Tag Archives: organic

#439062 Xenobots 2.0: These Living Robots ...

The line between animals and machines was already getting blurry after a team of scientists and roboticists unveiled the first living robots last year. Now the same team has released version 2.0 of their so-called xenobots, and they’re faster, stronger, and more capable than ever.

In January 2020, researchers from Tufts University and the University of Vermont laid out a method for building tiny biological machines out of the eggs of the African claw frog Xenopus laevis. Dubbed xenobots after their animal forebear, they could move independently, push objects, and even team up to create swarms.

Remarkably, building them involved no genetic engineering. Instead, the team used an evolutionary algorithm running on a supercomputer to test out thousands of potential designs made up of different configurations of cells.

Once they’d found some promising candidates that could solve the tasks they were interested in, they used microsurgical tools to build real-world versions out of living cells. The most promising design was built by splicing heart muscle cells (which could contract to propel the xenobots), and skin cells (which provided a rigid support).

Impressive as that might sound, having to build each individual xenobot by hand is obviously tedious. But now the team has devised a new approach that works from the bottom up by getting the xenobots to self-assemble their bodies from single cells. Not only is the approach more scalable, the new xenobots are faster, live longer, and even have a rudimentary memory.

In a paper in Science Robotics, the researchers describe how they took stem cells from frog embryos and allowed them to grow into clumps of several thousand cells called spheroids. After a few days, the stem cells had turned into skin cells covered in small hair-like projections called cilia, which wriggle back and forth.

Normally, these structures are used to spread mucus around on the frog’s skin. But when divorced from their normal context they took on a function more similar to that seen in microorganisms, which use cilia to move about by acting like tiny paddles.

“We are witnessing the remarkable plasticity of cellular collectives, which build a rudimentary new ‘body’ that is quite distinct from their default—in this case, a frog—despite having a completely normal genome,” corresponding author Michael Levin from Tufts University said in a press release.

“We see that cells can re-purpose their genetically encoded hardware, like cilia, for new functions such as locomotion. It is amazing that cells can spontaneously take on new roles and create new body plans and behaviors without long periods of evolutionary selection for those features,” he said.

Not only were the new xenobots faster and longer-lived, they were also much better at tasks like working together as a swarm to gather piles of iron oxide particles. And while the form and function of the xenobots was achieved without any genetic engineering, in an extra experiment the team injected them with RNA that caused them to produce a fluorescent protein that changes color when exposed to a particular color of light.

This allowed the xenobots to record whether they had come into contact with a specific light source while traveling about. The researchers say this is a proof of principle that the xenobots can be imbued with a molecular memory, and future work could allow them to record multiple stimuli and potentially even react to them.

What exactly these xenobots could eventually be used for is still speculative, but they have features that make them a promising alternative to non-organic alternatives. For a start, robots made of stem cells are completely biodegradable and also have their own power source in the form of “yolk platelets” found in all amphibian embryos. They are also able to self-heal in as little as five minutes if cut, and can take advantage of cells’ ability to process all kinds of chemicals.

That suggests they could have applications in everything from therapeutics to environmental engineering. But the researchers also hope to use them to better understand the processes that allow individual cells to combine and work together to create a larger organism, and how these processes might be harnessed and guided for regenerative medicine.

As these animal-machine hybrids advance, they are sure to raise ethical concerns and question marks over the potential risks. But it looks like the future of robotics could be a lot more wet and squishy than we imagined.

Image Credit: Doug Blackiston/Tufts University Continue reading

Posted in Human Robots

#437796 AI Seeks ET: Machine Learning Powers ...

Can artificial intelligence help the search for life elsewhere in the solar system? NASA thinks the answer may be “yes”—and not just on Mars either.

A pilot AI system is now being tested for use on the ExoMars mission that is currently slated to launch in the summer or fall of 2022. The machine-learning algorithms being developed will help science teams decide how to test Martian soil samples to return only the most meaningful data.

For ExoMars, the AI system will only be used back on earth to analyze data gather by the ExoMars rover. But if the system proves to be as useful to the rovers as now suspected, a NASA mission to Saturn’s moon Titan (now scheduled for 2026 launch) could automate the scientific sleuthing process in the field. This mission will rely on the Dragonfly octocopter drone to fly from surface location to surface location through Titan’s dense atmosphere and drill for signs of life there.

The hunt for microbial life in another world’s soil, either as fossilized remnants or as present-day samples, is very challenging, says Eric Lyness, software lead of the NASA Goddard Planetary Environments Lab in Greenbelt, Md. There is of course no precedent to draw upon, because no one has yet succeeded in astrobiology’s holy grail quest.

But that doesn’t mean AI can’t provide substantial assistance. Lyness explained that for the past few years he’d been puzzling over how to automate portions of an exploratory mission’s geochemical investigation, wherever in the solar system the scientific craft may be.

Last year he decided to try machine learning. “So we got some interns,” he said. “People right out of college or in college, who have been studying machine learning. … And they did some amazing stuff. It turned into much more than we expected.” Lyness and his collaborators presented their scientific analysis algorithm at a geochemistry conference last month.

Illustration: ESA

The ExoMars rover, named Rosalind Franklin, will be the first that can drill down to 2-meter depths, where living soil bacteria could possibly be found.

ExoMars’s rover—named Rosalind Franklin, after one of the co-discoverers of DNA—will be the first that can drill down to 2-meter depths, beyond where solar UV light might penetrate and kill any life forms. In other words, ExoMars will be the first Martian craft with the ability to reach soil depths where living soil bacteria could possibly be found.

“We could potentially find forms of life, microbes or other things like that,” Lyness said. However, he quickly added, very little conclusive evidence today exists to suggest that there’s present-day (microbial) life on Mars. (NASA’s Curiosity rover has sent back some inexplicable observations of both methane and molecular oxygen in the Martian atmosphere that could conceivably be a sign of microbial life forms, though non-biological processes could explain these anomalies too.)

Less controversially, the Rosalind Franklin rover’s drill could also turn up fossilized evidence of life in the Martian soil from earlier epochs when Mars was more hospitable.

NASA’s contribution to the joint Russian/European Space Agency ExoMars project is an instrument called a mass spectrometer that will be used to analyze soil samples from the drill cores. Here, Lyness said, is where AI could really provide a helping hand.

Because the Dragonfly drone and possibly a future mission to Jupiter’s moon Europa would be operating in hostile environments with less opportunity for data transmission to Earth, automating a craft’s astrobiological exploration would be practically a requirement

The spectrometer, which studies the mass distribution of ions in a sample of material, works by blasting the drilled soil sample with a laser and then mapping out the atomic masses of the various molecules and portions of molecules that the laser has liberated. The problem is any given mass spectrum could originate from any number of source compounds, minerals and components. Which always makes analyzing a mass spectrum a gigantic puzzle.

Lyness said his group is studying the mineral montmorillonite, a commonplace component of the Martian soil, to see the many ways it might reveal itself in a mass spectrum. Then his team sneaks in an organic compound with the montmorillonite sample to see how that changes the mass spectrometer output.

“It could take a long time to really break down a spectrum and understand why you’re seeing peaks at certain [masses] in the spectrum,” he said. “So anything you can do to point scientists into a direction that says, ‘Don’t worry, I know it’s not this kind of thing or that kind of thing,’ they can more quickly identify what’s in there.”

Lyness said the ExoMars mission will provide a fertile training ground for his team’s as-yet-unnamed AI algorithm. (He said he’s open to suggestions—though, please, no spoof Boaty McBoatface submissions need apply.)

Because the Dragonfly drone and possibly a future astrobiology mission to Jupiter’s moon Europa would be operating in much more hostile environments with much less opportunity for data transmission back and forth to Earth, automating a craft’s astrobiological exploration would be practically a requirement.

All of which points to a future in mid-2030s in which a nuclear-powered octocopter on a moon of Saturn flies from location to location to drill for evidence of life on this tantalizingly bio-possible world. And machine learning will help power the science.

“We should be researching how to make the science instruments smarter,” Lyness said. “If you can make it smarter at the source, especially for planetary exploration, it has huge payoffs.” Continue reading

Posted in Human Robots

#437673 Can AI and Automation Deliver a COVID-19 ...

Illustration: Marysia Machulska

Within moments of meeting each other at a conference last year, Nathan Collins and Yann Gaston-Mathé began devising a plan to work together. Gaston-Mathé runs a startup that applies automated software to the design of new drug candidates. Collins leads a team that uses an automated chemistry platform to synthesize new drug candidates.

“There was an obvious synergy between their technology and ours,” recalls Gaston-Mathé, CEO and cofounder of Paris-based Iktos.

In late 2019, the pair launched a project to create a brand-new antiviral drug that would block a specific protein exploited by influenza viruses. Then the COVID-19 pandemic erupted across the world stage, and Gaston-Mathé and Collins learned that the viral culprit, SARS-CoV-2, relied on a protein that was 97 percent similar to their influenza protein. The partners pivoted.

Their companies are just two of hundreds of biotech firms eager to overhaul the drug-discovery process, often with the aid of artificial intelligence (AI) tools. The first set of antiviral drugs to treat COVID-19 will likely come from sifting through existing drugs. Remdesivir, for example, was originally developed to treat Ebola, and it has been shown to speed the recovery of hospitalized COVID-19 patients. But a drug made for one condition often has side effects and limited potency when applied to another. If researchers can produce an ­antiviral that specifically targets SARS-CoV-2, the drug would likely be safer and more effective than a repurposed drug.

There’s one big problem: Traditional drug discovery is far too slow to react to a pandemic. Designing a drug from scratch typically takes three to five years—and that’s before human clinical trials. “Our goal, with the combination of AI and automation, is to reduce that down to six months or less,” says Collins, who is chief strategy officer at SRI Biosciences, a division of the Silicon Valley research nonprofit SRI International. “We want to get this to be very, very fast.”

That sentiment is shared by small biotech firms and big pharmaceutical companies alike, many of which are now ramping up automated technologies backed by supercomputing power to predict, design, and test new antivirals—for this pandemic as well as the next—with unprecedented speed and scope.

“The entire industry is embracing these tools,” says Kara Carter, president of the International Society for Antiviral Research and executive vice president of infectious disease at Evotec, a drug-discovery company in Hamburg. “Not only do we need [new antivirals] to treat the SARS-CoV-2 infection in the population, which is probably here to stay, but we’ll also need them to treat future agents that arrive.”

There are currentlyabout 200 known viruses that infect humans. Although viruses represent less than 14 percent of all known human pathogens, they make up two-thirds of all new human pathogens discovered since 1980.

Antiviral drugs are fundamentally different from vaccines, which teach a person’s immune system to mount a defense against a viral invader, and antibody treatments, which enhance the body’s immune response. By contrast, anti­virals are chemical compounds that directly block a virus after a person has become infected. They do this by binding to specific proteins and preventing them from functioning, so that the virus cannot copy itself or enter or exit a cell.

The SARS-CoV-2 virus has an estimated 25 to 29 proteins, but not all of them are suitable drug targets. Researchers are investigating, among other targets, the virus’s exterior spike protein, which binds to a receptor on a human cell; two scissorlike enzymes, called proteases, that cut up long strings of viral proteins into functional pieces inside the cell; and a polymerase complex that makes the cell churn out copies of the virus’s genetic material, in the form of single-stranded RNA.

But it’s not enough for a drug candidate to simply attach to a target protein. Chemists also consider how tightly the compound binds to its target, whether it binds to other things as well, how quickly it metabolizes in the body, and so on. A drug candidate may have 10 to 20 such objectives. “Very often those objectives can appear to be anticorrelated or contradictory with each other,” says Gaston-Mathé.

Compared with antibiotics, antiviral drug discovery has proceeded at a snail’s pace. Scientists advanced from isolating the first antibacterial molecules in 1910 to developing an arsenal of powerful antibiotics by 1944. By contrast, it took until 1951 for researchers to be able to routinely grow large amounts of virus particles in cells in a dish, a breakthrough that earned the inventors a Nobel Prize in Medicine in 1954.

And the lag between the discovery of a virus and the creation of a treatment can be heartbreaking. According to the World Health Organization, 71 million people worldwide have chronic hepatitis C, a major cause of liver cancer. The virus that causes the infection was discovered in 1989, but effective antiviral drugs didn’t hit the market until 2014.

While many antibiotics work on a range of microbes, most antivirals are highly specific to a single virus—what those in the business call “one bug, one drug.” It takes a detailed understanding of a virus to develop an antiviral against it, says Che Colpitts, a virologist at Queen’s University, in Canada, who works on antivirals against RNA viruses. “When a new virus emerges, like SARS-CoV-2, we’re at a big disadvantage.”

Making drugs to stop viruses is hard for three main reasons. First, viruses are the Spartans of the pathogen world: They’re frugal, brutal, and expert at evading the human immune system. About 20 to 250 nanometers in diameter, viruses rely on just a few parts to operate, hijacking host cells to reproduce and often destroying those cells upon departure. They employ tricks to camouflage their presence from the host’s immune system, including preventing infected cells from sending out molecular distress beacons. “Viruses are really small, so they only have a few components, so there’s not that many drug targets available to start with,” says Colpitts.

Second, viruses replicate quickly, typically doubling in number in hours or days. This constant copying of their genetic material enables viruses to evolve quickly, producing mutations able to sidestep drug effects. The virus that causes AIDS soon develops resistance when exposed to a single drug. That’s why a cocktail of antiviral drugs is used to treat HIV infection.

Finally, unlike bacteria, which can exist independently outside human cells, viruses invade human cells to propagate, so any drug designed to eliminate a virus needs to spare the host cell. A drug that fails to distinguish between a virus and a cell can cause serious side effects. “Discriminating between the two is really quite difficult,” says Evotec’s Carter, who has worked in antiviral drug discovery for over three decades.

And then there’s the money barrier. Developing antivirals is rarely profitable. Health-policy researchers at the London School of Economics recently estimated that the average cost of developing a new drug is US $1 billion, and up to $2.8 billion for cancer and other specialty drugs. Because antivirals are usually taken for only short periods of time or during short outbreaks of disease, companies rarely recoup what they spent developing the drug, much less turn a profit, says Carter.

To change the status quo, drug discovery needs fresh approaches that leverage new technologies, rather than incremental improvements, says Christian Tidona, managing director of BioMed X, an independent research institute in Heidelberg, Germany. “We need breakthroughs.”

Putting Drug Development on Autopilot
Earlier this year, SRI Biosciences and Iktos began collaborating on a way to use artificial intelligence and automated chemistry to rapidly identify new drugs to target the COVID-19 virus. Within four months, they had designed and synthesized a first round of antiviral candidates. Here’s how they’re doing it.

1/5

STEP 1: Iktos’s AI platform uses deep-learning algorithms in an iterative process to come up with new molecular structures likely to bind to and disable a specific coronavirus protein. Illustrations: Chris Philpot

2/5

STEP 2: SRI Biosciences’s SynFini system is a three-part automated chemistry suite for producing new compounds. Starting with a target compound from Iktos, SynRoute uses machine learning to analyze and optimize routes for creating that compound, with results in about 10 seconds. It prioritizes routes based on cost, likelihood of success, and ease of implementation.

3/5

STEP 3: SynJet, an automated inkjet printer platform, tests the routes by printing out tiny quantities of chemical ingredients to see how they react. If the right compound is produced, the platform tests it.

4/5

STEP 4: AutoSyn, an automated tabletop chemical plant, synthesizes milligrams to grams of the desired compound for further testing. Computer-selected “maps” dictate paths through the plant’s modular components.

5/5

STEP 5: The most promising compounds are tested against live virus samples.

Previous
Next

Iktos’s AI platform was created by a medicinal chemist and an AI expert. To tackle SARS-CoV-2, the company used generative models—deep-learning algorithms that generate new data—to “imagine” molecular structures with a good chance of disabling a key coronavirus protein.

For a new drug target, the software proposes and evaluates roughly 1 million compounds, says Gaston-Mathé. It’s an iterative process: At each step, the system generates 100 virtual compounds, which are tested in silico with predictive models to see how closely they meet the objectives. The test results are then used to design the next batch of compounds. “It’s like we have a very, very fast chemist who is designing compounds, testing compounds, getting back the data, then designing another batch of compounds,” he says.

The computer isn’t as smart as a human chemist, Gaston-Mathé notes, but it’s much faster, so it can explore far more of what people in the field call “chemical space”—the set of all possible organic compounds. Unexplored chemical space is huge: Biochemists estimate that there are at least 1063 possible druglike molecules, and that 99.9 percent of all possible small molecules or compounds have never been synthesized.

Still, designing a chemical compound isn’t the hardest part of creating a new drug. After a drug candidate is designed, it must be synthesized, and the highly manual process for synthesizing a new chemical hasn’t changed much in 200 years. It can take days to plan a synthesis process and then months to years to optimize it for manufacture.

That’s why Gaston-Mathé was eager to send Iktos’s AI-generated designs to Collins’s team at SRI Biosciences. With $13.8 million from the Defense Advanced Research Projects Agency, SRI Biosciences spent the last four years automating the synthesis process. The company’s automated suite of three technologies, called SynFini, can produce new chemical compounds in just hours or days, says Collins.

First, machine-learning software devises possible routes for making a desired molecule. Next, an inkjet printer platform tests the routes by printing out and mixing tiny quantities of chemical ingredients to see how they react with one another; if the right compound is produced, the platform runs tests on it. Finally, a tabletop chemical plant synthesizes milligrams to grams of the desired compound.

Less than four months after Iktos and SRI Biosciences announced their collaboration, they had designed and synthesized a first round of antiviral candidates for SARS-CoV-2. Now they’re testing how well the compounds work on actual samples of the virus.

Out of 10
63 possible druglike molecules, 99.9 percent have never been synthesized.

Theirs isn’t the only collaborationapplying new tools to drug discovery. In late March, Alex Zhavoronkov, CEO of Hong Kong–based Insilico Medicine, came across a YouTube video showing three virtual-reality avatars positioning colorful, sticklike fragments in the side of a bulbous blue protein. The three researchers were using VR to explore how compounds might bind to a SARS-CoV-2 enzyme. Zhavoronkov contacted the startup that created the simulation—Nanome, in San Diego—and invited it to examine Insilico’s ­AI-generated molecules in virtual reality.

Insilico runs an AI platform that uses biological data to train deep-learning algorithms, then uses those algorithms to identify molecules with druglike features that will likely bind to a protein target. A four-day training sprint in late January yielded 100 molecules that appear to bind to an important SARS-CoV-2 protease. The company recently began synthesizing some of those molecules for laboratory testing.

Nanome’s VR software, meanwhile, allows researchers to import a molecular structure, then view and manipulate it on the scale of individual atoms. Like human chess players who use computer programs to explore potential moves, chemists can use VR to predict how to make molecules more druglike, says Nanome CEO Steve McCloskey. “The tighter the interface between the human and the computer, the more information goes both ways,” he says.

Zhavoronkov sent data about several of Insilico’s compounds to Nanome, which re-created them in VR. Nanome’s chemist demonstrated chemical tweaks to potentially improve each compound. “It was a very good experience,” says Zhavoronkov.

Meanwhile, in March, Takeda Pharmaceutical Co., of Japan, invited Schrödinger, a New York–based company that develops chemical-simulation software, to join an alliance working on antivirals. Schrödinger’s AI focuses on the physics of how proteins interact with small molecules and one another.

The software sifts through billions of molecules per week to predict a compound’s properties, and it optimizes for multiple desired properties simultaneously, says Karen Akinsanya, chief biomedical scientist and head of discovery R&D at Schrödinger. “There’s a huge sense of urgency here to come up with a potent molecule, but also to come up with molecules that are going to be well tolerated” by the body, she says. Drug developers are seeking compounds that can be broadly used and easily administered, such as an oral drug rather than an intravenous drug, she adds.

Schrödinger evaluated four protein targets and performed virtual screens for two of them, a computing-intensive process. In June, Google Cloud donated the equivalent of 16 million hours of Nvidia GPU time for the company’s calculations. Next, the alliance’s drug companies will synthesize and test the most promising compounds identified by the virtual screens.

Other companies, including Amazon Web Services, IBM, and Intel, as well as several U.S. national labs are also donating time and resources to the Covid-19 High Performance Computing Consortium. The consortium is supporting 87 projects, which now have access to 6.8 million CPU cores, 50,000 GPUs, and 600 petaflops of computational resources.

While advanced technologies could transform early drug discovery, any new drug candidate still has a long road after that. It must be tested in animals, manufactured in large batches for clinical trials, then tested in a series of trials that, for antivirals, lasts an average of seven years.

In May, the BioMed X Institute in Germany launched a five-year project to build a Rapid Antiviral Response Platform, which would speed drug discovery all the way through manufacturing for clinical trials. The €40 million ($47 million) project, backed by drug companies, will identify ­outside-the-box proposals from young scientists, then provide space and funding to develop their ideas.

“We’ll focus on technologies that allow us to go from identification of a new virus to 10,000 doses of a novel potential therapeutic ready for trials in less than six months,” says BioMed X’s Tidona, who leads the project.

While a vaccine will likely arrive long before a bespoke antiviral does, experts expect COVID-19 to be with us for a long time, so the effort to develop a direct-acting, potent antiviral continues. Plus, having new antivirals—and tools to rapidly create more—can only help us prepare for the next pandemic, whether it comes next month or in another 102 years.

“We’ve got to start thinking differently about how to be more responsive to these kinds of threats,” says Collins. “It’s pushing us out of our comfort zones.”

This article appears in the October 2020 print issue as “Automating Antivirals.” Continue reading

Posted in Human Robots

#437282 This Week’s Awesome Tech Stories From ...

ARTIFICIAL INTELLIGENCE
OpenAI’s Latest Breakthrough Is Astonishingly Powerful, But Still Fighting Its Flaws
James Vincent | The Verge
“What makes GPT-3 amazing, they say, is not that it can tell you that the capital of Paraguay is Asunción (it is) or that 466 times 23.5 is 10,987 (it’s not), but that it’s capable of answering both questions and many more beside simply because it was trained on more data for longer than other programs. If there’s one thing we know that the world is creating more and more of, it’s data and computing power, which means GPT-3’s descendants are only going to get more clever.”

TECHNOLOGY
I Tried to Live Without the Tech Giants. It Was Impossible.
Kashmir Hill | The New York Times
“Critics of the big tech companies are often told, ‘If you don’t like the company, don’t use its products.’ My takeaway from the experiment was that it’s not possible to do that. It’s not just the products and services branded with the big tech giant’s name. It’s that these companies control a thicket of more obscure products and services that are hard to untangle from tools we rely on for everything we do, from work to getting from point A to point B.”

ROBOTICS
Meet the Engineer Who Let a Robot Barber Shave Him With a Straight Razor
Luke Dormehl | Digital Trends
“No, it’s not some kind of lockdown-induced barber startup or a Jackass-style stunt. Instead, Whitney, assistant professor of mechanical and industrial engineering at Northeastern University School of Engineering, was interested in straight-razor shaving as a microcosm for some of the big challenges that robots have faced in the past (such as their jerky, robotic movement) and how they can now be solved.”

LONGEVITY
Can Trees Live Forever? New Kindling in an Immortal Debate
Cara Giaimo | The New York Times
“Even if a scientist dedicated her whole career to very old trees, she would be able to follow her research subjects for only a small percentage of their lives. And a long enough multigenerational study might see its own methods go obsolete. For these reasons, Dr. Munné-Bosch thinks we will never prove’ whether long-lived trees experience senescence…”

BIOTECH
There’s No Such Thing as Family Secrets in the Age of 23andMe
Caitlin Harrington | Wired
“…technology has a way of creating new consequences for old decisions. Today, some 30 million people have taken consumer DNA tests, a threshold experts have called a tipping point. People conceived through donor insemination are matching with half-siblings, tracking down their donors, forming networks and advocacy organizations.”

ETHICS
The Problems AI Has Today Go Back Centuries
Karen Hao | MIT Techology Review
“In 2018, just as the AI field was beginning to reckon with problems like algorithmic discrimination, [Shakir Mohamed, a South African AI researcher at DeepMind], penned a blog post with his initial thoughts. In it he called on researchers to ‘decolonise artificial intelligence’—to reorient the field’s work away from Western hubs like Silicon Valley and engage new voices, cultures, and ideas for guiding the technology’s development.”

INTERNET
AI-Generated Text Is the Scariest Deepfake of All
Renee DiResta | Wired
“In the future, deepfake videos and audiofakes may well be used to create distinct, sensational moments that commandeer a press cycle, or to distract from some other, more organic scandal. But undetectable textfakes—masked as regular chatter on Twitter, Facebook, Reddit, and the like—have the potential to be far more subtle, far more prevalent, and far more sinister.”

Image credit: Adrien Olichon / Unsplash Continue reading

Posted in Human Robots

#437133 The robots weeding organic farms and ...

Robots that use artificial intelligence to recognise the health of fruit and vegetable crops and when they're ready to harvest are being trialled to help small, organic and greenhouse farmers with weeding and patrolling for pests. Continue reading

Posted in Human Robots