Tag Archives: opening
#436218 An AI Debated Its Own Potential for Good ...
Artificial intelligence is going to overhaul the way we live and work. But will the changes it brings be for the better? As the technology slowly develops (let’s remember that right now, we’re still very much in the narrow AI space and nowhere near an artificial general intelligence), whether it will end up doing us more harm than good is a question at the top of everyone’s mind.
What kind of response might we get if we posed this question to an AI itself?
Last week at the Cambridge Union in England, IBM did just that. Its Project Debater (an AI that narrowly lost a debate to human debating champion Harish Natarajan in February) gave the opening arguments in a debate about the promise and peril of artificial intelligence.
Critical thinking, linking different lines of thought, and anticipating counter-arguments are all valuable debating skills that humans can practice and refine. While these skills are tougher for an AI to get good at since they often require deeper contextual understanding, AI does have a major edge over humans in absorbing and analyzing information. In the February debate, Project Debater used IBM’s cloud computing infrastructure to read hundreds of millions of documents and extract relevant details to construct an argument.
This time around, Debater looked through 1,100 arguments for or against AI. The arguments were submitted to IBM by the public during the week prior to the debate, through a website set up for that purpose. Of the 1,100 submissions, the AI classified 570 as anti-AI, or of the opinion that the technology will bring more harm to humanity than good. 511 arguments were found to be pro-AI, and the rest were irrelevant to the topic at hand.
Debater grouped the arguments into five themes; the technology’s ability to take over dangerous or monotonous jobs was a pro-AI theme, and on the flip side was its potential to perpetuate the biases of its creators. “AI companies still have too little expertise on how to properly assess datasets and filter out bias,” the tall black box that houses Project Debater said. “AI will take human bias and will fixate it for generations.”
After Project Debater kicked off the debate by giving opening arguments for both sides, two teams of people took over, elaborating on its points and coming up with their own counter-arguments.
In the end, an audience poll voted in favor of the pro-AI side, but just barely; 51.2 percent of voters felt convinced that AI can help us more than it can hurt us.
The software’s natural language processing was able to identify racist, obscene, or otherwise inappropriate comments and weed them out as being irrelevant to the debate. But it also repeated the same arguments multiple times, and mixed up a statement about bias as being pro-AI rather than anti-AI.
IBM has been working on Project Debater for over six years, and though it aims to iron out small glitches like these, the system’s goal isn’t to ultimately outwit and defeat humans. On the contrary, the AI is meant to support our decision-making by taking in and processing huge amounts of information in a nuanced way, more quickly than we ever could.
IBM engineer Noam Slonim envisions Project Debater’s tech being used, for example, by a government seeking citizens’ feedback about a new policy. “This technology can help to establish an interesting and effective communication channel between the decision maker and the people that are going to be impacted by the decision,” he said.
As for the question of whether AI will do more good or harm, perhaps Sylvie Delacroix put it best. A professor of law and ethics at the University of Birmingham who argued on the pro-AI side of the debate, she pointed out that the impact AI will have depends on the way we design it, saying “AI is only as good as the data it has been fed.”
She’s right; rather than asking what sort of impact AI will have on humanity, we should start by asking what sort of impact we want it to have. The people working on AI—not AIs themselves—are ultimately responsible for how much good or harm will be done.
Image Credit: IBM Project Debater at Cambridge Union Society, photo courtesy of IBM Research Continue reading
#436167 Is it Time for Tech to Stop Moving Fast ...
On Monday, I attended the 2019 Fall Conference of Stanford’s Institute for Human Centered Artificial Intelligence (HAI). That same night I watched the Season 6 opener for the HBO TV show Silicon Valley. And the debates featured in both surrounded the responsibility of tech companies for the societal effects of the technologies they produce. The two events have jumbled together in my mind, perhaps because I was in a bit of a brain fog, thanks to the nasty combination of a head cold and the smoke that descended on Silicon Valley from the northern California wildfires. But perhaps that mixture turned out to be a good thing.
What is clear, in spite of the smoke, is that this issue is something a lot of people are talking about, inside and outside of Silicon Valley (witness the viral video of Rep. Alexandria Ocasio-Cortez (D-NY) grilling Facebook CEO Mark Zuckerberg).
So, to add to that conversation, here’s my HBO Silicon Valley/Stanford HAI conference mashup.
Silicon Valley’s fictional CEO Richard Hendriks, in the opening scene of the episode, tells Congress that Facebook, Google, and Amazon only care about exploiting personal data for profit. He states:
“These companies are kings, and they rule over kingdoms far larger than any nation in history.”
Meanwhile Marietje Schaake, former member of the European Parliament and a fellow at HAI, told the conference audience of 900:
“There is a lot of power in the hands of few actors—Facebook decides who is a news source, Microsoft will run the defense department’s cloud…. I believe we need a deeper debate about which tasks need to stay in the hands of the public.”
Eric Schmidt, former CEO and executive chairman of Google, agreed. He says:
“It is important that we debate now the ethics of what we are doing, and the impact of the technology that we are building.”
Stanford Associate Professor Ge Wang, also speaking at the HAI conference, pointed out:
“‘Doing no harm’ is a vital goal, and it is not easy. But it is different from a proactive goal, to ‘do good.’”
Had Silicon Valley’s Hendricks been there, he would have agreed. He said in the episode:
“Just because it’s successful, doesn’t mean it’s good. Hiroshima was a successful implementation.”
The speakers at the HAI conference discussed the implications of moving fast and breaking things, of putting untested and unregulated technology into the world now that we know that things like public trust and even democracy can be broken.
Google’s Schmidt told the HAI audience:
“I don’t think that everything that is possible should be put into the wild in society, we should answer the question, collectively, how much risk are we willing to take.
And Silicon Valley denizens real and fictional no longer think it’s OK to just say sorry afterwards. Says Schmidt:
“When you ask Facebook about various scandals, how can they still say ‘We are very sorry; we have a lot of learning to do.’ This kind of naiveté stands out of proportion to the power tech companies have. With great power should come great responsibility, or at least modesty.”
Schaake argued:
“We need more guarantees, institutions, and policies than stated good intentions. It’s about more than promises.”
Fictional CEO Hendricks thinks saying sorry is a cop-out as well. In the episode, a developer admits that his app collected user data in spite of Hendricks assuring Congress that his company doesn’t do that:
“You didn’t know at the time,” the developer says. “Don’t beat yourself up about it. But in the future, stop saying it. Or don’t; I don’t care. Maybe it will be like Google saying ‘Don’t be evil,’ or Facebook saying ‘I’m sorry, we’ll do better.’”
Hendricks doesn’t buy it:
“This stops now. I’m the boss, and this is over.”
(Well, he is fictional.)
How can government, the tech world, and the general public address this in a more comprehensive way? Out in the real world, the “what to do” discussion at Stanford HAI surrounded regulation—how much, what kind, and when.
Says the European Parliament’s Schaake:
“An often-heard argument is that government should refrain from regulating tech because [regulation] will stifle innovation. [That argument] implies that innovation is more important than democracy or the rule of law. Our problems don’t stem from over regulation, but under regulation of technologies.”
But when should that regulation happen. Stanford provost emeritus John Etchemendy, speaking from the audience at the HAI conference, said:
“I’ve been an advocate of not trying to regulate before you understand it. Like San Francisco banning of use of facial recognition is not a good example of regulation; there are uses of facial recognition that we should allow. We want regulations that are just right, that prevent the bad things and allow the good things. So we are going to get it wrong either way, if we regulate to soon or hold off, we will get some things wrong.”
Schaake would opt for regulating sooner rather than later. She says that she often hears the argument that it is too early to regulate artificial intelligence—as well as the argument that it is too late to regulate ad-based political advertising, or online privacy. Neither, to her, makes sense. She told the HAI attendees:
“We need more than guarantees than stated good intentions.”
U.S. Chief Technology Officer Michael Kratsios would go with later rather than sooner. (And, yes, the country has a CTO. President Barack Obama created the position in 2009; Kratsios is the fourth to hold the office and the first under President Donald Trump. He was confirmed in August.) Also speaking at the HAI conference, Kratsios argued:
“I don’t think we should be running to regulate anything. We are a leader [in technology] not because we had great regulations, but we have taken a free market approach. We have done great in driving innovation in technologies that are born free, like the Internet. Technologies born in captivity, like autonomous vehicles, lag behind.”
In the fictional world of HBO’s Silicon Valley, startup founder Hendricks has a solution—a technical one of course: the decentralized Internet. He tells Congress:
“The way we win is by creating a new, decentralized Internet, one where the behavior of companies like this will be impossible, forever. Where it is the users, not the kings, who have sovereign control over their data. I will help you build an Internet that is of the people, by the people, and for the people.”
(This is not a fictional concept, though it is a long way from wide use. Also called the decentralized Web, the concept takes the content on today’s Web and fragments it, and then replicates and scatters those fragments to hosts around the world, increasing privacy and reducing the ability of governments to restrict access.)
If neither regulation nor technology comes to make the world safe from the unforeseen effects of new technologies, there is one more hope, according to Schaake: the millennials and subsequent generations.
Tech companies can no longer pursue growth at all costs, not if they want to keep attracting the talent they need, says Schaake. She noted that, “the young generation looks at the environment, at homeless on the streets,” and they expect their companies to tackle those and other issues and make the world a better place. Continue reading
#436044 Want a Really Hard Machine Learning ...
What’s the world’s hardest machine learning problem? Autonomous vehicles? Robots that can walk? Cancer detection?
Nope, says Julian Sanchez. It’s agriculture.
Sanchez might be a little biased. He is the director of precision agriculture for John Deere, and is in charge of adding intelligence to traditional farm vehicles. But he does have a little perspective, having spent time working on software for both medical devices and air traffic control systems.
I met with Sanchez and Alexey Rostapshov, head of digital innovation at John Deere Labs, at the organization’s San Francisco offices last month. Labs launched in 2017 to take advantage of the area’s tech expertise, both to apply machine learning to in-house agricultural problems and to work with partners to build technologies that play nicely with Deere’s big green machines. Deere’s neighbors in San Francisco’s tech-heavy South of Market are LinkedIn, Salesforce, and Planet Labs, which puts it in a good position for recruiting.
“We’ve literally had folks knock on the door and say, ‘What are you doing here?’” says Rostapshov, and some return to drop off resumes.
Here’s why Sanchez believes agriculture is such a big challenge for artificial intelligence.
“It’s not just about driving tractors around,” he says, although autonomous driving technologies are part of the mix. (John Deere is doing a lot of work with precision GPS to improve autonomous driving, for example, and allow tractors to plan their own routes around fields.)
But more complex than the driving problem, says Sanchez, are the classification problems.
Corn: A Classic Classification Problem
Photo: Tekla Perry
One key effort, Sanchez says, are AI systems “that allow me to tell whether grain being harvested is good quality or low quality and to make automatic adjustment systems for the harvester.” The company is already selling an early version of this image analysis technology. But the many differences between grain types, and grains grown under different conditions, make this task a tough one for machine learning.
“Take corn,” Sanchez says. “Let’s say we are building a deep learning algorithm to detect this corn. And we take lots of pictures of kernels to give it. Say we pick those kernels in central Illinois. But, one mile over, the farmer planted a slightly different hybrid which has slightly different coloration of yellow. Meanwhile, this other farm harvested three days later in a field five miles away; it’s the same hybrid, but it also looks different.
“It’s an overwhelming classification challenge, and that’s just for corn. But you are not only doing it for corn, you have to add 20 more varieties of grain to the mix; and some, like canola, are almost microscopic.”
Even the ground conditions vary dramatically—far more than road conditions, Sanchez points out.
“Let’s say we are building a deep learning algorithm to detect how much residue is left on the soil after a harvest, including stubble and some chaff. Let’s drive 2,000 acres of fields in the Midwest looking at residue. That’s great, but I guarantee that if you go drive those the next year, it will look significantly different.
“Deep learning is great at interpolating conditions between what it knows; it is not good at extrapolating to situations it hasn’t seen. And in agriculture, you always feel that there is a set of conditions that you haven’t yet classified.”
A Flood of Big Data
The scale of the data is also daunting, Rostapshov points out. “We are one of the largest users of cloud computing services in the world,” he says. “We are gathering 5 to 15 million measurements per second from 130,000 connected machines globally. We have over 150 million acres in our databases, using petabytes and petabytes [of storage]. We process more data than Twitter does.”
Much of this information is so-called dirty data, that is, it doesn’t share the same format or structure, because it’s coming not only from a wide variety of John Deere machines, but also includes data from some 100 other companies that have access to the platform, including weather information, aerial imagery, and soil analyses.
As a result, says Sanchez, Deere has had to make “tremendous investments in back-end data cleanup.”
Deep learning is great at interpolating conditions between what it knows; it is not good at extrapolating to situations it hasn’t seen.”
—Julian Sanchez, John Deere
“We have gotten progressively more skilled at that problem,” he says. “We started simply by cleaning up our own data. You’d think it would be nice and neat, since it’s coming from our own machines, but there is a wide variety of different models and different years. Then we started geospatially tagging the agronomic data—the information about where you are applying herbicides and fertilizer and the like—coming in from our vehicles. When we started bringing in other data, from drones, say, we were already good at cleaning it up.”
John Deere’s Hiring Pitch
Hard problems can be a good thing to have for a company looking to hire machine learning engineers.
“Our opening line to potential recruits,” Sanchez says, “is ‘This stuff matters.’ Then, if we get a chance to talk to them more, we follow up with ‘Not only does this stuff matter, but the problems are really hard and interesting.’ When we explain the variability in farming and how we have to apply all the latest tools to these problems, we get their attention.”
Software engineers “know that feeding a growing population is a massive problem and are excited about the prospect of making a difference,” Rostapshov says.
Only 20 engineers work in the San Francisco labs right now, and that’s on a busy day—some of the researchers spend part of their time at Blue River Technology, a startup based in Sunnyvale that was acquired by Deere in 2017. About half of the researchers are focusing on AI. The Lab is in the process of doubling its office space (no word on staffing plans for that expansion yet).
“We are one of the largest users of cloud computing services in the world.”
—Alexey Rostapshov, John Deere Labs
Company-wide, Deere has thousands of software engineers, with many using AI and machine learning tools in their work, and about the same number of mechanical and electrical engineers, Sanchez reports. “If you look at our hiring 10 years ago,” he says, “it was heavily weighted to mechanical engineers. But if you look at those numbers now, it is by a large majority [engineers working] in the software space. We still need mechanical engineers—we do build green machines—but if you go by our footprint of tech talent, it is pretty safe to call John Deere a software company. And if you follow the key conversations that are happening in the company right now, 95 percent of them are software-related.”
For now, these software engineers are focused on developing technologies that allow farmers to “do more with less,” Sanchez says. Meaning, to get more and better crops from less fuel, less seed, less fertilizer, less pesticide, and fewer workers, and putting together building blocks that, he says, could eventually lead to fully autonomous farm vehicles. The data Deere collects today, for the most part, stays in silos (the virtual kind), with AI algorithms that analyze specific sets of data to provide guidance to individual farmers. At some point, however, with tools to anonymize data and buy-in from farmers, aggregating data could provide some powerful insights.
“We are not asking farmers for that yet,” Sanchez says. “We are not doing aggregation to look for patterns. We are focused on offering technology that allows an individual farmer to use less, on positioning ourselves to be in a neutral spot. We are not about selling you more seed or more fertilizer. So we are building up a good trust level. In the long term, we can have conversations about doing more with deep learning.” Continue reading