Tag Archives: operating
#435593 AI at the Speed of Light
Neural networks shine for solving tough problems such as facial and voice recognition, but conventional electronic versions are limited in speed and hungry for power. In theory, optics could beat digital electronic computers in the matrix calculations used in neural networks. However, optics had been limited by their inability to do some complex calculations that had required electronics. Now new experiments show that all-optical neural networks can tackle those problems.
The key attraction of neural networks is their massive interconnections among processors, comparable to the complex interconnections among neurons in the brain. This lets them perform many operations simultaneously, like the human brain does when looking at faces or listening to speech, making them more efficient for facial and voice recognition than traditional electronic computers that execute one instruction at a time.
Today's electronic neural networks have reached eight million neurons, but their future use in artificial intelligence may be limited by their high power usage and limited parallelism in connections. Optical connections through lenses are inherently parallel. The lens in your eye simultaneously focuses light from across your field of view onto the retina in the back of your eye, where an array of light-detecting nerve cells detects the light. Each cell then relays the signal it receives to neurons in the brain that process the visual signals to show us an image.
Glass lenses process optical signals by focusing light, which performs a complex mathematical operation called a Fourier transform that preserves the information in the original scene but rearranges is completely. One use of Fourier transforms is converting time variations in signal intensity into a plot of the frequencies present in the signal. The military used this trick in the 1950s to convert raw radar return signals recorded by an aircraft in flight into a three-dimensional image of the landscape viewed by the plane. Today that conversion is done electronically, but the vacuum-tube computers of the 1950s were not up to the task.
Development of neural networks for artificial intelligence started with electronics, but their AI applications have been limited by their slow processing and need for extensive computing resources. Some researchers have developed hybrid neural networks, in which optics perform simple linear operations, but electronics perform more complex nonlinear calculations. Now two groups have demonstrated simple all-optical neural networks that do all processing with light.
In May, Wolfram Pernice of the Institute of Physics at the University of Münster in Germany and colleagues reported testing an all-optical “neuron” in which signals change target materials between liquid and solid states, an effect that has been used for optical data storage. They demonstrated nonlinear processing, and produced output pulses like those from organic neurons. They then produced an integrated photonic circuit that incorporated four optical neurons operating at different wavelengths, each of which connected to 15 optical synapses. The photonic circuit contained more than 140 components and could recognize simple optical patterns. The group wrote that their device is scalable, and that the technology promises “access to the high speed and high bandwidth inherent to optical systems, thus enabling the direct processing of optical telecommunication and visual data.”
Now a group at the Hong Kong University of Science and Technology reports in Optica that they have made an all-optical neural network based on a different process, electromagnetically induced transparency, in which incident light affects how atoms shift between quantum-mechanical energy levels. The process is nonlinear and can be triggered by very weak light signals, says Shengwang Du, a physics professor and coauthor of the paper.
In their demonstration, they illuminated rubidium-85 atoms cooled by lasers to about 10 microKelvin (10 microdegrees above absolute zero). Although the technique may seem unusually complex, Du said the system was the most accessible one in the lab that could produce the desired effects. “As a pure quantum atomic system [it] is ideal for this proof-of-principle experiment,” he says.
Next, they plan to scale up the demonstration using a hot atomic vapor center, which is less expensive, does not require time-consuming preparation of cold atoms, and can be integrated with photonic chips. Du says the major challenges are reducing cost of the nonlinear processing medium and increasing the scale of the all-optical neural network for more complex tasks.
“Their demonstration seems valid,” says Volker Sorger, an electrical engineer at George Washington University in Washington who was not involved in either demonstration. He says the all-optical approach is attractive because it offers very high parallelism, but the update rate is limited to about 100 hertz because of the liquid crystals used in their test, and he is not completely convinced their approach can be scaled error-free. Continue reading →
#435589 Construction Robots Learn to Excavate by ...
Pavel Savkin remembers the first time he watched a robot imitate his movements. Minutes earlier, the engineer had finished “showing” the robotic excavator its new goal by directing its movements manually. Now, running on software Savkin helped design, the robot was reproducing his movements, gesture for gesture. “It was like there was something alive in there—but I knew it was me,” he said.
Savkin is the CTO of SE4, a robotics software project that styles itself the “driver” of a fleet of robots that will eventually build human colonies in space. For now, SE4 is focused on creating software that can help developers communicate with robots, rather than on building hardware of its own.
The Tokyo-based startup showed off an industrial arm from Universal Robots that was running SE4’s proprietary software at SIGGRAPH in July. SE4’s demonstration at the Los Angeles innovation conference drew the company’s largest audience yet. The robot, nicknamed Squeezie, stacked real blocks as directed by SE4 research engineer Nathan Quinn, who wore a VR headset and used handheld controls to “show” Squeezie what to do.
As Quinn manipulated blocks in a virtual 3D space, the software learned a set of ordered instructions to be carried out in the real world. That order is essential for remote operations, says Quinn. To build remotely, developers need a way to communicate instructions to robotic builders on location. In the age of digital construction and industrial robotics, giving a computer a blueprint for what to build is a well-explored art. But operating on a distant object—especially under conditions that humans haven’t experienced themselves—presents challenges that only real-time communication with operators can solve.
The problem is that, in an unpredictable setting, even simple tasks require not only instruction from an operator, but constant feedback from the changing environment. Five years ago, the Swedish fiber network provider umea.net (part of the private Umeå Energy utility) took advantage of the virtual reality boom to promote its high-speed connections with the help of a viral video titled “Living with Lag: An Oculus Rift Experiment.” The video is still circulated in VR and gaming circles.
In the experiment, volunteers donned headgear that replaced their real-time biological senses of sight and sound with camera and audio feeds of their surroundings—both set at a 3-second delay. Thus equipped, volunteers attempt to complete everyday tasks like playing ping-pong, dancing, cooking, and walking on a beach, with decidedly slapstick results.
At outer-orbit intervals, including SE4’s dream of construction projects on Mars, the limiting factor in communication speed is not an artificial delay, but the laws of physics. The shifting relative positions of Earth and Mars mean that communications between the planets—even at the speed of light—can take anywhere from 3 to 22 minutes.
A long-distance relationship
Imagine trying to manage a construction project from across an ocean without the benefit of intelligent workers: sending a ship to an unknown world with a construction crew and blueprints for a log cabin, and four months later receiving a letter back asking how to cut down a tree. The parallel problem in long-distance construction with robots, according to SE4 CEO Lochlainn Wilson, is that automation relies on predictability. “Every robot in an industrial setting today is expecting a controlled environment.”
Platforms for applying AR and VR systems to teach tasks to artificial intelligences, as SE4 does, are already proliferating in manufacturing, healthcare, and defense. But all of the related communications systems are bound by physics and, specifically, the speed of light.
The same fundamental limitation applies in space. “Our communications are light-based, whether they’re radio or optical,” says Laura Seward Forczyk, a planetary scientist and consultant for space startups. “If you’re going to Mars and you want to communicate with your robot or spacecraft there, you need to have it act semi- or mostly-independently so that it can operate without commands from Earth.”
Semantic control
That’s exactly what SE4 aims to do. By teaching robots to group micro-movements into logical units—like all the steps to building a tower of blocks—the Tokyo-based startup lets robots make simple relational judgments that would allow them to receive a full set of instruction modules at once and carry them out in order. This sidesteps the latency issue in real-time bilateral communications that could hamstring a project or at least make progress excruciatingly slow.
The key to the platform, says Wilson, is the team’s proprietary operating software, “Semantic Control.” Just as in linguistics and philosophy, “semantics” refers to meaning itself, and meaning is the key to a robot’s ability to make even the smallest decisions on its own. “A robot can scan its environment and give [raw data] to us, but it can’t necessarily identify the objects around it and what they mean,” says Wilson.
That’s where human intelligence comes in. As part of the demonstration phase, the human operator of an SE4-controlled machine “annotates” each object in the robot’s vicinity with meaning. By labeling objects in the VR space with useful information—like which objects are building material and which are rocks—the operator helps the robot make sense of its real 3D environment before the building begins.
Giving robots the tools to deal with a changing environment is an important step toward allowing the AI to be truly independent, but it’s only an initial step. “We’re not letting it do absolutely everything,” said Quinn. “Our robot is good at moving an object from point A to point B, but it doesn’t know the overall plan.” Wilson adds that delegating environmental awareness and raw mechanical power to separate agents is the optimal relationship for a mixed human-robot construction team; it “lets humans do what they’re good at, while robots do what they do best.”
This story was updated on 4 September 2019. Continue reading →
#435494 Driverless Electric Trucks Are Coming, ...
Self-driving and electric cars just don’t stop making headlines lately. Amazon invested in self-driving startup Aurora earlier this year. Waymo, Daimler, GM, along with startups like Zoox, have all launched or are planning to launch driverless taxis, many of them all-electric. People are even yanking driverless cars from their timeless natural habitat—roads—to try to teach them to navigate forests and deserts.
The future of driving, it would appear, is upon us.
But an equally important vehicle that often gets left out of the conversation is trucks; their relevance to our day-to-day lives may not be as visible as that of cars, but their impact is more profound than most of us realize.
Two recent developments in trucking point to a future of self-driving, electric semis hauling goods across the country, and likely doing so more quickly, cheaply, and safely than trucks do today.
Self-Driving in Texas
Last week, Kodiak Robotics announced it’s beginning its first commercial deliveries using self-driving trucks on a route from Dallas to Houston. The two cities sit about 240 miles apart, connected primarily by interstate 45. Kodiak is aiming to expand its reach far beyond the heart of Texas (if Dallas and Houston can be considered the heart, that is) to the state’s most far-flung cities, including El Paso to the west and Laredo to the south.
If self-driving trucks are going to be constrained to staying within state lines (and given that the laws regulating them differ by state, they will be for the foreseeable future), Texas is a pretty ideal option. It’s huge (thousands of miles of highway run both east-west and north-south), it’s warm (better than cold for driverless tech components like sensors), its proximity to Mexico means constant movement of both raw materials and manufactured goods (basically, you can’t have too many trucks in Texas), and most crucially, it’s lax on laws (driverless vehicles have been permitted there since 2017).
Spoiler, though—the trucks won’t be fully unmanned. They’ll have safety drivers to guide them onto and off of the highway, and to be there in case of any unexpected glitches.
California Goes (Even More) Electric
According to some top executives in the rideshare industry, automation is just one key component of the future of driving. Another is electricity replacing gas, and it’s not just carmakers that are plugging into the trend.
This week, Daimler Trucks North America announced completion of its first electric semis for customers Penske and NFI, to be used in the companies’ southern California operations. Scheduled to start operating later this month, the trucks will essentially be guinea pigs for testing integration of electric trucks into large-scale fleets; intel gleaned from the trucks’ performance will impact the design of later models.
Design-wise, the trucks aren’t much different from any other semi you’ve seen lumbering down the highway recently. Their range is about 250 miles—not bad if you think about how much more weight a semi is pulling than a passenger sedan—and they’ve been dubbed eCascadia, an electrified version of Freightliner’s heavy-duty Cascadia truck.
Batteries have a long way to go before they can store enough energy to make electric trucks truly viable (not to mention setting up a national charging infrastructure), but Daimler’s announcement is an important step towards an electrically-driven future.
Keep on Truckin’
Obviously, it’s more exciting to think about hailing one of those cute little Waymo cars with no steering wheel to shuttle you across town than it is to think about that 12-pack of toilet paper you ordered on Amazon cruising down the highway in a semi while the safety driver takes a snooze. But pushing driverless and electric tech in the trucking industry makes sense for a few big reasons.
Trucks mostly run long routes on interstate highways—with no pedestrians, stoplights, or other city-street obstacles to contend with, highway driving is much easier to automate. What glitches there are to be smoothed out may as well be smoothed out with cargo on board rather than people. And though you wouldn’t know it amid the frantic shouts of ‘a robot could take your job!’, the US is actually in the midst of a massive shortage of truck drivers—60,000 short as of earlier this year, to be exact.
As Todd Spencer, president of the Owner-Operator Independent Drivers Association, put it, “Trucking is an absolutely essential, critical industry to the nation, to everybody in it.” Alas, trucks get far less love than cars, but come on—probably 90 percent of the things you ate, bought, or used today were at some point moved by a truck.
Adding driverless and electric tech into that equation, then, should yield positive outcomes on all sides, whether we’re talking about cheaper 12-packs of toilet paper, fewer traffic fatalities due to human error, a less-strained labor force, a stronger economy… or something pretty cool to see as you cruise down the highway in your (driverless, electric, futuristic) car.
Image Credit: Vitpho / Shutterstock.com Continue reading →
#435110 5 Coming Breakthroughs in Energy and ...
The energy and transportation industries are being aggressively disrupted by converging exponential technologies.
In just five days, the sun provides Earth with an energy supply exceeding all proven reserves of oil, coal, and natural gas. Capturing just 1 part in 8,000 of this available solar energy would allow us to meet 100 percent of our energy needs.
As we leverage renewable energy supplied by the sun, wind, geothermal sources, and eventually fusion, we are rapidly heading towards a future where 100 percent of our energy needs will be met by clean tech in just 30 years.
During the past 40 years, solar prices have dropped 250-fold. And as these costs plummet, solar panel capacity continues to grow exponentially.
On the heels of energy abundance, we are additionally witnessing a new transportation revolution, which sets the stage for a future of seamlessly efficient travel at lower economic and environmental costs.
Top 5 Transportation Breakthroughs (2019-2024)
Entrepreneur and inventor Ramez Naam is my go-to expert on all things energy and environment. Currently serving as the Energy Co-Chair at Singularity University, Naam is the award-winning author of five books, including the Nexus series of science fiction novels. Having spent 13 years at Microsoft, his software has touched the lives of over a billion people. Naam holds over 20 patents, including several shared with co-inventor Bill Gates.
In the next five years, he forecasts five respective transportation and energy trends, each poised to disrupt major players and birth entirely new business models.
Let’s dive in.
Autonomous cars drive 1 billion miles on US roads. Then 10 billion
Alphabet’s Waymo alone has already reached 10 million miles driven in the US. The 600 Waymo vehicles on public roads drive a total of 25,000 miles each day, and computer simulations provide an additional 25,000 virtual cars driving constantly. Since its launch in December, the Waymo One service has transported over 1,000 pre-vetted riders in the Phoenix area.
With more training miles, the accuracy of these cars continues to improve. Since last year, GM Cruise has improved its disengagement rate by 321 percent since last year, trailing close behind with only one human intervention per 5,025 miles self-driven.
Autonomous taxis as a service in top 20 US metro areas
Along with its first quarterly earnings released last week, Lyft recently announced that it would expand its Waymo partnership with the upcoming deployment of 10 autonomous vehicles in the Phoenix area. While individuals previously had to partake in Waymo’s “early rider program” prior to trying Waymo One, the Lyft partnership will allow anyone to ride in a self-driving vehicle without a prior NDA.
Strategic partnerships will grow increasingly essential between automakers, self-driving tech companies, and rideshare services. Ford is currently working with Volkswagen, and Nvidia now collaborates with Daimler (Mercedes) and Toyota. Just last week, GM Cruise raised another $1.15 billion at a $19 billion valuation as the company aims to launch a ride-hailing service this year.
“They’re going to come to the Bay Area, Los Angeles, Houston, other cities with relatively good weather,” notes Naam. “In every major city within five years in the US and in some other parts of the world, you’re going to see the ability to hail an autonomous vehicle as a ride.”
Cambrian explosion of vehicle formats
Naam explains, “If you look today at the average ridership of a taxi, a Lyft, or an Uber, it’s about 1.1 passengers plus the driver. So, why do you need a large four-seater vehicle for that?”
Small electric, autonomous pods that seat as few as two people will begin to emerge, satisfying the majority of ride-hailing demands we see today. At the same time, larger communal vehicles will appear, such as Uber Express, that will undercut even the cheapest of transportation methods—buses, trams, and the like. Finally, last-mile scooter transit (or simply short-distance walks) might connect you to communal pick-up locations.
By 2024, an unimaginably diverse range of vehicles will arise to meet every possible need, regardless of distance or destination.
Drone delivery for lightweight packages in at least one US city
Wing, the Alphabet drone delivery startup, recently became the first company to gain approval from the Federal Aviation Administration (FAA) to make deliveries in the US. Having secured approval to deliver to 100 homes in Canberra, Australia, Wing additionally plans to begin delivering goods from local businesses in the suburbs of Virginia.
The current state of drone delivery is best suited for lightweight, urgent-demand payloads like pharmaceuticals, thumb drives, or connectors. And as Amazon continues to decrease its Prime delivery times—now as speedy as a one-day turnaround in many cities—the use of drones will become essential.
Robotic factories drive onshoring of US factories… but without new jobs
The supply chain will continue to shorten and become more agile with the re-onshoring of manufacturing jobs in the US and other countries. Naam reasons that new management and software jobs will drive this shift, as these roles develop the necessary robotics to manufacture goods. Equally as important, these robotic factories will provide a more humane setting than many of the current manufacturing practices overseas.
Top 5 Energy Breakthroughs (2019-2024)
First “1 cent per kWh” deals for solar and wind signed
Ten years ago, the lowest price of solar and wind power fell between 10 to 12 cents per kilowatt hour (kWh), over twice the price of wholesale power from coal or natural gas.
Today, the gap between solar/wind power and fossil fuel-generated electricity is nearly negligible in many parts of the world. In G20 countries, fossil fuel electricity costs between 5 to 17 cents per kWh, while the average cost per kWh of solar power in the US stands at under 10 cents.
Spanish firm Solarpack Corp Technological recently won a bid in Chile for a 120 MW solar power plant supplying energy at 2.91 cents per kWh. This deal will result in an estimated 25 percent drop in energy costs for Chilean businesses by 2021.
Naam indicates, “We will see the first unsubsidized 1.0 cent solar deals in places like Chile, Mexico, the Southwest US, the Middle East, and North Africa, and we’ll see similar prices for wind in places like Mexico, Brazil, and the US Great Plains.”
Solar and wind will reach >15 percent of US electricity, and begin to drive all growth
Just over eight percent of energy in the US comes from solar and wind sources. In total, 17 percent of American energy is derived from renewable sources, while a whopping 63 percent is sourced from fossil fuels, and 17 percent from nuclear.
Last year in the U.K., twice as much energy was generated from wind than from coal. For over a week in May, the U.K. went completely coal-free, using wind and solar to supply 35 percent and 21 percent of power, respectively. While fossil fuels remain the primary electricity source, this week-long experiment highlights the disruptive potential of solar and wind power that major countries like the U.K. are beginning to emphasize.
“Solar and wind are still a relatively small part of the worldwide power mix, only about six percent. Within five years, it’s going to be 15 percent in the US and more than close to that worldwide,” Naam predicts. “We are nearing the point where we are not building any new fossil fuel power plants.”
It will be cheaper to build new solar/wind/batteries than to run on existing coal
Last October, Northern Indiana utility company NIPSCO announced its transition from a 65 percent coal-powered state to projected coal-free status by 2028. Importantly, this decision was made purely on the basis of financials, with an estimated $4 billion in cost savings for customers. The company has already begun several initiatives in solar, wind, and batteries.
NextEra, the largest power generator in the US, has taken on a similar goal, making a deal last year to purchase roughly seven million solar panels from JinkoSolar over four years. Leading power generators across the globe have vocalized a similar economic case for renewable energy.
ICE car sales have now peaked. All car sales growth will be electric
While electric vehicles (EV) have historically been more expensive for consumers than internal combustion engine-powered (ICE) cars, EVs are cheaper to operate and maintain. The yearly cost of operating an EV in the US is about $485, less than half the $1,117 cost of operating a gas-powered vehicle.
And as battery prices continue to shrink, the upfront costs of EVs will decline until a long-term payoff calculation is no longer required to determine which type of car is the better investment. EVs will become the obvious choice.
Many experts including Naam believe that ICE-powered vehicles peaked worldwide in 2018 and will begin to decline over the next five years, as has already been demonstrated in the past five months. At the same time, EVs are expected to quadruple their market share to 1.6 percent this year.
New storage technologies will displace Li-ion batteries for tomorrow’s most demanding applications
Lithium ion batteries have dominated the battery market for decades, but Naam anticipates new storage technologies will take hold for different contexts. Flow batteries, which can collect and store solar and wind power at large scales, will supply city grids. Already, California’s Independent System Operator, the nonprofit that maintains the majority of the state’s power grid, recently installed a flow battery system in San Diego.
Solid-state batteries, which consist of entirely solid electrolytes, will supply mobile devices in cars. A growing body of competitors, including Toyota, BMW, Honda, Hyundai, and Nissan, are already working on developing solid-state battery technology. These types of batteries offer up to six times faster charging periods, three times the energy density, and eight years of added lifespan, compared to lithium ion batteries.
Final Thoughts
Major advancements in transportation and energy technologies will continue to converge over the next five years. A case in point, Tesla’s recent announcement of its “robotaxi” fleet exemplifies the growing trend towards joint priority of sustainability and autonomy.
On the connectivity front, 5G and next-generation mobile networks will continue to enable the growth of autonomous fleets, many of which will soon run on renewable energy sources. This growth demands important partnerships between energy storage manufacturers, automakers, self-driving tech companies, and ridesharing services.
In the eco-realm, increasingly obvious economic calculi will catalyze consumer adoption of autonomous electric vehicles. In just five years, Naam predicts that self-driving rideshare services will be cheaper than owning a private vehicle for urban residents. And by the same token, plummeting renewable energy costs will make these fuels far more attractive than fossil fuel-derived electricity.
As universally optimized AI systems cut down on traffic, aggregate time spent in vehicles will decimate, while hours in your (or not your) car will be applied to any number of activities as autonomous systems steer the way. All the while, sharing an electric vehicle will cut down not only on your carbon footprint but on the exorbitant costs swallowed by your previous SUV. How will you spend this extra time and money? What new natural resources will fuel your everyday life?
Join Me
Abundance-Digital Online Community: Stay ahead of technological advancements and turn your passion into action. Abundance Digital is now part of Singularity University. Learn more.
Image Credit: welcomia / Shutterstock.com Continue reading →
#434772 Traditional Higher Education Is Losing ...
Should you go to graduate school? If so, why? If not, what are your alternatives? Millions of young adults across the globe—and their parents and mentors—find themselves asking these questions every year.
Earlier this month, I explored how exponential technologies are rising to meet the needs of the rapidly changing workforce.
In this blog, I’ll dive into a highly effective way to build the business acumen and skills needed to make the most significant impact in these exponential times.
To start, let’s dive into the value of graduate school versus apprenticeship—especially during this time of extraordinarily rapid growth, and the micro-diversification of careers.
The True Value of an MBA
All graduate schools are not created equal.
For complex technical trades like medicine, engineering, and law, formal graduate-level training provides a critical foundation for safe, ethical practice (until these trades are fully augmented by artificial intelligence and automation…).
For the purposes of today’s blog, let’s focus on the value of a Master in Business Administration (MBA) degree, compared to acquiring your business acumen through various forms of apprenticeship.
The Waning of Business Degrees
Ironically, business schools are facing a tough business problem. The rapid rate of technological change, a booming job market, and the digitization of education are chipping away at the traditional graduate-level business program.
The data speaks for itself.
The Decline of Graduate School Admissions
Enrollment in two-year, full-time MBA programs in the US fell by more than one-third from 2010 to 2016.
While in previous years, top business schools (e.g. Stanford, Harvard, and Wharton) were safe from the decrease in applications, this year, they also felt the waning interest in MBA programs.
Harvard Business School: 4.5 percent decrease in applications, the school’s biggest drop since 2005.
Wharton: 6.7 percent decrease in applications.
Stanford Graduate School: 4.6 percent decrease in applications.
Another signal of change began unfolding over the past week. You may have read news headlines about an emerging college admissions scam, which implicates highly selective US universities, sports coaches, parents, and students in a conspiracy to game the undergraduate admissions process.
Already, students are filing multibillion-dollar civil lawsuits arguing that the scheme has devalued their degrees or denied them a fair admissions opportunity.
MBA Graduates in the Workforce
To meet today’s business needs, startups and massive companies alike are increasingly hiring technologists, developers, and engineers in place of the MBA graduates they may have preferentially hired in the past.
While 85 percent of US employers expect to hire MBA graduates this year (a decrease from 91 percent in 2017), 52 percent of employers worldwide expect to hire graduates with a master’s in data analytics (an increase from 35 percent last year).
We’re also seeing the waning of MBA degree holders at the CEO level.
For decades, an MBA was the hallmark of upward mobility towards the C-suite of top companies.
But as exponential technologies permeate not only products but every part of the supply chain—from manufacturing and shipping to sales, marketing and customer service—that trend is changing by necessity.
Looking at the Harvard Business Review’s Top 100 CEOs in 2018 list, more CEOs on the list held engineering degrees than MBAs (34 held engineering degrees, while 32 held MBAs).
There’s much more to leading innovative companies than an advanced business degree.
How Are Schools Responding?
With disruption to the advanced business education system already here, some business schools are applying notes from their own innovation classes to brace for change.
Over the past half-decade, we’ve seen schools with smaller MBA programs shut their doors in favor of advanced degrees with more specialization. This directly responds to market demand for skills in data science, supply chain, and manufacturing.
Some degrees resemble the precise skills training of technical trades. Others are very much in line with the apprenticeship models we’ll explore next.
Regardless, this new specialization strategy is working and attracting more new students. Over the past decade (2006 to 2016), enrollment in specialized graduate business programs doubled.
Higher education is also seeing a preference shift toward for-profit trade schools, like coding boot camps. This shift is one of several forces pushing universities to adopt skill-specific advanced degrees.
But some schools are slow to adapt, raising the question: how and when will these legacy programs be disrupted? A survey of over 170 business school deans around the world showed that many programs are operating at a loss.
But if these schools are world-class business institutions, as advertised, why do they keep the doors open even while they lose money? The surveyed deans revealed an important insight: they keep the degree program open because of the program’s prestige.
Why Go to Business School?
Shorthand Credibility, Cognitive Biases, and Prestige
Regardless of what knowledge a person takes away from graduate school, attending one of the world’s most rigorous and elite programs gives grads external validation.
With over 55 percent of MBA applicants applying to just 6 percent of graduate business schools, we have a clear cognitive bias toward the perceived elite status of certain universities.
To the outside world, thanks to the power of cognitive biases, an advanced degree is credibility shorthand for your capabilities.
Simply passing through a top school’s filtration system means that you had some level of abilities and merits.
And startup success statistics tend to back up that perceived enhanced capability. Let’s take, for example, universities with the most startup unicorn founders (see the figure below).
When you consider the 320+ unicorn startups around the world today, these numbers become even more impressive. Stanford’s 18 unicorn companies account for over 5 percent of global unicorns, and Harvard is responsible for producing just under 5 percent.
Combined, just these two universities (out of over 5,000 in the US, and thousands more around the world) account for 1 in 10 of the billion-dollar private companies in the world.
By the numbers, the prestigious reputation of these elite business programs has a firm basis in current innovation success.
While prestige may be inherent to the degree earned by graduates from these business programs, the credibility boost from holding one of these degrees is not a guaranteed path to success in the business world.
For example, you might expect that the Harvard School of Business or Stanford Graduate School of Business would come out on top when tallying up the alma maters of Fortune 500 CEOs.
It turns out that the University of Wisconsin-Madison leads the business school pack with 14 CEOs to Harvard’s 12. Beyond prestige, the success these elite business programs see translates directly into cultivating unmatched networks and relationships.
Relationships
Graduate schools—particularly at the upper echelon—are excellent at attracting sharp students.
At an elite business school, if you meet just five to ten people with extraordinary skill sets, personalities, ideas, or networks, then you have returned your $200,000 education investment.
It’s no coincidence that some 40 percent of Silicon Valley venture capitalists are alumni of either Harvard or Stanford.
From future investors to advisors, friends, and potential business partners, relationships are critical to an entrepreneur’s success.
Apprenticeships
As we saw above, graduate business degree programs are melting away in the current wave of exponential change.
With an increasing $1.5 trillion in student debt, there must be a more impactful alternative to attending graduate school for those starting their careers.
When I think about the most important skills I use today as an entrepreneur, writer, and strategic thinker, they didn’t come from my decade of graduate school at Harvard or MIT… they came from my experiences building real technologies and companies, and working with mentors.
Apprenticeship comes in a variety of forms; here, I’ll cover three top-of-mind approaches:
Real-world business acumen via startup accelerators
A direct apprenticeship model
The 6 D’s of mentorship
Startup Accelerators and Business Practicum
Let’s contrast the shrinking interest in MBA programs with applications to a relatively new model of business education: startup accelerators.
Startup accelerators are short-term (typically three to six months), cohort-based programs focusing on providing startup founders with the resources (capital, mentorship, relationships, and education) needed to refine their entrepreneurial acumen.
While graduate business programs have been condensing, startup accelerators are alive, well, and expanding rapidly.
In the 10 years from 2005 (when Paul Graham founded Y Combinator) through 2015, the number of startup accelerators in the US increased by more than tenfold.
The increase in startup accelerator activity hints at a larger trend: our best and brightest business minds are opting to invest their time and efforts in obtaining hands-on experience, creating tangible value for themselves and others, rather than diving into the theory often taught in business school classrooms.
The “Strike Force” Model
The Strike Force is my elite team of young entrepreneurs who work directly with me across all of my companies, travel by my side, sit in on every meeting with me, and help build businesses that change the world.
Previous Strike Force members have gone on to launch successful companies, including Bold Capital Partners, my $250 million venture capital firm.
Strike Force is an apprenticeship for the next generation of exponential entrepreneurs.
To paraphrase my good friend Tony Robbins: If you want to short-circuit the video game, find someone who’s been there and done that and is now doing something you want to one day do.
Every year, over 500,000 apprentices in the US follow this precise template. These apprentices are learning a craft they wish to master, under the mentorship of experts (skilled metal workers, bricklayers, medical technicians, electricians, and more) who have already achieved the desired result.
What if we more readily applied this model to young adults with aspirations of creating massive value through the vehicles of entrepreneurship and innovation?
For the established entrepreneur: How can you bring young entrepreneurs into your organization to create more value for your company, while also passing on your ethos and lessons learned to the next generation?
For the young, driven millennial: How can you find your mentor and convince him or her to take you on as an apprentice? What value can you create for this person in exchange for their guidance and investment in your professional development?
The 6 D’s of Mentorship
In my last blog on education, I shared how mobile device and internet penetration will transform adult literacy and basic education. Mobile phones and connectivity already create extraordinary value for entrepreneurs and young professionals looking to take their business acumen and skill set to the next level.
For all of human history up until the last decade or so, if you wanted to learn from the best and brightest in business, leadership, or strategy, you either needed to search for a dated book that they wrote at the local library or bookstore, or you had to be lucky enough to meet that person for a live conversation.
Now you can access the mentorship of just about any thought leader on the planet, at any time, for free.
Thanks to the power of the internet, mentorship has digitized, demonetized, dematerialized, and democratized.
What do you want to learn about?
Investing? Leadership? Technology? Marketing? Project management?
You can access a near-infinite stream of cutting-edge tools, tactics, and lessons from thousands of top performers from nearly every field—instantaneously, and for free.
For example, every one of Warren Buffett’s letters to his Berkshire Hathaway investors over the past 40 years is available for free on a device that fits in your pocket.
The rise of audio—particularly podcasts and audiobooks—is another underestimated driving force away from traditional graduate business programs and toward apprenticeships.
Over 28 million podcast episodes are available for free. Once you identify the strong signals in the noise, you’re still left with thousands of hours of long-form podcast conversation from which to learn valuable lessons.
Whenever and wherever you want, you can learn from the world’s best. In the future, mentorship and apprenticeship will only become more personalized. Imagine accessing a high-fidelity, AI-powered avatar of Bill Gates, Richard Branson, or Arthur C. Clarke (one of my early mentors) to help guide you through your career.
Virtual mentorship and coaching are powerful education forces that are here to stay.
Bringing It All Together
The education system is rapidly changing. Traditional master’s programs for business are ebbing away in the tides of exponential technologies. Apprenticeship models are reemerging as an effective way to train tomorrow’s leaders.
In a future blog, I’ll revisit the concept of apprenticeships and other effective business school alternatives.
If you are a young, ambitious entrepreneur (or the parent of one), remember that you live in the most abundant time ever in human history to refine your craft.
Right now, you have access to world-class mentorship and cutting-edge best-practices—literally in the palm of your hand. What will you do with this extraordinary power?
Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.
Image Credit: fongbeerredhot / Shutterstock.com Continue reading →