most recent generation of robot vacuums that make their own maps and empty their own dustbins. For those of us who trust our robots, this is awesome, but iRobot has gradually been realizing that many Roomba users either don’t want this level of autonomy, or aren’t ready for it.
Today, iRobot is announcing a major new update to its app that represents a significant shift of its overall approach to home robot autonomy. Humans are being brought back into the loop through software that tries to learn when, where, and how you clean so that your Roomba can adapt itself to your life rather than the other way around.
To understand why this is such a shift for iRobot, let’s take a very brief look back at how the Roomba interface has evolved over the last couple of decades. The first generation of Roomba had three buttons on it that allowed (or required) the user to select whether the room being vacuumed was small or medium or large in size. iRobot ditched that system one generation later, replacing the room size buttons with one single “clean” button. Programmable scheduling meant that users no longer needed to push any buttons at all, and with Roombas able to find their way back to their docking stations, all you needed to do was empty the dustbin. And with the most recent few generations (the S and i series), the dustbin emptying is also done for you, reducing direct interaction with the robot to once a month or less.
Image: iRobot
iRobot CEO Colin Angle believes that working toward more intelligent human-robot collaboration is “the brave new frontier” of AI. “This whole journey has been earning the right to take this next step, because a robot can’t be responsive if it’s incompetent,” he says. “But thinking that autonomy was the destination was where I was just completely wrong.”
The point that the top-end Roombas are at now reflects a goal that iRobot has been working toward since 2002: With autonomy, scheduling, and the clean base to empty the bin, you can set up your Roomba to vacuum when you’re not home, giving you cleaner floors every single day without you even being aware that the Roomba is hard at work while you’re out. It’s not just hands-off, it’s brain-off. No noise, no fuss, just things being cleaner thanks to the efforts of a robot that does its best to be invisible to you. Personally, I’ve been completely sold on this idea for home robots, and iRobot CEO Colin Angle was as well.
“I probably told you that the perfect Roomba is the Roomba that you never see, you never touch, you just come home everyday and it’s done the right thing,” Angle told us. “But customers don’t want that—they want to be able to control what the robot does. We started to hear this a couple years ago, and it took a while before it sunk in, but it made sense.”
How? Angle compares it to having a human come into your house to clean, but you weren’t allowed to tell them where or when to do their job. Maybe after a while, you’ll build up the amount of trust necessary for that to work, but in the short term, it would likely be frustrating. And people get frustrated with their Roombas for this reason. “The desire to have more control over what the robot does kept coming up, and for me, it required a pretty big shift in my view of what intelligence we were trying to build. Autonomy is not intelligence. We need to do something more.”
That something more, Angle says, is a partnership as opposed to autonomy. It’s an acknowledgement that not everyone has the same level of trust in robots as the people who build them. It’s an understanding that people want to have a feeling of control over their homes, that they have set up the way that they want, and that they’ve been cleaning the way that they want, and a robot shouldn’t just come in and do its own thing.
This change in direction also represents a substantial shift in resources for iRobot, and the company has pivoted two-thirds of its engineering organization to focus on software-based collaborative intelligence rather than hardware.
“Until the robot proves that it knows enough about your home and about the way that you want your home cleaned,” Angle says, “you can’t move forward.” He adds that this is one of those things that seem obvious in retrospect, but even if they’d wanted to address the issue before, they didn’t have the technology to solve the problem. Now they do. “This whole journey has been earning the right to take this next step, because a robot can’t be responsive if it’s incompetent,” Angle says. “But thinking that autonomy was the destination was where I was just completely wrong.”
The previous iteration of the iRobot app (and Roombas themselves) are built around one big fat CLEAN button. The new approach instead tries to figure out in much more detail where the robot should clean, and when, using a mixture of autonomous technology and interaction with the user.
Where to Clean
Knowing where to clean depends on your Roomba having a detailed and accurate map of its environment. For several generations now, Roombas have been using visual mapping and localization (VSLAM) to build persistent maps of your home. These maps have been used to tell the Roomba to clean in specific rooms, but that’s about it. With the new update, Roombas with cameras will be able to recognize some objects and features in your home, including chairs, tables, couches, and even countertops. The robots will use these features to identify where messes tend to happen so that they can focus on those areas—like around the dining room table or along the front of the couch.
We should take a minute here to clarify how the Roomba is using its camera. The original (primary?) purpose of the camera was for VSLAM, where the robot would take photos of your home, downsample them into QR-code-like patterns of light and dark, and then use those (with the assistance of other sensors) to navigate. Now the camera is also being used to take pictures of other stuff around your house to make that map more useful.
Photo: iRobot
The robots will now try to fit into the kinds of cleaning routines that many people already have established. For example, the app may suggest an “after dinner” routine that cleans just around the kitchen and dining room table.
This is done through machine learning using a library of images of common household objects from a floor perspective that iRobot had to develop from scratch. Angle clarified for us that this is all done via a neural net that runs on the robot, and that “no recognizable images are ever stored on the robot or kept, and no images ever leave the robot.” Worst case, if all the data iRobot has about your home gets somehow stolen, the hacker would only know that (for example) your dining room has a table in it and the approximate size and location of that table, because the map iRobot has of your place only stores symbolic representations rather than images.
Another useful new feature is intended to help manage the “evil Roomba places” (as Angle puts it) that every home has that cause Roombas to get stuck. If the place is evil enough that Roomba has to call you for help because it gave up completely, Roomba will now remember, and suggest that either you make some changes or that it stops cleaning there, which seems reasonable.
When to Clean
It turns out that the primary cause of mission failure for Roombas is not that they get stuck or that they run out of battery—it’s user cancellation, usually because the robot is getting in the way or being noisy when you don’t want it to be. “If you kill a Roomba’s job because it annoys you,” points out Angle, “how is that robot being a good partner? I think it’s an epic fail.” Of course, it’s not the robot’s fault, because Roombas only clean when we tell them to, which Angle says is part of the problem. “People actually aren’t very good at making their own schedules—they tend to oversimplify, and not think through what their schedules are actually about, which leads to lots of [figurative] Roomba death.”
To help you figure out when the robot should actually be cleaning, the new app will look for patterns in when you ask the robot to clean, and then recommend a schedule based on those patterns. That might mean the robot cleans different areas at different times every day of the week. The app will also make scheduling recommendations that are event-based as well, integrated with other smart home devices. Would you prefer the Roomba to clean every time you leave the house? The app can integrate with your security system (or garage door, or any number of other things) and take care of that for you.
More generally, Roomba will now try to fit into the kinds of cleaning routines that many people already have established. For example, the app may suggest an “after dinner” routine that cleans just around the kitchen and dining room table. The app will also, to some extent, pay attention to the environment and season. It might suggest increasing your vacuuming frequency if pollen counts are especially high, or if it’s pet shedding season and you have a dog. Unfortunately, Roomba isn’t (yet?) capable of recognizing dogs on its own, so the app has to cheat a little bit by asking you some basic questions.
A Smarter App
Image: iRobot
The previous iteration of the iRobot app (and Roombas themselves) are built around one big fat CLEAN button. The new approach instead tries to figure out in much more detail where the robot should clean, and when, using a mixture of autonomous technology and interaction with the user.
The app update, which should be available starting today, is free. The scheduling and recommendations will work on every Roomba model, although for object recognition and anything related to mapping, you’ll need one of the more recent and fancier models with a camera. Future app updates will happen on a more aggressive schedule. Major app releases should happen every six months, with incremental updates happening even more frequently than that.
Angle also told us that overall, this change in direction also represents a substantial shift in resources for iRobot, and the company has pivoted two-thirds of its engineering organization to focus on software-based collaborative intelligence rather than hardware. “It’s not like we’re done doing hardware,” Angle assured us. “But we do think about hardware differently. We view our robots as platforms that have longer life cycles, and each platform will be able to support multiple generations of software. We’ve kind of decoupled robot intelligence from hardware, and that’s a change.”
Angle believes that working toward more intelligent collaboration between humans and robots is “the brave new frontier of artificial intelligence. I expect it to be the frontier for a reasonable amount of time to come,” he adds. “We have a lot of work to do to create the type of easy-to-use experience that consumer robots need.” Continue reading