Tag Archives: news

#430743 Teaching Machines to Understand, and ...

We humans are swamped with text. It’s not just news and other timely information: Regular people are drowning in legal documents. The problem is so bad we mostly ignore it. Every time a person uses a store’s loyalty rewards card or connects to an online service, his or her activities are governed by the equivalent of hundreds of pages of legalese. Most people pay no attention to these massive documents, often labeled “terms of service,” “user agreement,” or “privacy policy.”
These are just part of a much wider societal problem of information overload. There is so much data stored—exabytes of it, as much stored as has ever been spoken by people in all of human history—that it’s humanly impossible to read and interpret everything. Often, we narrow down our pool of information by choosing particular topics or issues to pay attention to. But it’s important to actually know the meaning and contents of the legal documents that govern how our data is stored and who can see it.
As computer science researchers, we are working on ways artificial intelligence algorithms could digest these massive texts and extract their meaning, presenting it in terms regular people can understand.
Can computers understand text?
Computers store data as 0s and 1s—data that cannot be directly understood by humans. They interpret these data as instructions for displaying text, sound, images, or videos that are meaningful to people. But can computers actually understand the language, not only presenting the words but also their meaning?
One way to find out is to ask computers to summarize their knowledge in ways that people can understand and find useful. It would be best if AI systems could process text quickly enough to help people make decisions as they are needed—for example, when you’re signing up for a new online service and are asked to agree with the site’s privacy policy.
What if a computerized assistant could digest all that legal jargon in a few seconds and highlight key points? Perhaps a user could even tell the automated assistant to pay particular attention to certain issues, like when an email address is shared, or whether search engines can index personal posts. Companies could use this capability, too, to analyze contracts or other lengthy documents.
To do this sort of work, we need to combine a range of AI technologies, including machine learning algorithms that take in large amounts of data and independently identify connections among them; knowledge representation techniques to express and interpret facts and rules about the world; speech recognition systems to convert spoken language to text; and human language comprehension programs that process the text and its context to determine what the user is telling the system to do.
Examining privacy policies
A modern internet-enabled life today more or less requires trusting for-profit companies with private information (like physical and email addresses, credit card numbers and bank account details) and personal data (photos and videos, email messages and location information).
These companies’ cloud-based systems typically keep multiple copies of users’ data as part of backup plans to prevent service outages. That means there are more potential targets—each data center must be securely protected both physically and electronically. Of course, internet companies recognize customers’ concerns and employ security teams to protect users’ data. But the specific and detailed legal obligations they undertake to do that are found in their impenetrable privacy policies. No regular human—and perhaps even no single attorney—can truly understand them.
In our study, we ask computers to summarize the terms and conditions regular users say they agree to when they click “Accept” or “Agree” buttons for online services. We downloaded the publicly available privacy policies of various internet companies, including Amazon AWS, Facebook, Google, HP, Oracle, PayPal, Salesforce, Snapchat, Twitter, and WhatsApp.
Summarizing meaning
Our software examines the text and uses information extraction techniques to identify key information specifying the legal rights, obligations and prohibitions identified in the document. It also uses linguistic analysis to identify whether each rule applies to the service provider, the user or a third-party entity, such as advertisers and marketing companies. Then it presents that information in clear, direct, human-readable statements.
For example, our system identified one aspect of Amazon’s privacy policy as telling a user, “You can choose not to provide certain information, but then you might not be able to take advantage of many of our features.” Another aspect of that policy was described as “We may also collect technical information to help us identify your device for fraud prevention and diagnostic purposes.”

We also found, with the help of the summarizing system, that privacy policies often include rules for third parties—companies that aren’t the service provider or the user—that people might not even know are involved in data storage and retrieval.
The largest number of rules in privacy policies—43 percent—apply to the company providing the service. Just under a quarter of the rules—24 percent—create obligations for users and customers. The rest of the rules govern behavior by third-party services or corporate partners, or could not be categorized by our system.

The next time you click the “I Agree” button, be aware that you may be agreeing to share your data with other hidden companies who will be analyzing it.
We are continuing to improve our ability to succinctly and accurately summarize complex privacy policy documents in ways that people can understand and use to access the risks associated with using a service.

This article was originally published on The Conversation. Read the original article. Continue reading

Posted in Human Robots

#430667 Welcome to a More Discoverable ...

This week we’ve rolled out our first major round of improvements to Singularity Hub since our ground-up redesign last December. If we did it right, you’ll find that discovering the technological goodies you come here for is much easier, and so too are other Singularity University offerings you might be interested in.
The first and most major change is in the way Hub’s navigation is structured.
The previous categories in our header (Tech, Future, Health, Science) have been replaced by a single page, Topics, which profiles the most popular tech topics across our site. The featured topics in this menu will be updated regularly based on article performance, so you can keep up with what’s trending in AI, biotech, neuroscience, robotics, or whatever is making the biggest splash most recently.
Rolling our hottest topic category tags into one header dropdown allowed us to create greater focus on some of our newest and best offerings.
Our header now prominently features In Focus, which includes articles on how leaders can make the most of today’s accelerating pace of change by learning to think like futurists, innovators, technologists, and humanitarians. We’ve always been technological optimists, and we want to to make it easy for leaders to find the stories that help make hopeful problem-solvers of us all.
We’ve added a section for Experts, which features leaders in the Singularity University community and showcases their thought leadership including interviews and books. In Events, we highlight Singularity University’s global library of local happenings and summits.
Lastly, we’re excited that our growing original video efforts—from our Ray Kurzweil series to our weekly tech news roundup posts—now live under a central Videos section on Hub. This also gives us a place to highlight our favorite video posts from around the web, including the sci-fi shorts we love so much.
Cruising through the rest of Hub, particularly our homepage, you’ll find a much greater variety of content options, including new stories, top stories, event coverage, and videos. In short, it’s everything a homepage should be. On posts, we’ve tried to keep things as clean as possible, and we put a lot of hours into laboriously streamlining our content tagging structure, making it much easier for you to click through category tags into other stories you might like.

Here’s what @singularityhub looked like 2 years ago, 2 weeks ago, & today. Check it out: https://t.co/7cmlTJwc7d pic.twitter.com/jDayIEIFNv
— Singularity Hub (@singularityhub) July 13, 2017

You’ll also see greater visibility into Singularity University events, along with clearer ways to keep up with Hub and SU both, from simple email newsletter signups to callouts for the SingularityU Hub iOS app and events like SU’s Experts on Air series.
We hope you enjoy the ever-evolving, ever-improving Singularity Hub, and we’d love to hear your feedback. Feel free to tweet us, and let us know your thoughts. You can also pitch us or email us. And as always, thank you for your support. Continue reading

Posted in Human Robots

#430556 Forget Flying Cars, the Future Is ...

Flying car concepts have been around nearly as long as their earthbound cousins, but no one has yet made them a commercial success. MIT engineers think we’ve been coming at the problem from the wrong direction; rather than putting wings on cars, we should be helping drones to drive.
The team from the university’s Computer Science and Artificial Intelligence Laboratory (CSAIL) added wheels to a fleet of eight mini-quadcopters and tested driving and flying them around a tiny toy town made out of cardboard and fabric.
Adding the ability to drive reduced the distance the drone could fly by 14 percent compared to a wheel-less version. But while driving was slower, the drone could travel 150 percent further than when flying. The result is a vehicle that combines the speed and mobility of flying with the energy-efficiency of driving.

CSAIL director Daniela Rus told MIT News their work suggested that when looking to create flying cars, it might make more sense to build on years of research into drones rather than trying to simply “put wings on cars.”
Historically, flying car concepts have looked like someone took apart a Cessna light aircraft and a family sedan, mixed all the parts up, and bolted them back together again. Not everyone has abandoned this approach—two of the most developed flying car designs from Terrafugia and AeroMobil are cars with folding wings that need an airstrip to take off.
But flying car concepts are looking increasingly drone-like these days, with multiple small rotors, electric propulsion and vertical take-off abilities. Take the eHang 184 autonomous aerial vehicle being developed in China, the Kitty Hawk all-electric aircraft backed by Google founder Larry Page, which is little more than a quadcopter with a seat, the AirQuadOne designed by UK consortium Neva Aerospace, or Lilium Aviation’s Jet.
The attraction is obvious. Electric-powered drones are more compact, maneuverable, and environmentally friendly, making them suitable for urban environments.
Most of these vehicles are not quite the same as those proposed by the MIT engineers, as they’re pure flying machines. But a recent Airbus concept builds on the same principle that the future of urban mobility is vehicles that can both fly and drive. Its Pop.Up design is a two-passenger pod that can either be clipped to a set of wheels or hang under a quadcopter.
Importantly, they envisage their creation being autonomous in both flight and driving modes. And they’re not the only ones who think the future of flying cars is driverless. Uber has committed to developing a network of autonomous air taxis within a decade. This spring, Dubai announced it would launch a pilotless passenger drone service using the Ehang 184 as early as next month (July).
While integrating fully-fledged autonomous flying cars into urban environments will be far more complex, the study by Rus and her colleagues provides a good starting point for the kind of 3D route-planning and collision avoidance capabilities this would require.
The team developed multi-robot path planning algorithms that were able to control all eight drones as they flew and drove around their mock up city, while also making sure they didn’t crash into each other and avoided no-fly zones.
“This work provides an algorithmic solution for large-scale, mixed-mode transportation and shows its applicability to real-world problems,” Jingjin Yu, a computer science professor at Rutgers University who was not involved in the research, told MIT News.
This vision of a driverless future for flying cars might be a bit of a disappointment for those who’d envisaged themselves one day piloting their own hover car just like George Jetson. But autonomy and Uber-like ride-hailing business models are likely to be attractive, as they offer potential solutions to three of the biggest hurdles drone-like passenger vehicles face.
Firstly, it makes the vehicles accessible to anyone by removing the need to learn how to safely pilot an aircraft. Secondly, battery life still limits most electric vehicles to flight times measured in minutes. For personal vehicles this could be frustrating, but if you’re just hopping in a driverless air taxi for a five minute trip across town it’s unlikely to become apparent to you.
Operators of the service simply need to make sure they have a big enough fleet to ensure a charged vehicle is never too far away, or they’ll need a way to swap out batteries easily, such as the one suggested by the makers of the Volocopter electric helicopter.
Finally, there has already been significant progress in developing technology and regulations needed to integrate autonomous drones into our airspace that future driverless flying cars can most likely piggyback off of.
Safety requirements will inevitably be more stringent, but adding more predictable and controllable autonomous drones to the skies is likely to be more attractive to regulators than trying to license and police thousands of new amateur pilots.
Image Credit: Lilium Continue reading

Posted in Human Robots

#430550 This Week’s Awesome Stories From ...

DRONES
MIT Is Building Autonomous Drones That Can Both Drive and FlyApril Glaser | Recode“The drones, which were built at MIT’s Computer Science and Artificial Intelligence Laboratory, also include route-planning software that can help calculate when the flying robot switches from air to ground in order to optimize its battery life.”
SPACE
SpaceX Is Making Commercial Space Launches Look Like Child’s PlayJamie Condliffe | MIT Technology Review“Late Friday, SpaceX launched a satellite into orbit from Florida using one of its refurbished Falcon 9 rockets. Then on Sunday, for good measure, it lofted 10 smaller satellites using a new version of the same rocket, which it launched from California. The feat is a sign that the private space company seems more likely than ever to turn its vision of competitively priced, rapid-turnaround rocket launches into reality.”
CYBERSECURITY
A New Ransomware Attack Is Infecting Airlines, Banks, and Utilities Across EuropeRussell Brandom | The Verge“The origins of the attack are still unclear, but the involvement of Ukraine’s electric utilities is likely to cast suspicion on Russia. Ukraine’s power grid was hit by a persistent and sophisticated attack in December 2015, which many attributed to Russia. The attack ultimately left 230,000 residents without power for as long as six hours.”
SILICON VALLEY NEWS
Mark Zuckerberg’s Probably Nonexistent 2020 Presidential Campaign, ExplainedTimothy B. Lee | VOX“After all, the kind of outreach Zuckerberg would do in a presidential campaign isn’t that different from the kind of outreach he’d do if he were simply trying to understand Facebook users better and build public goodwill for his massive social media site.”
AUTONOMOUS CARS
Riding in a Robocar That Sees Around CornersPhilip E. Ross | IEEE Spectrum“It takes 20 to 30 minutes to fit a car with the necessary hardware: a GPS sensor and a wireless transceiver. Here in the MCity compound, at least, the GPS system uses a repeater to enhance its accuracy down to centimeter level—good enough to locate a car precisely and to allow other cars to figure out its trajectory and measure its speed.”
Image Credit: SpaceX / Flickr Continue reading

Posted in Human Robots

#430172 Affordable Italian robot maid

Trust the Italians to design a robot maid with flair! R1 aims to be a service humanoid to help the disabled, frail and elderly around the house – kinda like Rosie from the Jetsons…

Posted in Human Robots