Tag Archives: open source
#432998 “Internet Of Things” ...
This new IoT Humanoid Robot from Greece is operated by an Android Application. I dunno, it’s all Greek to me! 😉
#432293 An Innovator’s City Guide to Shanghai
Shanghai is a city full of life. With its population of 24 million, Shanghai embraces vibrant growth, fosters rising diversity, and attracts visionaries, innovators, and adventurers. Fintech, artificial intelligence, and e-commerce are booming. Now is a great time to explore this multicultural, inspirational city as it experiences quick growth and ever greater influence.
Meet Your Guide
Qingsong (Dora) Ke
Singularity University Chapter: Shanghai Chapter
Profession: Associate Director for Asia Pacific, IE Business School and IE University; Mentor, Techstars Startup Weekend; Mentor, Startupbootcamp; China President, Her Century
Your City Guide to Shanghai, China
Top three industries in the city: Automotive, Retail, and Finance
1. Coworking Space: Mixpace
With 10 convenient locations in the Shanghai downtown area, Mixpace offers affordable prices and various office and event spaces to both foreign and local entrepreneurs and startups.
2. Makerspace: XinCheJian
The first hackerspace and a non-profit in China, Xinchejian was founded to support projects in physical computing, open source hardware, and the Internet of Things. It hosts regular events and talks to facilitate development of hackerspaces in China.
3. Local meetups/ networks: FinTech Connector
FinTech Connector is a community connecting local fintech entrepreneurs and start-ups with global professionals, thought leaders, and investors for the purpose of disrupting financial services with cutting-edge technology.
4. Best coffee shop with free WiFi: Seesaw
Clean and modern décor, convenient locations, a quiet environment, and high-quality coffee make Seesaw one of the most popular coffee shops in Shanghai.
5. The startup neighborhood: Knowledge & Innovation Community (KIC)
Located near 10 prestigious universities and over 100 scientific research institutions, KIC attempts to integrate Silicon Valley’s innovative spirit with the artistic culture of the Left Bank in Paris.
6. Well-known investor or venture capitalist: Nanpeng (Neil) Shen
Global executive partner at Sequoia Capital, founding and managing partner at Sequoia China, and founder of Ctrip.com and Home Inn, Neil Shen was named Best Venture Capitalist by Forbes China in 2010–2013 and ranked as the best Chinese investor among Global Best Investors by Forbes in 2012–2016.
7. Best way to get around: Metro
Shanghai’s 17 well-connected metro lines covering every corner of the city at affordable prices are the best way to get around.
8. Local must-have dish and where to get it: Mini Soupy Bun (steamed dumplings, xiaolongbao) at Din Tai Fung in Shanghai.
Named one of the top ten restaurants in the world by the New York Times, Din Tai Fung makes the best xiaolongbao, a delicious soup with stuffed dumplings.
9. City’s best-kept secret: Barber Shop
This underground bar gets its name from the barber shop it’s hidden behind. Visitors must discover how to unlock the door leading to Barber Shop’s sophisticated cocktails and engaging music. (No website for this underground location, but the address is 615 Yongjia Road).
10. Touristy must-do: Enjoy the nightlife and the skyline at the Bund
On the east side of the Bund are the most modern skyscrapers, including Shanghai Tower, Shanghai World Financial Centre, and Jin Mao Tower. The west side of the Bund features 26 buildings of diverse architectural styles, including Gothic, Baroque, Romanesque, and others; this area is known for its exotic buildings.
11. Local volunteering opportunity: Shanghai Volunteer
Shanghai Volunteer is a platform to connect volunteers with possible opportunities in various fields, including education, elderly care, city culture, and environment.
12. Local University with great resources: Shanghai Jiao Tong University
Established in 1896, Shanghai Jiao Tong University is the second-oldest university in China and one of the country’s most prestigious. It boasts notable alumni in government and politics, science, engineering, business, and sports, and it regularly collaborates with government and the private sector.
This article is for informational purposes only. All opinions in this post are the author’s alone and not those of Singularity University. Neither this article nor any of the listed information therein is an official endorsement by Singularity University.
Image Credits: Qinsong (Dora) Ke
Banner Image Credit: ESB Professional / Shutterstock.com Continue reading
#431872 AI Uses Titan Supercomputer to Create ...
You don’t have to dig too deeply into the archive of dystopian science fiction to uncover the horror that intelligent machines might unleash. The Matrix and The Terminator are probably the most well-known examples of self-replicating, intelligent machines attempting to enslave or destroy humanity in the process of building a brave new digital world.
The prospect of artificially intelligent machines creating other artificially intelligent machines took a big step forward in 2017. However, we’re far from the runaway technological singularity futurists are predicting by mid-century or earlier, let alone murderous cyborgs or AI avatar assassins.
The first big boost this year came from Google. The tech giant announced it was developing automated machine learning (AutoML), writing algorithms that can do some of the heavy lifting by identifying the right neural networks for a specific job. Now researchers at the Department of Energy’s Oak Ridge National Laboratory (ORNL), using the most powerful supercomputer in the US, have developed an AI system that can generate neural networks as good if not better than any developed by a human in less than a day.
It can take months for the brainiest, best-paid data scientists to develop deep learning software, which sends data through a complex web of mathematical algorithms. The system is modeled after the human brain and known as an artificial neural network. Even Google’s AutoML took weeks to design a superior image recognition system, one of the more standard operations for AI systems today.
Computing Power
Of course, Google Brain project engineers only had access to 800 graphic processing units (GPUs), a type of computer hardware that works especially well for deep learning. Nvidia, which pioneered the development of GPUs, is considered the gold standard in today’s AI hardware architecture. Titan, the supercomputer at ORNL, boasts more than 18,000 GPUs.
The ORNL research team’s algorithm, called MENNDL for Multinode Evolutionary Neural Networks for Deep Learning, isn’t designed to create AI systems that cull cute cat photos from the internet. Instead, MENNDL is a tool for testing and training thousands of potential neural networks to work on unique science problems.
That requires a different approach from the Google and Facebook AI platforms of the world, notes Steven Young, a postdoctoral research associate at ORNL who is on the team that designed MENNDL.
“We’ve discovered that those [neural networks] are very often not the optimal network for a lot of our problems, because our data, while it can be thought of as images, is different,” he explains to Singularity Hub. “These images, and the problems, have very different characteristics from object detection.”
AI for Science
One application of the technology involved a particle physics experiment at the Fermi National Accelerator Laboratory. Fermilab researchers are interested in understanding neutrinos, high-energy subatomic particles that rarely interact with normal matter but could be a key to understanding the early formation of the universe. One Fermilab experiment involves taking a sort of “snapshot” of neutrino interactions.
The team wanted the help of an AI system that could analyze and classify Fermilab’s detector data. MENNDL evaluated 500,000 neural networks in 24 hours. Its final solution proved superior to custom models developed by human scientists.
In another case involving a collaboration with St. Jude Children’s Research Hospital in Memphis, MENNDL improved the error rate of a human-designed algorithm for identifying mitochondria inside 3D electron microscopy images of brain tissue by 30 percent.
“We are able to do better than humans in a fraction of the time at designing networks for these sort of very different datasets that we’re interested in,” Young says.
What makes MENNDL particularly adept is its ability to define the best or most optimal hyperparameters—the key variables—to tackle a particular dataset.
“You don’t always need a big, huge deep network. Sometimes you just need a small network with the right hyperparameters,” Young says.
A Virtual Data Scientist
That’s not dissimilar to the approach of a company called H20.ai, a startup out of Silicon Valley that uses open source machine learning platforms to “democratize” AI. It applies machine learning to create business solutions for Fortune 500 companies, including some of the world’s biggest banks and healthcare companies.
“Our software is more [about] pattern detection, let’s say anti-money laundering or fraud detection or which customer is most likely to churn,” Dr. Arno Candel, chief technology officer at H2O.ai, tells Singularity Hub. “And that kind of insight-generating software is what we call AI here.”
The company’s latest product, Driverless AI, promises to deliver the data scientist equivalent of a chessmaster to its customers (the company claims several such grandmasters in its employ and advisory board). In other words, the system can analyze a raw dataset and, like MENNDL, automatically identify what features should be included in the computer model to make the most of the data based on the best “chess moves” of its grandmasters.
“So we’re using those algorithms, but we’re giving them the human insights from those data scientists, and we automate their thinking,” he explains. “So we created a virtual data scientist that is relentless at trying these ideas.”
Inside the Black Box
Not unlike how the human brain reaches a conclusion, it’s not always possible to understand how a machine, despite being designed by humans, reaches its own solutions. The lack of transparency is often referred to as the AI “black box.” Experts like Young say we can learn something about the evolutionary process of machine learning by generating millions of neural networks and seeing what works well and what doesn’t.
“You’re never going to be able to completely explain what happened, but maybe we can better explain it than we currently can today,” Young says.
Transparency is built into the “thought process” of each particular model generated by Driverless AI, according to Candel.
The computer even explains itself to the user in plain English at each decision point. There is also real-time feedback that allows users to prioritize features, or parameters, to see how the changes improve the accuracy of the model. For example, the system may include data from people in the same zip code as it creates a model to describe customer turnover.
“That’s one of the advantages of our automatic feature engineering: it’s basically mimicking human thinking,” Candel says. “It’s not just neural nets that magically come up with some kind of number, but we’re trying to make it statistically significant.”
Moving Forward
Much digital ink has been spilled over the dearth of skilled data scientists, so automating certain design aspects for developing artificial neural networks makes sense. Experts agree that automation alone won’t solve that particular problem. However, it will free computer scientists to tackle more difficult issues, such as parsing the inherent biases that exist within the data used by machine learning today.
“I think the world has an opportunity to focus more on the meaning of things and not on the laborious tasks of just fitting a model and finding the best features to make that model,” Candel notes. “By automating, we are pushing the burden back for the data scientists to actually do something more meaningful, which is think about the problem and see how you can address it differently to make an even bigger impact.”
The team at ORNL expects it can also make bigger impacts beginning next year when the lab’s next supercomputer, Summit, comes online. While Summit will boast only 4,600 nodes, it will sport the latest and greatest GPU technology from Nvidia and CPUs from IBM. That means it will deliver more than five times the computational performance of Titan, the world’s fifth-most powerful supercomputer today.
“We’ll be able to look at much larger problems on Summit than we were able to with Titan and hopefully get to a solution much faster,” Young says.
It’s all in a day’s work.
Image Credit: Gennady Danilkin / Shutterstock.com Continue reading
#431175 Servosila introduces Mobile Robots ...
Servosila introduces a new member of the family of Servosila “Engineer” robots, a UGV called “Radio Engineer”. This new variant of the well-known backpack-transportable robot features a Software Defined Radio (SDR) payload module integrated into the robotic vehicle.
“Several of our key customers had asked us to enable an Electronic Warfare (EW) or Cognitive Radio applications in our robots”, – says a spokesman for the company, “By integrating a Software Defined Radio (SDR) module into our robotic platforms we cater to both requirements. Radio spectrum analysis, radio signal detection, jamming, and radio relay are important features for EOD robots such as ours. Servosila continues to serve the customers by pushing the boundaries of what their Servosila robots can do. Our partners in the research world and academia shall also greatly benefit from the new functionality that gives them more means of achieving their research goals.”
Photo Credit: Servosila – www.servosila.com
Coupling a programmable mobile robot with a software-defined radio creates a powerful platform for developing innovative applications that mix mobility and artificial intelligence with modern radio technologies. The new robotic radio applications include localized frequency hopping pattern analysis, OFDM waveform recognition, outdoor signal triangulation, cognitive mesh networking, automatic area search for radio emitters, passive or active mobile robotic radars, mobile base stations, mobile radio scanners, and many others.
A rotating head of the robot with mounts for external antennae acts as a pan-and-tilt device thus enabling various scanning and tracking applications. The neck of the robotic head is equipped with a pair of highly accurate Servosila-made servos with a pointing precision of 3.0 angular minutes. This means that the robot can point its antennae with an unprecedented accuracy.
Researchers and academia can benefit from the platform’s support for GnuRadio, an open source software framework for developing SDR applications. An on-board Intel i7 computer capable of executing OpenCL code, is internally connected to the SDR payload module. This makes it possible to execute most existing GnuRadio applications directly on the robot’s on-board computer. Other sensors of the robot such as a GPS sensor, an IMU or a thermal vision camera contribute into sensor fusion algorithms.
Since Servosila “Engineer” mobile robots are primarily designed for outdoor use, the SDR module is fully enclosed into a hardened body of the robot which provides protection in case of dust, rain, snow or impacts with obstacles while the robot is on the move. The robot and its SDR payload module are both powered by an on-board battery thus making the entire robotic radio platform independent of external power supplies.
Servosila plans to start shipping the SDR-equipped robots to international customers in October, 2017.
Web: https://www.servosila.com
YouTube: https://www.youtube.com/user/servosila/videos
About the Company
Servosila is a robotics technology company that designs, produces and markets a range of mobile robots, robotic arms, servo drives, harmonic reduction gears, robotic control systems as well as software packages that make the robots intelligent. Servosila provides consulting, training and operations support services to various customers around the world. The company markets its products and services directly or through a network of partners who provide tailored and localized services that meet specific procurement, support or operational needs.
Press Release above is by: Servosila
The post Servosila introduces Mobile Robots equipped with Software Defined Radio (SDR) payloads appeared first on Roboticmagazine. Continue reading