Tag Archives: new

#434569 From Parkour to Surgery, Here Are the ...

The robot revolution may not be here quite yet, but our mechanical cousins have made some serious strides. And now some of the leading experts in the field have provided a rundown of what they see as the 10 most exciting recent developments.

Compiled by the editors of the journal Science Robotics, the list includes some of the most impressive original research and innovative commercial products to make a splash in 2018, as well as a couple from 2017 that really changed the game.

1. Boston Dynamics’ Atlas doing parkour

It seems like barely a few months go by without Boston Dynamics rewriting the book on what a robot can and can’t do. Last year they really outdid themselves when they got their Atlas humanoid robot to do parkour, leaping over logs and jumping between wooden crates.

Atlas’s creators have admitted that the videos we see are cherry-picked from multiple attempts, many of which don’t go so well. But they say they’re meant to be inspirational and aspirational rather than an accurate picture of where robotics is today. And combined with the company’s dog-like Spot robot, they are certainly pushing boundaries.

2. Intuitive Surgical’s da Vinci SP platform
Robotic surgery isn’t new, but the technology is improving rapidly. Market leader Intuitive’s da Vinci surgical robot was first cleared by the FDA in 2000, but since then it’s come a long way, with the company now producing three separate systems.

The latest addition is the da Vinci SP (single port) system, which is able to insert three instruments into the body through a single 2.5cm cannula (tube) bringing a whole new meaning to minimally invasive surgery. The system was granted FDA clearance for urological procedures last year, and the company has now started shipping the new system to customers.

3. Soft robot that navigates through growth

Roboticists have long borrowed principles from the animal kingdom, but a new robot design that mimics the way plant tendrils and fungi mycelium move by growing at the tip has really broken the mold on robot navigation.

The editors point out that this is the perfect example of bio-inspired design; the researchers didn’t simply copy nature, they took a general principle and expanded on it. The tube-like robot unfolds from the front as pneumatic pressure is applied, but unlike a plant, it can grow at the speed of an animal walking and can navigate using visual feedback from a camera.

4. 3D printed liquid crystal elastomers for soft robotics
Soft robotics is one of the fastest-growing sub-disciplines in the field, but powering these devices without rigid motors or pumps is an ongoing challenge. A variety of shape-shifting materials have been proposed as potential artificial muscles, including liquid crystal elastomeric actuators.

Harvard engineers have now demonstrated that these materials can be 3D printed using a special ink that allows the designer to easily program in all kinds of unusual shape-shifting abilities. What’s more, their technique produces actuators capable of lifting significantly more weight than previous approaches.

5. Muscle-mimetic, self-healing, and hydraulically amplified actuators
In another effort to find a way to power soft robots, last year researchers at the University of Colorado Boulder designed a series of super low-cost artificial muscles that can lift 200 times their own weight and even heal themselves.

The devices rely on pouches filled with a liquid that makes them contract with the force and speed of mammalian skeletal muscles when a voltage is applied. The most promising for robotics applications is the so-called Peano-HASEL, which features multiple rectangular pouches connected in series that contract linearly, just like real muscle.

6. Self-assembled nanoscale robot from DNA

While you may think of robots as hulking metallic machines, a substantial number of scientists are working on making nanoscale robots out of DNA. And last year German researchers built the first remote-controlled DNA robotic arm.

They created a length of tightly-bound DNA molecules to act as the arm and attached it to a DNA base plate via a flexible joint. Because DNA carries a charge, they were able to get the arm to swivel around like the hand of a clock by applying a voltage and switch direction by reversing that voltage. The hope is that this arm could eventually be used to build materials piece by piece at the nanoscale.

7. DelFly nimble bioinspired robotic flapper

Robotics doesn’t only borrow from biology—sometimes it gives back to it, too. And a new flapping-winged robot designed by Dutch engineers that mimics the humble fruit fly has done just that, by revealing how the animals that inspired it carry out predator-dodging maneuvers.

The lab has been building flapping robots for years, but this time they ditched the airplane-like tail used to control previous incarnations. Instead, they used insect-inspired adjustments to the motions of its twin pairs of flapping wings to hover, pitch, and roll with the agility of a fruit fly. That has provided a useful platform for investigating insect flight dynamics, as well as more practical applications.

8. Soft exosuit wearable robot

Exoskeletons could prevent workplace injuries, help people walk again, and even boost soldiers’ endurance. Strapping on bulky equipment isn’t ideal, though, so researchers at Harvard are working on a soft exoskeleton that combines specially-designed textiles, sensors, and lightweight actuators.

And last year the team made an important breakthrough by combining their novel exoskeleton with a machine-learning algorithm that automatically tunes the device to the user’s particular walking style. Using physiological data, it is able to adjust when and where the device needs to deliver a boost to the user’s natural movements to improve walking efficiency.

9. Universal Robots (UR) e-Series Cobots
Robots in factories are nothing new. The enormous mechanical arms you see in car factories normally have to be kept in cages to prevent them from accidentally crushing people. In recent years there’s been growing interest in “co-bots,” collaborative robots designed to work side-by-side with their human colleagues and even learn from them.

Earlier this year saw the demise of ReThink robotics, the pioneer of the approach. But the simple single arm devices made by Danish firm Universal Robotics are becoming ubiquitous in workshops and warehouses around the world, accounting for about half of global co-bot sales. Last year they released their latest e-Series, with enhanced safety features and force/torque sensing.

10. Sony’s aibo
After a nearly 20-year hiatus, Sony’s robotic dog aibo is back, and it’s had some serious upgrades. As well as a revamp to its appearance, the new robotic pet takes advantage of advances in AI, with improved environmental and command awareness and the ability to develop a unique character based on interactions with its owner.

The editors note that this new context awareness mark the device out as a significant evolution in social robots, which many hope could aid in childhood learning or provide companionship for the elderly.

Image Credit: DelFly Nimble / CC BY – SA 4.0 Continue reading

Posted in Human Robots

#434559 Can AI Tell the Difference Between a ...

Scarcely a day goes by without another headline about neural networks: some new task that deep learning algorithms can excel at, approaching or even surpassing human competence. As the application of this approach to computer vision has continued to improve, with algorithms capable of specialized recognition tasks like those found in medicine, the software is getting closer to widespread commercial use—for example, in self-driving cars. Our ability to recognize patterns is a huge part of human intelligence: if this can be done faster by machines, the consequences will be profound.

Yet, as ever with algorithms, there are deep concerns about their reliability, especially when we don’t know precisely how they work. State-of-the-art neural networks will confidently—and incorrectly—classify images that look like television static or abstract art as real-world objects like school-buses or armadillos. Specific algorithms could be targeted by “adversarial examples,” where adding an imperceptible amount of noise to an image can cause an algorithm to completely mistake one object for another. Machine learning experts enjoy constructing these images to trick advanced software, but if a self-driving car could be fooled by a few stickers, it might not be so fun for the passengers.

These difficulties are hard to smooth out in large part because we don’t have a great intuition for how these neural networks “see” and “recognize” objects. The main insight analyzing a trained network itself can give us is a series of statistical weights, associating certain groups of points with certain objects: this can be very difficult to interpret.

Now, new research from UCLA, published in the journal PLOS Computational Biology, is testing neural networks to understand the limits of their vision and the differences between computer vision and human vision. Nicholas Baker, Hongjing Lu, and Philip J. Kellman of UCLA, alongside Gennady Erlikhman of the University of Nevada, tested a deep convolutional neural network called VGG-19. This is state-of-the-art technology that is already outperforming humans on standardized tests like the ImageNet Large Scale Visual Recognition Challenge.

They found that, while humans tend to classify objects based on their overall (global) shape, deep neural networks are far more sensitive to the textures of objects, including local color gradients and the distribution of points on the object. This result helps explain why neural networks in image recognition make mistakes that no human ever would—and could allow for better designs in the future.

In the first experiment, a neural network was trained to sort images into 1 of 1,000 different categories. It was then presented with silhouettes of these images: all of the local information was lost, while only the outline of the object remained. Ordinarily, the trained neural net was capable of recognizing these objects, assigning more than 90% probability to the correct classification. Studying silhouettes, this dropped to 10%. While human observers could nearly always produce correct shape labels, the neural networks appeared almost insensitive to the overall shape of the images. On average, the correct object was ranked as the 209th most likely solution by the neural network, even though the overall shapes were an exact match.

A particularly striking example arose when they tried to get the neural networks to classify glass figurines of objects they could already recognize. While you or I might find it easy to identify a glass model of an otter or a polar bear, the neural network classified them as “oxygen mask” and “can opener” respectively. By presenting glass figurines, where the texture information that neural networks relied on for classifying objects is lost, the neural network was unable to recognize the objects by shape alone. The neural network was similarly hopeless at classifying objects based on drawings of their outline.

If you got one of these right, you’re better than state-of-the-art image recognition software. Image Credit: Nicholas Baker, Hongjing Lu, Gennady Erlikhman, Philip J. Kelman. “Deep convolutional networks do not classify based on global object shape.” Plos Computational Biology. 12/7/18. / CC BY 4.0
When the neural network was explicitly trained to recognize object silhouettes—given no information in the training data aside from the object outlines—the researchers found that slight distortions or “ripples” to the contour of the image were again enough to fool the AI, while humans paid them no mind.

The fact that neural networks seem to be insensitive to the overall shape of an object—relying instead on statistical similarities between local distributions of points—suggests a further experiment. What if you scrambled the images so that the overall shape was lost but local features were preserved? It turns out that the neural networks are far better and faster at recognizing scrambled versions of objects than outlines, even when humans struggle. Students could classify only 37% of the scrambled objects, while the neural network succeeded 83% of the time.

Humans vastly outperform machines at classifying object (a) as a bear, while the machine learning algorithm has few problems classifying the bear in figure (b). Image Credit: Nicholas Baker, Hongjing Lu, Gennady Erlikhman, Philip J. Kelman. “Deep convolutional networks do not classify based on global object shape.” Plos Computational Biology. 12/7/18. / CC BY 4.0
“This study shows these systems get the right answer in the images they were trained on without considering shape,” Kellman said. “For humans, overall shape is primary for object recognition, and identifying images by overall shape doesn’t seem to be in these deep learning systems at all.”

Naively, one might expect that—as the many layers of a neural network are modeled on connections between neurons in the brain and resemble the visual cortex specifically—the way computer vision operates must necessarily be similar to human vision. But this kind of research shows that, while the fundamental architecture might resemble that of the human brain, the resulting “mind” operates very differently.

Researchers can, increasingly, observe how the “neurons” in neural networks light up when exposed to stimuli and compare it to how biological systems respond to the same stimuli. Perhaps someday it might be possible to use these comparisons to understand how neural networks are “thinking” and how those responses differ from humans.

But, as yet, it takes a more experimental psychology to probe how neural networks and artificial intelligence algorithms perceive the world. The tests employed against the neural network are closer to how scientists might try to understand the senses of an animal or the developing brain of a young child rather than a piece of software.

By combining this experimental psychology with new neural network designs or error-correction techniques, it may be possible to make them even more reliable. Yet this research illustrates just how much we still don’t understand about the algorithms we’re creating and using: how they tick, how they make decisions, and how they’re different from us. As they play an ever-greater role in society, understanding the psychology of neural networks will be crucial if we want to use them wisely and effectively—and not end up missing the woods for the trees.

Image Credit: Irvan Pratama / Shutterstock.com Continue reading

Posted in Human Robots

#434544 This Week’s Awesome Stories From ...

ARTIFICIAL INTELLIGENCE
DeepMind Beats Pros at Starcraft in Another Triumph for Bots
Tom Simonite | Wired
“DeepMind’s feat is the most complex yet in a long train of contests in which computers have beaten top humans at games. Checkers fell in 1994, chess in 1997, and DeepMind’s earlier bot AlphaGo became the first to beat a champion at the board game Go in 2016. The StarCraft bot is the most powerful AI game player yet; it may also be the least unexpected.”

GENETICS
Complete Axolotl Genome Could Pave the Way Toward Human Tissue Regeneration
George Dvorsky | Gizmodo
“Now that researchers have a near-complete axolotl genome—the new assembly still requires a bit of fine-tuning (more on that in a bit)—they, along with others, can now go about the work of identifying the genes responsible for axolotl tissue regeneration.”

FUTURE
We Analyzed 16,625 Papers to Figure Out Where AI Is Headed Next
Karen Hao | MIT Technology Review
“…though deep learning has singlehandedly thrust AI into the public eye, it represents just a small blip in the history of humanity’s quest to replicate our own intelligence. It’s been at the forefront of that effort for less than 10 years. When you zoom out on the whole history of the field, it’s easy to realize that it could soon be on its way out.”

COMPUTING
Apple’s Finger-Controller Patent Is a Glimpse at Mixed Reality’s Future
Mark Sullivan | Fast Company
“[Apple’s] engineers are now looking past the phone touchscreen toward mixed reality, where the company’s next great UX will very likely be built. A recent patent application gives some tantalizing clues as to how Apple’s people are thinking about aspects of that challenge.”

GOVERNANCE
How Do You Govern Machines That Can Learn? Policymakers Are Trying to Figure That Out
Steve Lohr | The New York Times
“Regulation is coming. That’s a good thing. Rules of competition and behavior are the foundation of healthy, growing markets. That was the consensus of the policymakers at MIT. But they also agreed that artificial intelligence raises some fresh policy challenges.”

Image Credit: Victoria Shapiro / Shutterstock.com Continue reading

Posted in Human Robots

#434534 To Extend Our Longevity, First We Must ...

Healthcare today is reactive, retrospective, bureaucratic, and expensive. It’s sick care, not healthcare.

But that is radically changing at an exponential rate.

Through this multi-part blog series on longevity, I’ll take a deep dive into aging, longevity, and healthcare technologies that are working together to dramatically extend the human lifespan, disrupting the $3 trillion healthcare system in the process.

I’ll begin the series by explaining the nine hallmarks of aging, as explained in this journal article. Next, I’ll break down the emerging technologies and initiatives working to combat these nine hallmarks. Finally, I’ll explore the transformative implications of dramatically extending the human health span.

In this blog I’ll cover:

Why the healthcare system is broken
Why, despite this, we live in the healthiest time in human history
The nine mechanisms of aging

Let’s dive in.

The System is Broken—Here’s the Data:

Doctors spend $210 billion per year on procedures that aren’t based on patient need, but fear of liability.
Americans spend, on average, $8,915 per person on healthcare—more than any other country on Earth.
Prescription drugs cost around 50 percent more in the US than in other industrialized countries.
At current rates, by 2025, nearly 25 percent of the US GDP will be spent on healthcare.
It takes 12 years and $359 million, on average, to take a new drug from the lab to a patient.
Only 5 in 5,000 of these new drugs proceed to human testing. From there, only 1 of those 5 is actually approved for human use.

And Yet, We Live in the Healthiest Time in Human History
Consider these insights, which I adapted from Max Roser’s excellent database Our World in Data:

Right now, the countries with the lowest life expectancy in the world still have higher life expectancies than the countries with the highest life expectancy did in 1800.
In 1841, a 5-year-old had a life expectancy of 55 years. Today, a 5-year-old can expect to live 82 years—an increase of 27 years.
We’re seeing a dramatic increase in healthspan. In 1845, a newborn would expect to live to 40 years old. For a 70-year-old, that number became 79. Now, people of all ages can expect to live to be 81 to 86 years old.
100 years ago, 1 of 3 children would die before the age of 5. As of 2015, the child mortality rate fell to just 4.3 percent.
The cancer mortality rate has declined 27 percent over the past 25 years.

Figure: Around the globe, life expectancy has doubled since the 1800s. | Image from Life Expectancy by Max Roser – Our World in Data / CC BY SA
Figure: A dramatic reduction in child mortality in 1800 vs. in 2015. | Image from Child Mortality by Max Roser – Our World in Data / CC BY SA
The 9 Mechanisms of Aging
*This section was adapted from CB INSIGHTS: The Future Of Aging.

Longevity, healthcare, and aging are intimately linked.

With better healthcare, we can better treat some of the leading causes of death, impacting how long we live.

By investigating how to treat diseases, we’ll inevitably better understand what causes these diseases in the first place, which directly correlates to why we age.

Following are the nine hallmarks of aging. I’ll share examples of health and longevity technologies addressing each of these later in this blog series.

Genomic instability: As we age, the environment and normal cellular processes cause damage to our genes. Activities like flying at high altitude, for example, expose us to increased radiation or free radicals. This damage compounds over the course of life and is known to accelerate aging.
Telomere attrition: Each strand of DNA in the body (known as chromosomes) is capped by telomeres. These short snippets of DNA repeated thousands of times are designed to protect the bulk of the chromosome. Telomeres shorten as our DNA replicates; if a telomere reaches a certain critical shortness, a cell will stop dividing, resulting in increased incidence of disease.
Epigenetic alterations: Over time, environmental factors will change how genes are expressed, i.e., how certain sequences of DNA are read and the instruction set implemented.
Loss of proteostasis: Over time, different proteins in our body will no longer fold and function as they are supposed to, resulting in diseases ranging from cancer to neurological disorders.
Deregulated nutrient-sensing: Nutrient levels in the body can influence various metabolic pathways. Among the affected parts of these pathways are proteins like IGF-1, mTOR, sirtuins, and AMPK. Changing levels of these proteins’ pathways has implications on longevity.
Mitochondrial dysfunction: Mitochondria (our cellular power plants) begin to decline in performance as we age. Decreased performance results in excess fatigue and other symptoms of chronic illnesses associated with aging.
Cellular senescence: As cells age, they stop dividing and cannot be removed from the body. They build up and typically cause increased inflammation.
Stem cell exhaustion: As we age, our supply of stem cells begins to diminish as much as 100 to 10,000-fold in different tissues and organs. In addition, stem cells undergo genetic mutations, which reduce their quality and effectiveness at renovating and repairing the body.
Altered intercellular communication: The communication mechanisms that cells use are disrupted as cells age, resulting in decreased ability to transmit information between cells.

Conclusion
Over the past 200 years, we have seen an abundance of healthcare technologies enable a massive lifespan boom.

Now, exponential technologies like artificial intelligence, 3D printing and sensors, as well as tremendous advancements in genomics, stem cell research, chemistry, and many other fields, are beginning to tackle the fundamental issues of why we age.

In the next blog in this series, we will dive into how genome sequencing and editing, along with new classes of drugs, are augmenting our biology to further extend our healthy lives.

What will you be able to achieve with an extra 30 to 50 healthy years (or longer) in your lifespan? Personally, I’m excited for a near-infinite lifespan to take on moonshots.

Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: David Carbo / Shutterstock.com Continue reading

Posted in Human Robots

#434532 How Microrobots Will Fix Our Roads and ...

Swarms of microrobots will scuttle along beneath our roads and pavements, finding and fixing leaky pipes and faulty cables. Thanks to their efforts, we can avoid costly road work that costs billions of dollars each year—not to mention frustrating traffic delays.

That is, if a new project sponsored by the U.K. government is a success. Recent developments in the space seem to point towards a bright future for microrobots.

Microrobots Saving Billions
Each year, around 1.5 million road excavations take place across the U.K. Many are due to leaky pipes and faulty cables that necessitate excavation of road surfaces in order to fix them. The resulting repairs, alongside disruptions to traffic and businesses, are estimated to cost a whopping £6.3 billion ($8 billion).

A consortium of scientists, led by University of Sheffield Professor Kirill Horoshenkov, are planning to use microrobots to negate most of these costs. The group has received a £7.2 million ($9.2 million) grant to develop and build their bots.

According to Horoshenkov, the microrobots will come in two versions. One is an inspection bot, which will navigate along underground infrastructure and examine its condition via sonar. The inspectors will be complemented by worker bots capable of carrying out repairs with cement and adhesives or cleaning out blockages with a high-powered jet. The inspector bots will be around one centimeter long and possibly autonomous, while the worker bots will be slightly larger and steered via remote control.

If successful, it is believed the bots could potentially save the U.K. economy around £5 billion ($6.4 billion) a year.

The U.K. government has set aside a further £19 million ($24 million) for research into robots for hazardous environments, such as nuclear decommissioning, drones for oil pipeline monitoring, and artificial intelligence software to detect the need for repairs on satellites in orbit.

The Lowest-Hanging Fruit
Microrobots like the ones now under development in the U.K. have many potential advantages and use cases. Thanks to their small size they can navigate tight spaces, for example in search and rescue operations, and robot swarm technology would allow them to collaborate to perform many different functions, including in construction projects.

To date, the number of microrobots in use is relatively limited, but that could be about to change, with bots closing in on other types of inspection jobs, which could be considered one of the lowest-hanging fruits.

Engineering firm Rolls-Royce (not the car company, but the one that builds aircraft engines) is looking to use microrobots to inspect some of the up to 25,000 individual parts that make up an engine. The microrobots use the cockroach as a model, and Rolls Royce believes they could save engineers time when performing the maintenance checks that can take over a month per engine.

Even Smaller Successes
Going further down in scale, recent years have seen a string of successes for nanobots. For example, a team of researchers at the Femto-ST Institute have used nanobots to build what is likely the world’s smallest house (if this isn’t a category at Guinness, someone needs to get on the phone with them), which stands a ‘towering’ 0.015 millimeters.

One of the areas where nanobots have shown great promise is in medicine. Several studies have shown how the minute bots are capable of delivering drugs directly into dense biological tissue, which can otherwise be highly challenging to target directly. Such delivery systems have a great potential for improving the treatment of a wide range of ailments and illnesses, including cancer.

There’s no question that the ecosystem of microrobots and nanobots is evolving. While still in their early days, the above successes point to a near-future boom in the bots we may soon refer to as our ‘littlest everyday helpers.’

Image Credit: 5nikolas5 / Shutterstock.com Continue reading

Posted in Human Robots