Tag Archives: new technology

#432508 Drones will soon decide who to kill

The US Army recently announced that it is developing the first drones that can spot and target vehicles and people using artificial intelligence (AI). This is a big step forward. Whereas current military drones are still controlled by people, this new technology will decide who to kill with almost no human involvement. Continue reading

Posted in Human Robots

#432421 Cheetah III robot preps for a role as a ...

If you were to ask someone to name a new technology that emerged from MIT in the 21st century, there's a good chance they would name the robotic cheetah. Developed by the MIT Department of Mechanical Engineering's Biomimetic Robotics Lab under the direction of Associate Professor Sangbae Kim, the quadruped MIT Cheetah has made headlines for its dynamic legged gait, speed, jumping ability, and biomimetic design. Continue reading

Posted in Human Robots

#432249 New Malicious AI Report Outlines Biggest ...

Everyone’s talking about deep fakes: audio-visual imitations of people, generated by increasingly powerful neural networks, that will soon be indistinguishable from the real thing. Politicians are regularly laid low by scandals that arise from audio-visual recordings. Try watching the footage that could be created of Barack Obama from his speeches, and the Lyrebird impersonations. You could easily, today or in the very near future, create a forgery that might be indistinguishable from the real thing. What would that do to politics?

Once the internet is flooded with plausible-seeming tapes and recordings of this sort, how are we going to decide what’s real and what isn’t? Democracy, and our ability to counteract threats, is already threatened by a lack of agreement on the facts. Once you can’t believe the evidence of your senses anymore, we’re in serious trouble. Ultimately, you can dream up all kinds of utterly terrifying possibilities for these deep fakes, from fake news to blackmail.

How to solve the problem? Some have suggested that media websites like Facebook or Twitter should carry software that probes every video to see if it’s a deep fake or not and labels the fakes. But this will prove computationally intensive. Plus, imagine a case where we have such a system, and a fake is “verified as real” by news media algorithms that have been fooled by clever hackers.

The other alternative is even more dystopian: you can prove something isn’t true simply by always having an alibi. Lawfare describes a “solution” where those concerned about deep fakes have all of their movements and interactions recorded. So to avoid being blackmailed or having your reputation ruined, you just consent to some company engaging in 24/7 surveillance of everything you say or do and having total power over that information. What could possibly go wrong?

The point is, in the same way that you don’t need human-level, general AI or humanoid robotics to create systems that can cause disruption in the world of work, you also don’t need a general intelligence to threaten security and wreak havoc on society. Andrew Ng, AI researcher, says that worrying about the risks from superintelligent AI is like “worrying about overpopulation on Mars.” There are clearly risks that arise even from the simple algorithms we have today.

The looming issue of deep fakes is just one of the threats considered by the new malicious AI report, which has co-authors from the Future of Humanity Institute and the Centre for the Study of Existential Risk (among other organizations.) They limit their focus to the technologies of the next five years.

Some of the concerns the report explores are enhancements to familiar threats.

Automated hacking can get better, smarter, and algorithms can adapt to changing security protocols. “Phishing emails,” where people are scammed by impersonating someone they trust or an official organization, could be generated en masse and made more realistic by scraping data from social media. Standard phishing works by sending such a great volume of emails that even a very low success rate can be profitable. Spear phishing aims at specific targets by impersonating family members, but can be labor intensive. If AI algorithms enable every phishing scam to become sharper in this way, more people are going to get gouged.

Then there are novel threats that come from our own increasing use of and dependence on artificial intelligence to make decisions.

These algorithms may be smart in some ways, but as any human knows, computers are utterly lacking in common sense; they can be fooled. A rather scary application is adversarial examples. Machine learning algorithms are often used for image recognition. But it’s possible, if you know a little about how the algorithm is structured, to construct the perfect level of noise to add to an image, and fool the machine. Two images can be almost completely indistinguishable to the human eye. But by adding some cleverly-calculated noise, the hackers can fool the algorithm into thinking an image of a panda is really an image of a gibbon (in the OpenAI example). Research conducted by OpenAI demonstrates that you can fool algorithms even by printing out examples on stickers.

Now imagine that instead of tricking a computer into thinking that a panda is actually a gibbon, you fool it into thinking that a stop sign isn’t there, or that the back of someone’s car is really a nice open stretch of road. In the adversarial example case, the images are almost indistinguishable to humans. By the time anyone notices the road sign has been “hacked,” it could already be too late.

As the OpenAI foundation freely admits, worrying about whether we’d be able to tame a superintelligent AI is a hard problem. It looks all the more difficult when you realize some of our best algorithms can be fooled by stickers; even “modern simple algorithms can behave in ways we do not intend.”

There are ways around this approach.

Adversarial training can generate lots of adversarial examples and explicitly train the algorithm not to be fooled by them—but it’s costly in terms of time and computation, and puts you in an arms race with hackers. Many strategies for defending against adversarial examples haven’t proved adaptive enough; correcting against vulnerabilities one at a time is too slow. Moreover, it demonstrates a point that can be lost in the AI hype: algorithms can be fooled in ways we didn’t anticipate. If we don’t learn about these vulnerabilities until the algorithms are everywhere, serious disruption can occur. And no matter how careful you are, some vulnerabilities are likely to remain to be exploited, even if it takes years to find them.

Just look at the Meltdown and Spectre vulnerabilities, which weren’t widely known about for more than 20 years but could enable hackers to steal personal information. Ultimately, the more blind faith we put into algorithms and computers—without understanding the opaque inner mechanics of how they work—the more vulnerable we will be to these forms of attack. And, as China dreams of using AI to predict crimes and enhance the police force, the potential for unjust arrests can only increase.

This is before you get into the truly nightmarish territory of “killer robots”—not the Terminator, but instead autonomous or consumer drones which could potentially be weaponized by bad actors and used to conduct attacks remotely. Some reports have indicated that terrorist organizations are already trying to do this.

As with any form of technology, new powers for humanity come with new risks. And, as with any form of technology, closing Pandora’s box will prove very difficult.

Somewhere between the excessively hyped prospects of AI that will do everything for us and AI that will destroy the world lies reality: a complex, ever-changing set of risks and rewards. The writers of the malicious AI report note that one of their key motivations is ensuring that the benefits of new technology can be delivered to people as quickly, but as safely, as possible. In the rush to exploit the potential for algorithms and create 21st-century infrastructure, we must ensure we’re not building in new dangers.

Image Credit: lolloj / Shutterstock.com Continue reading

Posted in Human Robots

#432165 Silicon Valley Is Winning the Race to ...

Henry Ford didn’t invent the motor car. The late 1800s saw a flurry of innovation by hundreds of companies battling to deliver on the promise of fast, efficient and reasonably-priced mechanical transportation. Ford later came to dominate the industry thanks to the development of the moving assembly line.

Today, the sector is poised for another breakthrough with the advent of cars that drive themselves. But unlike the original wave of automobile innovation, the race for supremacy in autonomous vehicles is concentrated among a few corporate giants. So who is set to dominate this time?

I’ve analyzed six companies we think are leading the race to build the first truly driverless car. Three of these—General Motors, Ford, and Volkswagen—come from the existing car industry and need to integrate self-driving technology into their existing fleet of mass-produced vehicles. The other three—Tesla, Uber, and Waymo (owned by the same company as Google)—are newcomers from the digital technology world of Silicon Valley and have to build a mass manufacturing capability.

While it’s impossible to know all the developments at any given time, we have tracked investments, strategic partnerships, and official press releases to learn more about what’s happening behind the scenes. The car industry typically rates self-driving technology on a scale from Level 0 (no automation) to Level 5 (full automation). We’ve assessed where each company is now and estimated how far they are from reaching the top level. Here’s how we think each player is performing.

Volkswagen
Volkswagen has invested in taxi-hailing app Gett and partnered with chip-maker Nvidia to develop an artificial intelligence co-pilot for its cars. In 2018, the VW Group is set to release the Audi A8, the first production vehicle that reaches Level 3 on the scale, “conditional driving automation.” This means the car’s computer will handle all driving functions, but a human has to be ready to take over if necessary.

Ford
Ford already sells cars with a Level 2 autopilot, “partial driving automation.” This means one or more aspects of driving are controlled by a computer based on information about the environment, for example combined cruise control and lane centering. Alongside other investments, the company has put $1 billion into Argo AI, an artificial intelligence company for self-driving vehicles. Following a trial to test pizza delivery using autonomous vehicles, Ford is now testing Level 4 cars on public roads. These feature “high automation,” where the car can drive entirely on its own but not in certain conditions such as when the road surface is poor or the weather is bad.

General Motors
GM also sells vehicles with Level 2 automation but, after buying Silicon Valley startup Cruise Automation in 2016, now plans to launch the first mass-production-ready Level 5 autonomy vehicle that drives completely on its own by 2019. The Cruise AV will have no steering wheel or pedals to allow a human to take over and be part of a large fleet of driverless taxis the company plans to operate in big cities. But crucially the company hasn’t yet secured permission to test the car on public roads.

Waymo (Google)

Waymo Level 5 testing. Image Credit: Waymo

Founded as a special project in 2009, Waymo separated from Google (though they’re both owned by the same parent firm, Alphabet) in 2016. Though it has never made, sold, or operated a car on a commercial basis, Waymo has created test vehicles that have clocked more than 4 million miles without human drivers as of November 2017. Waymo tested its Level 5 car, “Firefly,” between 2015 and 2017 but then decided to focus on hardware that could be installed in other manufacturers’ vehicles, starting with the Chrysler Pacifica.

Uber
The taxi-hailing app maker Uber has been testing autonomous cars on the streets of Pittsburgh since 2016, always with an employee behind the wheel ready to take over in case of a malfunction. After buying the self-driving truck company Otto in 2016 for a reported $680 million, Uber is now expanding its AI capabilities and plans to test NVIDIA’s latest chips in Otto’s vehicles. It has also partnered with Volvo to create a self-driving fleet of cars and with Toyota to co-create a ride-sharing autonomous vehicle.

Tesla
The first major car manufacturer to come from Silicon Valley, Tesla was also the first to introduce Level 2 autopilot back in 2015. The following year, it announced that all new Teslas would have the hardware for full autonomy, meaning once the software is finished it can be deployed on existing cars with an instant upgrade. Some experts have challenged this approach, arguing that the company has merely added surround cameras to its production cars that aren’t as capable as the laser-based sensing systems that most other carmakers are using.

But the company has collected data from hundreds of thousands of cars, driving millions of miles across all terrains. So, we shouldn’t dismiss the firm’s founder, Elon Musk, when he claims a Level 4 Tesla will drive from LA to New York without any human interference within the first half of 2018.

Winners

Who’s leading the race? Image Credit: IMD

At the moment, the disruptors like Tesla, Waymo, and Uber seem to have the upper hand. While the traditional automakers are focusing on bringing Level 3 and 4 partial automation to market, the new companies are leapfrogging them by moving more directly towards Level 5 full automation. Waymo may have the least experience of dealing with consumers in this sector, but it has already clocked up a huge amount of time testing some of the most advanced technology on public roads.

The incumbent carmakers are also focused on the difficult process of integrating new technology and business models into their existing manufacturing operations by buying up small companies. The challengers, on the other hand, are easily partnering with other big players including manufacturers to get the scale and expertise they need more quickly.

Tesla is building its own manufacturing capability but also collecting vast amounts of critical data that will enable it to more easily upgrade its cars when ready for full automation. In particular, Waymo’s experience, technology capability, and ability to secure solid partnerships puts it at the head of the pack.

This article was originally published on The Conversation. Read the original article.

Image Credit: Waymo Continue reading

Posted in Human Robots

#431958 The Next Generation of Cameras Might See ...

You might be really pleased with the camera technology in your latest smartphone, which can recognize your face and take slow-mo video in ultra-high definition. But these technological feats are just the start of a larger revolution that is underway.

The latest camera research is shifting away from increasing the number of mega-pixels towards fusing camera data with computational processing. By that, we don’t mean the Photoshop style of processing where effects and filters are added to a picture, but rather a radical new approach where the incoming data may not actually look like at an image at all. It only becomes an image after a series of computational steps that often involve complex mathematics and modeling how light travels through the scene or the camera.

This additional layer of computational processing magically frees us from the chains of conventional imaging techniques. One day we may not even need cameras in the conventional sense any more. Instead we will use light detectors that only a few years ago we would never have considered any use for imaging. And they will be able to do incredible things, like see through fog, inside the human body and even behind walls.

Single Pixel Cameras
One extreme example is the single pixel camera, which relies on a beautifully simple principle. Typical cameras use lots of pixels (tiny sensor elements) to capture a scene that is likely illuminated by a single light source. But you can also do things the other way around, capturing information from many light sources with a single pixel.

To do this you need a controlled light source, for example a simple data projector that illuminates the scene one spot at a time or with a series of different patterns. For each illumination spot or pattern, you then measure the amount of light reflected and add everything together to create the final image.

Clearly the disadvantage of taking a photo in this is way is that you have to send out lots of illumination spots or patterns in order to produce one image (which would take just one snapshot with a regular camera). But this form of imaging would allow you to create otherwise impossible cameras, for example that work at wavelengths of light beyond the visible spectrum, where good detectors cannot be made into cameras.

These cameras could be used to take photos through fog or thick falling snow. Or they could mimic the eyes of some animals and automatically increase an image’s resolution (the amount of detail it captures) depending on what’s in the scene.

It is even possible to capture images from light particles that have never even interacted with the object we want to photograph. This would take advantage of the idea of “quantum entanglement,” that two particles can be connected in a way that means whatever happens to one happens to the other, even if they are a long distance apart. This has intriguing possibilities for looking at objects whose properties might change when lit up, such as the eye. For example, does a retina look the same when in darkness as in light?

Multi-Sensor Imaging
Single-pixel imaging is just one of the simplest innovations in upcoming camera technology and relies, on the face of it, on the traditional concept of what forms a picture. But we are currently witnessing a surge of interest for systems that use lots of information but traditional techniques only collect a small part of it.

This is where we could use multi-sensor approaches that involve many different detectors pointed at the same scene. The Hubble telescope was a pioneering example of this, producing pictures made from combinations of many different images taken at different wavelengths. But now you can buy commercial versions of this kind of technology, such as the Lytro camera that collects information about light intensity and direction on the same sensor, to produce images that can be refocused after the image has been taken.

The next generation camera will probably look something like the Light L16 camera, which features ground-breaking technology based on more than ten different sensors. Their data are combined using a computer to provide a 50 MB, re-focusable and re-zoomable, professional-quality image. The camera itself looks like a very exciting Picasso interpretation of a crazy cell-phone camera.

Yet these are just the first steps towards a new generation of cameras that will change the way in which we think of and take images. Researchers are also working hard on the problem of seeing through fog, seeing behind walls, and even imaging deep inside the human body and brain.

All of these techniques rely on combining images with models that explain how light travels through through or around different substances.

Another interesting approach that is gaining ground relies on artificial intelligence to “learn” to recognize objects from the data. These techniques are inspired by learning processes in the human brain and are likely to play a major role in future imaging systems.

Single photon and quantum imaging technologies are also maturing to the point that they can take pictures with incredibly low light levels and videos with incredibly fast speeds reaching a trillion frames per second. This is enough to even capture images of light itself traveling across as scene.

Some of these applications might require a little time to fully develop, but we now know that the underlying physics should allow us to solve these and other problems through a clever combination of new technology and computational ingenuity.

This article was originally published on The Conversation. Read the original article.

Image Credit: Sylvia Adams / Shutterstock.com Continue reading

Posted in Human Robots