Tag Archives: old
#438012 Video Friday: These Robots Have Made 1 ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):
HRI 2021 – March 8-11, 2021 – [Online Conference]
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
Let us know if you have suggestions for next week, and enjoy today's videos.
We're proud to announce Starship Delivery Robots have now completed 1,000,000 autonomous deliveries around the world. We were unsure where the one millionth delivery was going to take place, as there are around 15-20 service areas open globally, all with robots doing deliveries every minute. In the end it took place at Bowling Green, Ohio, to a student called Annika Keeton who is a freshman studying pre-health Biology at BGSU. Annika is now part of Starship’s history!
[ Starship ]
I adore this little DIY walking robot- with modular feet and little dials to let you easily adjust the walking parameters, it's an affordable kit that's way more nuanced than most.
It's called Bakiwi, and it costs €95. A squee cover made from feathers or fur is an extra €17. Here's a more serious look at what it can do:
[ Bakiwi ]
Thanks Oswald!
Savva Morozov, an AeroAstro junior, works on autonomous navigation for the MIT mini cheetah robot and reflects on the value of a crowded Infinite Corridor.
[ MIT ]
The world's most advanced haptic feedback gloves just got a huge upgrade! HaptX Gloves DK2 achieves a level of realism that other haptic devices can't match. Whether you’re training your workforce, designing a new product, or controlling robots from a distance, HaptX Gloves make it feel real.
They're the only gloves with true-contact haptics, with patented technology that displace your skin the same way a real object would. With 133 points of tactile feedback per hand, for full palm and fingertip coverage. HaptX Gloves DK2 feature the industry's most powerful force feedback, ~2X the strength of other force feedback gloves. They're also the most accurate motion tracking gloves, with 30 tracked degrees of freedom, sub-millimeter precision, no perceivable latency, and no occlusion.
[ HaptX ]
Yardroid is an outdoor robot “guided by computer vision and artificial intelligence” that seems like it can do almost everything.
These are a lot of autonomous capabilities, but so far, we've only seen the video. So, best not to get too excited until we know more about how it works.
[ Yardroid ]
Thanks Dan!
Since as far as we know, Pepper can't spread COVID, it had a busy year.
I somehow missed seeing that chimpanzee magic show, but here it is:
[ Simon Pierro ] via [ SoftBank Robotics ]
In spite of the pandemic, Professor Hod Lipson’s Robotics Studio persevered and even thrived— learning to work on global teams, to develop protocols for sharing blueprints and code, and to test, evaluate, and refine their designs remotely. Equipped with a 3D printer and a kit of electronics prototyping equipment, our students engineered bipedal robots that were conceptualized, fabricated, programmed, and endlessly iterated around the globe in bedrooms, kitchens, backyards, and any other makeshift laboratory you can imagine.
[ Hod Lipson ]
Thanks Fan!
We all know how much quadrupeds love ice!
[ Ghost Robotics ]
We took the opportunity of the last storm to put the Warthog in the snow of Université Laval. Enjoy!
[ Norlab ]
They've got a long way to go, but autonomous indoor firefighting drones seem like a fantastic idea.
[ CTU ]
Individual manipulators are limited by their vertical total load capacity. This places a fundamental limit on the weight of loads that a single manipulator can move. Cooperative manipulation with two arms has the potential to increase the net weight capacity of the overall system. However, it is critical that proper load sharing takes place between the two arms. In this work, we outline a method that utilizes mechanical intelligence in the form of a whiffletree.
And your word of the day is whiffletree, which is “a mechanism to distribute force evenly through linkages.”
[ DART Lab ]
Thanks Raymond!
Some highlights of robotic projects at FZI in 2020, all using ROS.
[ FZI ]
Thanks Fan!
iRobot CEO Colin Angle threatens my job by sharing some cool robots.
[ iRobot ]
A fascinating new talk from Henry Evans on robotic caregivers.
[ HRL ]
The ANA Avatar XPRIZE semifinals selection submission for Team AVATRINA. The setting is a mock clinic, with the patient sitting on a wheelchair and nurse having completed an initial intake. Avatar enters the room controlled by operator (Doctor). A rolling tray table with medical supplies (stethoscope, pulse oximeter, digital thermometer, oxygen mask, oxygen tube) is by the patient’s side. Demonstrates head tracking, stereo vision, fine manipulation, bimanual manipulation, safe impedance control, and navigation.
[ Team AVATRINA ]
This five year old talk from Mikell Taylor, who wrote for us a while back and is now at Amazon Robotics, is entitled “Nobody Cares About Your Robot.” For better or worse, it really doesn't sound like it was written five years ago.
Robotics for the consumer market – Mikell Taylor from Scott Handsaker on Vimeo.
[ Mikell Taylor ]
Fall River Community Media presents this wonderful guy talking about his love of antique robot toys.
If you enjoy this kind of slow media, Fall River also has weekly Hot Dogs Cool Cats adoption profiles that are super relaxing to watch.
[ YouTube ] Continue reading
#437982 Superintelligent AI May Be Impossible to ...
It may be theoretically impossible for humans to control a superintelligent AI, a new study finds. Worse still, the research also quashes any hope for detecting such an unstoppable AI when it’s on the verge of being created.
Slightly less grim is the timetable. By at least one estimate, many decades lie ahead before any such existential computational reckoning could be in the cards for humanity.
Alongside news of AI besting humans at games such as chess, Go and Jeopardy have come fears that superintelligent machines smarter than the best human minds might one day run amok. “The question about whether superintelligence could be controlled if created is quite old,” says study lead author Manuel Alfonseca, a computer scientist at the Autonomous University of Madrid. “It goes back at least to Asimov’s First Law of Robotics, in the 1940s.”
The Three Laws of Robotics, first introduced in Isaac Asimov's 1942 short story “Runaround,” are as follows:
A robot may not injure a human being or, through inaction, allow a human being to come to harm.
A robot must obey the orders given it by human beings except where such orders would conflict with the First Law.
A robot must protect its own existence as long as such protection does not conflict with the First or Second Laws.
In 2014, philosopher Nick Bostrom, director of the Future of Humanity Institute at the University of Oxford, not only explored ways in which a superintelligent AI could destroy us but also investigated potential control strategies for such a machine—and the reasons they might not work.
Bostrom outlined two possible types of solutions of this “control problem.” One is to control what the AI can do, such as keeping it from connecting to the Internet, and the other is to control what it wants to do, such as teaching it rules and values so it would act in the best interests of humanity. The problem with the former is that Bostrom thought a supersmart machine could probably break free from any bonds we could make. With the latter, he essentially feared that humans might not be smart enough to train a superintelligent AI.
Now Alfonseca and his colleagues suggest it may be impossible to control a superintelligent AI, due to fundamental limits inherent to computing itself. They detailed their findings this month in the Journal of Artificial Intelligence Research.
The researchers suggested that any algorithm that sought to ensure a superintelligent AI cannot harm people had to first simulate the machine’s behavior to predict the potential consequences of its actions. This containment algorithm then would need to halt the supersmart machine if it might indeed do harm.
However, the scientists said it was impossible for any containment algorithm to simulate the AI’s behavior and predict with absolute certainty whether its actions might lead to harm. The algorithm could fail to correctly simulate the AI’s behavior or accurately predict the consequences of the AI’s actions and not recognize such failures.
“Asimov’s first law of robotics has been proved to be incomputable,” Alfonseca says, “and therefore unfeasible.”
We may not even know if we have created a superintelligent machine, the researchers say. This is a consequence of Rice’s theorem, which essentially states that one cannot in general figure anything out about what a computer program might output just by looking at the program, Alfonseca explains.
On the other hand, there’s no need to spruce up the guest room for our future robot overlords quite yet. Three important caveats to the research still leave plenty of uncertainty to the group’s predictions.
First, Alfonseca estimates AI’s moment of truth remains, he says, “At least two centuries in the future.”
Second, he says researchers do not know if so-called artificial general intelligence, also known as strong AI, is theoretically even feasible. “That is, a machine as intelligent as we are in an ample variety of fields,” Alfonseca explains.
Last, Alfonseca says, “We have not proved that superintelligences can never be controlled—only that they can’t always be controlled.”
Although it may not be possible to control a superintelligent artificial general intelligence, it should be possible to control a superintelligent narrow AI—one specialized for certain functions instead of being capable of a broad range of tasks like humans. “We already have superintelligences of this type,” Alfonseca says. “For instance, we have machines that can compute mathematics much faster than we can. This is [narrow] superintelligence, isn’t it?” Continue reading
#437946 Video Friday: These Robots Are Ready for ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):
HRI 2021 – March 8-11, 2021 – [Online]
RoboSoft 2021 – April 12-16, 2021 – [Online]
Let us know if you have suggestions for next week, and enjoy today’s videos.
Is it too late to say, “Happy Holidays”? Yes! Is it too late for a post packed with holiday robot videos? Never!
The Autonomous Systems Lab at ETH Zurich wishes everyone a Merry Christmas and a Happy 2021!
Now you know the best kept secret in robotics- the ETH Zurich Autonomous Systems Lab is a shack in the woods. With an elevator.
[ ASL ]
We have had to do things differently this year, and the holiday season is no exception. But through it all, we still found ways to be together. From all of us at NATO, Happy Holidays. After training in the snow and mountains of Iceland, an EOD team returns to base. Passing signs reminding them to ‘Keep your distance’ due to COVID-19, they return to their office a little dejected, unsure how they can safely enjoy the holidays. But the EOD robot saves the day and finds a unique way to spread the holiday cheer – socially distanced, of course.
[ EATA ]
Season's Greetings from Voliro!
[ Voliro ]
Thanks Daniel!
Even if you don't have a robot at home, you can still make Halodi Robotics's gingerbread cookies the old fashioned way.
[ Halodi Robotics ]
Thanks Jesper!
We wish you all a Merry Christmas in this very different 2020. This year has truly changed the world and our way of living. We, Energy Robotics, like to say thank you to all our customers, partners, supporters, friends and family.
An Aibo ERS-7? Sweet!
[ Energy Robotics ]
Thanks Stefan!
The nickname for this drone should be “The Grinch.”
As it turns out, in real life taking samples of trees to determine how healthy they are is best done from the top.
[ DeLeaves ]
Thanks Alexis!
ETH Zurich would like to wish you happy holidays and a successful 2021 full of energy and health!
[ ETH Zurich ]
The QBrobotics Team wishes you all a Merry Christmas and a Happy New Year!
[ QBrobotics ]
Extend Robotics avatar twin got so excited opening a Christmas gift, using two arms coordinating, showing the dexterity and speed.
[ Extend Robotics ]
HEBI Robotics wishes everyone a great holiday season! Onto 2021!
[ HEBI Robotics ]
Christmas at the Mobile Robots Lab at Poznan Polytechnic.
[ Poznan ]
SWarm Holiday Wishes from the Hauert Lab!
[ Hauert Lab ]
Brubotics-VUB SMART and SHERO team wishes you a Merry Christmas and Happy 2021!
[ SMART ]
Success is all about teamwork! Thank you for supporting PAL Robotics. This festive season enjoy and stay safe!
[ PAL Robotics ]
Our robots wish you Happy Holidays! Starring world's first robot slackliner (Leonardo)!
[ Caltech ]
Happy Holidays and a Prosperous New Year from ZenRobotics!
[ ZenRobotics ]
Our Highly Dexterous Manipulation System (HDMS) dual-arm robot is ringing in the new year with good cheer!
[ RE2 Robotics ]
Happy Holidays 2020 from NAO!
[ SoftBank Robotics ]
Happy Holidays from DENSO Robotics!
[ DENSO ] Continue reading