Tag Archives: never
#434643 Sensors and Machine Learning Are Giving ...
According to some scientists, humans really do have a sixth sense. There’s nothing supernatural about it: the sense of proprioception tells you about the relative positions of your limbs and the rest of your body. Close your eyes, block out all sound, and you can still use this internal “map” of your external body to locate your muscles and body parts – you have an innate sense of the distances between them, and the perception of how they’re moving, above and beyond your sense of touch.
This sense is invaluable for allowing us to coordinate our movements. In humans, the brain integrates senses including touch, heat, and the tension in muscle spindles to allow us to build up this map.
Replicating this complex sense has posed a great challenge for roboticists. We can imagine simulating the sense of sight with cameras, sound with microphones, or touch with pressure-pads. Robots with chemical sensors could be far more accurate than us in smell and taste, but building in proprioception, the robot’s sense of itself and its body, is far more difficult, and is a large part of why humanoid robots are so tricky to get right.
Simultaneous localization and mapping (SLAM) software allows robots to use their own senses to build up a picture of their surroundings and environment, but they’d need a keen sense of the position of their own bodies to interact with it. If something unexpected happens, or in dark environments where primary senses are not available, robots can struggle to keep track of their own position and orientation. For human-robot interaction, wearable robotics, and delicate applications like surgery, tiny differences can be extremely important.
Piecemeal Solutions
In the case of hard robotics, this is generally solved by using a series of strain and pressure sensors in each joint, which allow the robot to determine how its limbs are positioned. That works fine for rigid robots with a limited number of joints, but for softer, more flexible robots, this information is limited. Roboticists are faced with a dilemma: a vast, complex array of sensors for every degree of freedom in the robot’s movement, or limited skill in proprioception?
New techniques, often involving new arrays of sensory material and machine-learning algorithms to fill in the gaps, are starting to tackle this problem. Take the work of Thomas George Thuruthel and colleagues in Pisa and San Diego, who draw inspiration from the proprioception of humans. In a new paper in Science Robotics, they describe the use of soft sensors distributed through a robotic finger at random. This placement is much like the constant adaptation of sensors in humans and animals, rather than relying on feedback from a limited number of positions.
The sensors allow the soft robot to react to touch and pressure in many different locations, forming a map of itself as it contorts into complicated positions. The machine-learning algorithm serves to interpret the signals from the randomly-distributed sensors: as the finger moves around, it’s observed by a motion capture system. After training the robot’s neural network, it can associate the feedback from the sensors with the position of the finger detected in the motion-capture system, which can then be discarded. The robot observes its own motions to understand the shapes that its soft body can take, and translate them into the language of these soft sensors.
“The advantages of our approach are the ability to predict complex motions and forces that the soft robot experiences (which is difficult with traditional methods) and the fact that it can be applied to multiple types of actuators and sensors,” said Michael Tolley of the University of California San Diego. “Our method also includes redundant sensors, which improves the overall robustness of our predictions.”
The use of machine learning lets the roboticists come up with a reliable model for this complex, non-linear system of motions for the actuators, something difficult to do by directly calculating the expected motion of the soft-bot. It also resembles the human system of proprioception, built on redundant sensors that change and shift in position as we age.
In Search of a Perfect Arm
Another approach to training robots in using their bodies comes from Robert Kwiatkowski and Hod Lipson of Columbia University in New York. In their paper “Task-agnostic self-modeling machines,” also recently published in Science Robotics, they describe a new type of robotic arm.
Robotic arms and hands are getting increasingly dexterous, but training them to grasp a large array of objects and perform many different tasks can be an arduous process. It’s also an extremely valuable skill to get right: Amazon is highly interested in the perfect robot arm. Google hooked together an array of over a dozen robot arms so that they could share information about grasping new objects, in part to cut down on training time.
Individually training a robot arm to perform every individual task takes time and reduces the adaptability of your robot: either you need an ML algorithm with a huge dataset of experiences, or, even worse, you need to hard-code thousands of different motions. Kwiatkowski and Lipson attempt to overcome this by developing a robotic system that has a “strong sense of self”: a model of its own size, shape, and motions.
They do this using deep machine learning. The robot begins with no prior knowledge of its own shape or the underlying physics of its motion. It then repeats a series of a thousand random trajectories, recording the motion of its arm. Kwiatkowski and Lipson compare this to a baby in the first year of life observing the motions of its own hands and limbs, fascinated by picking up and manipulating objects.
Again, once the robot has trained itself to interpret these signals and build up a robust model of its own body, it’s ready for the next stage. Using that deep-learning algorithm, the researchers then ask the robot to design strategies to accomplish simple pick-up and place and handwriting tasks. Rather than laboriously and narrowly training itself for each individual task, limiting its abilities to a very narrow set of circumstances, the robot can now strategize how to use its arm for a much wider range of situations, with no additional task-specific training.
Damage Control
In a further experiment, the researchers replaced part of the arm with a “deformed” component, intended to simulate what might happen if the robot was damaged. The robot can then detect that something’s up and “reconfigure” itself, reconstructing its self-model by going through the training exercises once again; it was then able to perform the same tasks with only a small reduction in accuracy.
Machine learning techniques are opening up the field of robotics in ways we’ve never seen before. Combining them with our understanding of how humans and other animals are able to sense and interact with the world around us is bringing robotics closer and closer to becoming truly flexible and adaptable, and, eventually, omnipresent.
But before they can get out and shape the world, as these studies show, they will need to understand themselves.
Image Credit: jumbojan / Shutterstock.com Continue reading
#434623 The Great Myth of the AI Skills Gap
One of the most contentious debates in technology is around the question of automation and jobs. At issue is whether advances in automation, specifically with regards to artificial intelligence and robotics, will spell trouble for today’s workers. This debate is played out in the media daily, and passions run deep on both sides of the issue. In the past, however, automation has created jobs and increased real wages.
A widespread concern with the current scenario is that the workers most likely to be displaced by technology lack the skills needed to do the new jobs that same technology will create.
Let’s look at this concern in detail. Those who fear automation will hurt workers start by pointing out that there is a wide range of jobs, from low-pay, low-skill to high-pay, high-skill ones. This can be represented as follows:
They then point out that technology primarily creates high-paying jobs, like geneticists, as shown in the diagram below.
Meanwhile, technology destroys low-wage, low-skill jobs like those in fast food restaurants, as shown below:
Then, those who are worried about this dynamic often pose the question, “Do you really think a fast-food worker is going to become a geneticist?”
They worry that we are about to face a huge amount of systemic permanent unemployment, as the unskilled displaced workers are ill-equipped to do the jobs of tomorrow.
It is important to note that both sides of the debate are in agreement at this point. Unquestionably, technology destroys low-skilled, low-paying jobs while creating high-skilled, high-paying ones.
So, is that the end of the story? As a society are we destined to bifurcate into two groups, those who have training and earn high salaries in the new jobs, and those with less training who see their jobs vanishing to machines? Is this latter group forever locked out of economic plenty because they lack training?
No.
The question, “Can a fast food worker become a geneticist?” is where the error comes in. Fast food workers don’t become geneticists. What happens is that a college biology professor becomes a geneticist. Then a high-school biology teacher gets the college job. Then the substitute teacher gets hired on full-time to fill the high school teaching job. All the way down.
The question is not whether those in the lowest-skilled jobs can do the high-skilled work. Instead the question is, “Can everyone do a job just a little harder than the job they have today?” If so, and I believe very deeply that this is the case, then every time technology creates a new job “at the top,” everyone gets a promotion.
This isn’t just an academic theory—it’s 200 years of economic history in the west. For 200 years, with the exception of the Great Depression, unemployment in the US has been between 2 percent and 13 percent. Always. Europe’s range is a bit wider, but not much.
If I took 200 years of unemployment rates and graphed them, and asked you to find where the assembly line took over manufacturing, or where steam power rapidly replaced animal power, or the lightning-fast adoption of electricity by industry, you wouldn’t be able to find those spots. They aren’t even blips in the unemployment record.
You don’t even have to look back as far as the assembly line to see this happening. It has happened non-stop for 200 years. Every fifty years, we lose about half of all jobs, and this has been pretty steady since 1800.
How is it that for 200 years we have lost half of all jobs every half century, but never has this process caused unemployment? Not only has it not caused unemployment, but during that time, we have had full employment against the backdrop of rising wages.
How can wages rise while half of all jobs are constantly being destroyed? Simple. Because new technology always increases worker productivity. It creates new jobs, like web designer and programmer, while destroying low-wage backbreaking work. When this happens, everyone along the way gets a better job.
Our current situation isn’t any different than the past. The nature of technology has always been to create high-skilled jobs and increase worker productivity. This is good news for everyone.
People often ask me what their children should study to make sure they have a job in the future. I usually say it doesn’t really matter. If I knew everything I know now and went back to the mid 1980s, what could I have taken in high school to make me better prepared for today? There is only one class, and it wasn’t computer science. It was typing. Who would have guessed?
The great skill is to be able to learn new things, and luckily, we all have that. In fact, that is our singular ability as a species. What I do in my day-to-day job consists largely of skills I have learned as the years have passed. In my experience, if you ask people at all job levels,“Would you like a little more challenging job to make a little more money?” almost everyone says yes.
That’s all it has taken for us to collectively get here today, and that’s all we need going forward.
Image Credit: Lightspring / Shutterstock.com Continue reading
#434270 AI Will Create Millions More Jobs Than ...
In the past few years, artificial intelligence has advanced so quickly that it now seems hardly a month goes by without a newsworthy AI breakthrough. In areas as wide-ranging as speech translation, medical diagnosis, and gameplay, we have seen computers outperform humans in startling ways.
This has sparked a discussion about how AI will impact employment. Some fear that as AI improves, it will supplant workers, creating an ever-growing pool of unemployable humans who cannot compete economically with machines.
This concern, while understandable, is unfounded. In fact, AI will be the greatest job engine the world has ever seen.
New Technology Isn’t a New Phenomenon
On the one hand, those who predict massive job loss from AI can be excused. It is easier to see existing jobs disrupted by new technology than to envision what new jobs the technology will enable.
But on the other hand, radical technological advances aren’t a new phenomenon. Technology has progressed nonstop for 250 years, and in the US unemployment has stayed between 5 to 10 percent for almost all that time, even when radical new technologies like steam power and electricity came on the scene.
But you don’t have to look back to steam, or even electricity. Just look at the internet. Go back 25 years, well within the memory of today’s pessimistic prognosticators, to 1993. The web browser Mosaic had just been released, and the phrase “surfing the web,” that most mixed of metaphors, was just a few months old.
If someone had asked you what would be the result of connecting a couple billion computers into a giant network with common protocols, you might have predicted that email would cause us to mail fewer letters, and the web might cause us to read fewer newspapers and perhaps even do our shopping online. If you were particularly farsighted, you might have speculated that travel agents and stockbrokers would be adversely affected by this technology. And based on those surmises, you might have thought the internet would destroy jobs.
But now we know what really happened. The obvious changes did occur. But a slew of unexpected changes happened as well. We got thousands of new companies worth trillions of dollars. We bettered the lot of virtually everyone on the planet touched by the technology. Dozens of new careers emerged, from web designer to data scientist to online marketer. The cost of starting a business with worldwide reach plummeted, and the cost of communicating with customers and leads went to nearly zero. Vast storehouses of information were made freely available and used by entrepreneurs around the globe to build new kinds of businesses.
But yes, we mail fewer letters and buy fewer newspapers.
The Rise of Artificial Intelligence
Then along came a new, even bigger technology: artificial intelligence. You hear the same refrain: “It will destroy jobs.”
Consider the ATM. If you had to point to a technology that looked as though it would replace people, the ATM might look like a good bet; it is, after all, an automated teller machine. And yet, there are more tellers now than when ATMs were widely released. How can this be? Simple: ATMs lowered the cost of opening bank branches, and banks responded by opening more, which required hiring more tellers.
In this manner, AI will create millions of jobs that are far beyond our ability to imagine. For instance, AI is becoming adept at language translation—and according to the US Bureau of Labor Statistics, demand for human translators is skyrocketing. Why? If the cost of basic translation drops to nearly zero, the cost of doing business with those who speak other languages falls. Thus, it emboldens companies to do more business overseas, creating more work for human translators. AI may do the simple translations, but humans are needed for the nuanced kind.
In fact, the BLS forecasts faster-than-average job growth in many occupations that AI is expected to impact: accountants, forensic scientists, geological technicians, technical writers, MRI operators, dietitians, financial specialists, web developers, loan officers, medical secretaries, and customer service representatives, to name a very few. These fields will not experience job growth in spite of AI, but through it.
But just as with the internet, the real gains in jobs will come from places where our imaginations cannot yet take us.
Parsing Pessimism
You may recall waking up one morning to the news that “47 percent of jobs will be lost to technology.”
That report by Carl Frey and Michael Osborne is a fine piece of work, but readers and the media distorted their 47 percent number. What the authors actually said is that some functions within 47 percent of jobs will be automated, not that 47 percent of jobs will disappear.
Frey and Osborne go on to rank occupations by “probability of computerization” and give the following jobs a 65 percent or higher probability: social science research assistants, atmospheric and space scientists, and pharmacy aides. So what does this mean? Social science professors will no longer have research assistants? Of course they will. They will just do different things because much of what they do today will be automated.
The intergovernmental Organization for Economic Co-operation and Development released a report of their own in 2016. This report, titled “The Risk of Automation for Jobs in OECD Countries,” applies a different “whole occupations” methodology and puts the share of jobs potentially lost to computerization at nine percent. That is normal churn for the economy.
But what of the skills gap? Will AI eliminate low-skilled workers and create high-skilled job opportunities? The relevant question is whether most people can do a job that’s just a little more complicated than the one they currently have. This is exactly what happened with the industrial revolution; farmers became factory workers, factory workers became factory managers, and so on.
Embracing AI in the Workplace
A January 2018 Accenture report titled “Reworking the Revolution” estimates that new applications of AI combined with human collaboration could boost employment worldwide as much as 10 percent by 2020.
Electricity changed the world, as did mechanical power, as did the assembly line. No one can reasonably claim that we would be better off without those technologies. Each of them bettered our lives, created jobs, and raised wages. AI will be bigger than electricity, bigger than mechanization, bigger than anything that has come before it.
This is how free economies work, and why we have never run out of jobs due to automation. There are not a fixed number of jobs that automation steals one by one, resulting in progressively more unemployment. There are as many jobs in the world as there are buyers and sellers of labor.
Image Credit: enzozo / Shutterstock.com Continue reading
#433924 The Pivotal Differences between ...
Technology and machines are evolving at a blistering pace. Whether it be multimedia devices, driverless cars, or medical advances, the world continues to evolve and change at a speed never before seen in the history of technological advances. At the nexus of these amazing leaps in understanding are the concepts of Artificial Intelligence and Machine …
The post The Pivotal Differences between Artificial Intelligence and Machine Learning appeared first on TFOT. Continue reading
#433852 How Do We Teach Autonomous Cars To Drive ...
Autonomous vehicles can follow the general rules of American roads, recognizing traffic signals and lane markings, noticing crosswalks and other regular features of the streets. But they work only on well-marked roads that are carefully scanned and mapped in advance.
Many paved roads, though, have faded paint, signs obscured behind trees and unusual intersections. In addition, 1.4 million miles of U.S. roads—one-third of the country’s public roadways—are unpaved, with no on-road signals like lane markings or stop-here lines. That doesn’t include miles of private roads, unpaved driveways or off-road trails.
What’s a rule-following autonomous car to do when the rules are unclear or nonexistent? And what are its passengers to do when they discover their vehicle can’t get them where they’re going?
Accounting for the Obscure
Most challenges in developing advanced technologies involve handling infrequent or uncommon situations, or events that require performance beyond a system’s normal capabilities. That’s definitely true for autonomous vehicles. Some on-road examples might be navigating construction zones, encountering a horse and buggy, or seeing graffiti that looks like a stop sign. Off-road, the possibilities include the full variety of the natural world, such as trees down over the road, flooding and large puddles—or even animals blocking the way.
At Mississippi State University’s Center for Advanced Vehicular Systems, we have taken up the challenge of training algorithms to respond to circumstances that almost never happen, are difficult to predict and are complex to create. We seek to put autonomous cars in the hardest possible scenario: driving in an area the car has no prior knowledge of, with no reliable infrastructure like road paint and traffic signs, and in an unknown environment where it’s just as likely to see a cactus as a polar bear.
Our work combines virtual technology and the real world. We create advanced simulations of lifelike outdoor scenes, which we use to train artificial intelligence algorithms to take a camera feed and classify what it sees, labeling trees, sky, open paths and potential obstacles. Then we transfer those algorithms to a purpose-built all-wheel-drive test vehicle and send it out on our dedicated off-road test track, where we can see how our algorithms work and collect more data to feed into our simulations.
Starting Virtual
We have developed a simulator that can create a wide range of realistic outdoor scenes for vehicles to navigate through. The system generates a range of landscapes of different climates, like forests and deserts, and can show how plants, shrubs and trees grow over time. It can also simulate weather changes, sunlight and moonlight, and the accurate locations of 9,000 stars.
The system also simulates the readings of sensors commonly used in autonomous vehicles, such as lidar and cameras. Those virtual sensors collect data that feeds into neural networks as valuable training data.
Simulated desert, meadow and forest environments generated by the Mississippi State University Autonomous Vehicle Simulator. Chris Goodin, Mississippi State University, Author provided.
Building a Test Track
Simulations are only as good as their portrayals of the real world. Mississippi State University has purchased 50 acres of land on which we are developing a test track for off-road autonomous vehicles. The property is excellent for off-road testing, with unusually steep grades for our area of Mississippi—up to 60 percent inclines—and a very diverse population of plants.
We have selected certain natural features of this land that we expect will be particularly challenging for self-driving vehicles, and replicated them exactly in our simulator. That allows us to directly compare results from the simulation and real-life attempts to navigate the actual land. Eventually, we’ll create similar real and virtual pairings of other types of landscapes to improve our vehicle’s capabilities.
A road washout, as seen in real life, left, and in simulation. Chris Goodin, Mississippi State University, Author provided.
Collecting More Data
We have also built a test vehicle, called the Halo Project, which has an electric motor and sensors and computers that can navigate various off-road environments. The Halo Project car has additional sensors to collect detailed data about its actual surroundings, which can help us build virtual environments to run new tests in.
The Halo Project car can collect data about driving and navigating in rugged terrain. Beth Newman Wynn, Mississippi State University, Author provided.
Two of its lidar sensors, for example, are mounted at intersecting angles on the front of the car so their beams sweep across the approaching ground. Together, they can provide information on how rough or smooth the surface is, as well as capturing readings from grass and other plants and items on the ground.
Lidar beams intersect, scanning the ground in front of the vehicle. Chris Goodin, Mississippi State University, Author provided
We’ve seen some exciting early results from our research. For example, we have shown promising preliminary results that machine learning algorithms trained on simulated environments can be useful in the real world. As with most autonomous vehicle research, there is still a long way to go, but our hope is that the technologies we’re developing for extreme cases will also help make autonomous vehicles more functional on today’s roads.
Matthew Doude, Associate Director, Center for Advanced Vehicular Systems; Ph.D. Student in Industrial and Systems Engineering, Mississippi State University; Christopher Goodin, Assistant Research Professor, Center for Advanced Vehicular Systems, Mississippi State University, and Daniel Carruth, Assistant Research Professor and Associate Director for Human Factors and Advanced Vehicle System, Center for Advanced Vehicular Systems, Mississippi State University
This article is republished from The Conversation under a Creative Commons license. Read the original article.
Photo provided for The Conversation by Matthew Goudin / CC BY ND Continue reading