Tag Archives: network

#435676 Intel’s Neuromorphic System Hits 8 ...

At the DARPA Electronics Resurgence Initiative Summit today in Detroit, Intel plans to unveil an 8-million-neuron neuromorphic system comprising 64 Loihi research chips—codenamed Pohoiki Beach. Loihi chips are built with an architecture that more closely matches the way the brain works than do chips designed to do deep learning or other forms of AI. For the set of problems that such “spiking neural networks” are particularly good at, Loihi is about 1,000 times as fast as a CPU and 10,000 times as energy efficient. The new 64-Loihi system represents the equivalent of 8-million neurons, but that’s just a step to a 768-chip, 100-million-neuron system that the company plans for the end of 2019.

Intel and its research partners are just beginning to test what massive neural systems like Pohoiki Beach can do, but so far the evidence points to even greater performance and efficiency, says Mike Davies, director of neuromorphic research at Intel.

“We’re quickly accumulating results and data that there are definite benefits… mostly in the domain of efficiency. Virtually every one that we benchmark…we find significant gains in this architecture,” he says.

Going from a single-Loihi to 64 of them is more of a software issue than a hardware one. “We designed scalability into the Loihi chip from the beginning,” says Davies. “The chip has a hierarchical routing interface…which allows us to scale to up to 16,000 chips. So 64 is just the next step.”

Photo: Tim Herman/Intel Corporation

One of Intel’s Nahuku boards, each of which contains 8 to 32 Intel Loihi neuromorphic chips, shown here interfaced to an Intel Arria 10 FPGA development kit. Intel’s latest neuromorphic system, Pohoiki Beach, is made up of multiple Nahuku boards and contains 64 Loihi chips.

Finding algorithms that run well on an 8-million-neuron system and optimizing those algorithms in software is a considerable effort, he says. Still, the payoff could be huge. Neural networks that are more brain-like, such as Loihi, could be immune to some of the artificial intelligence’s—for lack of a better word—dumbness.

For example, today’s neural networks suffer from something called catastrophic forgetting. If you tried to teach a trained neural network to recognize something new—a new road sign, say—by simply exposing the network to the new input, it would disrupt the network so badly that it would become terrible at recognizing anything. To avoid this, you have to completely retrain the network from the ground up. (DARPA’s Lifelong Learning, or L2M, program is dedicated to solving this problem.)

(Here’s my favorite analogy: Say you coached a basketball team, and you raised the net by 30 centimeters while nobody was looking. The players would miss a bunch at first, but they’d figure things out quickly. If those players were like today’s neural networks, you’d have to pull them off the court and teach them the entire game over again—dribbling, passing, everything.)

Loihi can run networks that might be immune to catastrophic forgetting, meaning it learns a bit more like a human. In fact, there’s evidence through a research collaboration with Thomas Cleland’s group at Cornell University, that Loihi can achieve what’s called one-shot learning. That is, learning a new feature after being exposed to it only once. The Cornell group showed this by abstracting a model of the olfactory system so that it would run on Loihi. When exposed to a new virtual scent, the system not only didn't catastrophically forget everything else it had smelled, it learned to recognize the new scent just from the single exposure.

Loihi might also be able to run feature-extraction algorithms that are immune to the kinds of adversarial attacks that befuddle today’s image recognition systems. Traditional neural networks don’t really understand the features they’re extracting from an image in the way our brains do. “They can be fooled with simplistic attacks like changing individual pixels or adding a screen of noise that wouldn’t fool a human in any way,” Davies explains. But the sparse-coding algorithms Loihi can run work more like the human visual system and so wouldn’t fall for such shenanigans. (Disturbingly, humans are not completely immune to such attacks.)

Photo: Tim Herman/Intel Corporation

A close-up shot of Loihi, Intel’s neuromorphic research chip. Intel’s latest neuromorphic system, Pohoiki Beach, will be comprised of 64 of these Loihi chips.

Researchers have also been using Loihi to improve real-time control for robotic systems. For example, last week at the Telluride Neuromorphic Cognition Engineering Workshop—an event Davies called “summer camp for neuromorphics nerds”—researchers were hard at work using a Loihi-based system to control a foosball table. “It strikes people as crazy,” he says. “But it’s a nice illustration of neuromorphic technology. It’s fast, requires quick response, quick planning, and anticipation. These are what neuromorphic chips are good at.” Continue reading

Posted in Human Robots

#435658 Video Friday: A Two-Armed Robot That ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

ICRES 2019 – July 29-30, 2019 – London, U.K.
DARPA SubT Tunnel Circuit – August 15-22, 2019 – Pittsburgh, Pa., USA
IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
Let us know if you have suggestions for next week, and enjoy today’s videos.

I’m sure you’ve seen this video already because you read this blog every day, but if you somehow missed it because you were skiing across Antarctica (the only valid excuse we’re accepting today), here’s our video introducing HMI’s Aquanaut transforming robot submarine.

And after you recover from all that frostbite, make sure and read our in-depth feature article here.

[ Aquanaut ]

Last week we complained about not having seen a ballbot with a manipulator, so Roberto from CMU shared a new video of their ballbot, featuring a pair of 7-DoF arms.

We should learn more at Humanoids 2019.

[ CMU ]

Thanks Roberto!

The FAA is making it easier for recreational drone pilots to get near-realtime approval to fly in lightly controlled airspace.

[ LAANC ]

Self-reconfigurable modular robots are usually composed of multiple modules with uniform docking interfaces that can be transformed into different configurations by themselves. The reconfiguration planning problem is finding what sequence of reconfiguration actions are required for one arrangement of modules to transform into another. We present a novel reconfiguration planning algorithm for modular robots. The algorithm compares the initial configuration with the goal configuration efficiently. The reconfiguration actions can be executed in a distributed manner so that each module can efficiently finish its reconfiguration task which results in a global reconfiguration for the system. In the end, the algorithm is demonstrated on real modular robots and some example reconfiguration tasks are provided.

[ CKbot ]

A nice design of a gripper that uses a passive thumb of sorts to pick up flat objects from flat surfaces.

[ Paper ] via [ Laval University ]

I like this video of a palletizing robot from Kawasaki because in the background you can see a human doing the exact same job and obviously not enjoying it.

[ Kawasaki ]

This robot cleans and “brings joy and laughter.” What else do we need?

I do appreciate that all the robots are named Leo, and that they’re also all female.

[ LionsBot ]

This is less of a dishwashing robot and more of a dishsorting robot, but we’ll forgive it because it doesn’t drop a single dish.

[ TechMagic ]

Thanks Ryosuke!

A slight warning here that the robot in the following video (which costs something like $180,000) appears “naked” in some scenes, none of which are strictly objectionable, we hope.

Beautifully slim and delicate motion life-size motion figures are ideal avatars for expressing emotions to customers in various arts, content and businesses. We can provide a system that integrates not only motion figures but all moving devices.

[ Speecys ]

The best way to operate a Husky with a pair of manipulators on it is to become the robot.

[ UT Austin ]

The FlyJacket drone control system from EPFL has been upgraded so that it can yank you around a little bit.

In several fields of human-machine interaction, haptic guidance has proven to be an effective training tool for enhancing user performance. This work presents the results of psychophysical and motor learning studies that were carried out with human participant to assess the effect of cable-driven haptic guidance for a task involving aerial robotic teleoperation. The guidance system was integrated into an exosuit, called the FlyJacket, that was developed to control drones with torso movements. Results for the Just Noticeable Difference (JND) and from the Stevens Power Law suggest that the perception of force on the users’ torso scales linearly with the amplitude of the force exerted through the cables and the perceived force is close to the magnitude of the stimulus. Motor learning studies reveal that this form of haptic guidance improves user performance in training, but this improvement is not retained when participants are evaluated without guidance.

[ EPFL ]

The SAND Challenge is an opportunity for small businesses to compete in an autonomous unmanned aerial vehicle (UAV) competition to help NASA address safety-critical risks associated with flying UAVs in the national airspace. Set in a post-natural disaster scenario, SAND will push the envelope of aviation.

[ NASA ]

Legged robots have the potential to traverse diverse and rugged terrain. To find a safe and efficient navigation path and to carefully select individual footholds, it is useful to predict properties of the terrain ahead of the robot. In this work, we propose a method to collect data from robot-terrain interaction and associate it to images, to then train a neural network to predict terrain properties from images.

[ RSL ]

Misty wants to be your new receptionist.

[ Misty Robotics ]

For years, we’ve been pointing out that while new Roombas have lots of great features, older Roombas still do a totally decent job of cleaning your floors. This video is a performance comparison between the newest Roomba (the S9+) and the original 2002 Roomba (!), and the results will surprise you. Or maybe they won’t.

[ Vacuum Wars ]

Lex Fridman from MIT interviews Chris Urmson, who was involved in some of the earliest autonomous vehicle projects, Google’s original self-driving car among them, and is currently CEO of Aurora Innovation.

Chris Urmson was the CTO of the Google Self-Driving Car team, a key engineer and leader behind the Carnegie Mellon autonomous vehicle entries in the DARPA grand challenges and the winner of the DARPA urban challenge. Today he is the CEO of Aurora Innovation, an autonomous vehicle software company he started with Sterling Anderson, who was the former director of Tesla Autopilot, and Drew Bagnell, Uber’s former autonomy and perception lead.

[ AI Podcast ]

In this week’s episode of Robots in Depth, Per speaks with Lael Odhner from RightHand Robotics.

Lael Odhner is a co-founder of RightHand Robotics, that is developing a gripper based on the combination of control and soft, compliant parts to get better grasping of objects. Their work focuses on grasping and manipulating everyday human objects in everyday environments.This mimics how human hands combine control and flexibility to grasp objects with great dexterity.

The combination of control and compliance makes the RightHand robotics gripper very light-weight and affordable. The compliance makes it easier to grasp objects of unknown shape and differs from the way industrial robots usually grip. The compliance also helps in a more unstructured environment where contact with the object and its surroundings cannot be exactly predicted.

[ RightHand Robotics ] via [ Robots in Depth ] Continue reading

Posted in Human Robots

#435601 New Double 3 Robot Makes Telepresence ...

Today, Double Robotics is announcing Double 3, the latest major upgrade to its line of consumer(ish) telepresence robots. We had a (mostly) fantastic time testing out Double 2 back in 2016. One of the things that we found out back then was that it takes a lot of practice to remotely drive the robot around. Double 3 solves this problem by leveraging the substantial advances in 3D sensing and computing that have taken place over the past few years, giving their new robot a level of intelligence that promises to make telepresence more accessible for everyone.

Double 2’s iPad has been replaced by “a fully integrated solution”—which is a fancy way of saying a dedicated 9.7-inch touchscreen and a whole bunch of other stuff. That other stuff includes an NVIDIA Jetson TX2 AI computing module, a beamforming six-microphone array, an 8-watt speaker, a pair of 13-megapixel cameras (wide angle and zoom) on a tilting mount, five ultrasonic rangefinders, and most excitingly, a pair of Intel RealSense D430 depth sensors.

It’s those new depth sensors that really make Double 3 special. The D430 modules each uses a pair of stereo cameras with a pattern projector to generate 1280 x 720 depth data with a range of between 0.2 and 10 meters away. The Double 3 robot uses all of this high quality depth data to locate obstacles, but at this point, it still doesn’t drive completely autonomously. Instead, it presents the remote operator with a slick, augmented reality view of drivable areas in the form of a grid of dots. You just click where you want the robot to go, and it will skillfully take itself there while avoiding obstacles (including dynamic obstacles) and related mishaps along the way.

This effectively offloads the most stressful part of telepresence—not running into stuff—from the remote user to the robot itself, which is the way it should be. That makes it that much easier to encourage people to utilize telepresence for the first time. The way the system is implemented through augmented reality is particularly impressive, I think. It looks like it’s intuitive enough for an inexperienced user without being restrictive, and is a clever way of mitigating even significant amounts of lag.

Otherwise, Double 3’s mobility system is exactly the same as the one featured on Double 2. In fact, that you can stick a Double 3 head on a Double 2 body and it instantly becomes a Double 3. Double Robotics is thoughtfully offering this to current Double 2 owners as a significantly more affordable upgrade option than buying a whole new robot.

For more details on all of Double 3's new features, we spoke with the co-founders of Double Robotics, Marc DeVidts and David Cann.

IEEE Spectrum: Why use this augmented reality system instead of just letting the user click on a regular camera image? Why make things more visually complicated, especially for new users?

Marc DeVidts and David Cann: One of the things that we realized about nine months ago when we got this whole thing working was that without the mixed reality for driving, it was really too magical of an experience for the customer. Even us—we had a hard time understanding whether the robot could really see obstacles and understand where the floor is and that kind of thing. So, we said “What would be the best way of communicating this information to the user?” And the right way to do it ended up drawing the graphics directly onto the scene. It’s really awesome—we have a full, real time 3D scene with the depth information drawn on top of it. We’re starting with some relatively simple graphics, and we’ll be adding more graphics in the future to help the user understand what the robot is seeing.

How robust is the vision system when it comes to obstacle detection and avoidance? Does it work with featureless surfaces, IR absorbent surfaces, in low light, in direct sunlight, etc?

We’ve looked at all of those cases, and one of the reasons that we’re going with the RealSense is the projector that helps us to see blank walls. We also found that having two sensors—one facing the floor and one facing forward—gives us a great coverage area. Having ultrasonic sensors in there as well helps us to detect anything that we can't see with the cameras. They're sort of a last safety measure, especially useful for detecting glass.

It seems like there’s a lot more that you could do with this sensing and mapping capability. What else are you working on?

We're starting with this semi-autonomous driving variant, and we're doing a private beta of full mapping. So, we’re going to do full SLAM of your environment that will be mapped by multiple robots at the same time while you're driving, and then you'll be able to zoom out to a map and click anywhere and it will drive there. That's where we're going with it, but we want to take baby steps to get there. It's the obvious next step, I think, and there are a lot more possibilities there.

Do you expect developers to be excited for this new mapping capability?

We're using a very powerful computer in the robot, a NVIDIA Jetson TX2 running Ubuntu. There's room to grow. It’s actually really exciting to be able to see, in real time, the 3D pose of the robot along with all of the depth data that gets transformed in real time into one view that gives you a full map. Having all of that data and just putting those pieces together and getting everything to work has been a huge feat in of itself.

We have an extensive API for developers to do custom implementations, either for telepresence or other kinds of robotics research. Our system isn't running ROS, but we're going to be adding ROS adapters for all of our hardware components.

Telepresence robots depend heavily on wireless connectivity, which is usually not something that telepresence robotics companies like Double have direct control over. Have you found that connectivity has been getting significantly better since you first introduced Double?

When we started in 2013, we had a lot of customers that didn’t have WiFi in their hallways, just in the conference rooms. We very rarely hear about customers having WiFi connectivity issues these days. The bigger issue we see is when people are calling into the robot from home, where they don't have proper traffic management on their home network. The robot doesn't need a ton of bandwidth, but it does need consistent, low latency bandwidth. And so, if someone else in the house is watching Netflix or something like that, it’s going to saturate your connection. But for the most part, it’s gotten a lot better over the last few years, and it’s no longer a big problem for us.

Do you think 5G will make a significant difference to telepresence robots?

We’ll see. We like the low latency possibilities and the better bandwidth, but it's all going to be a matter of what kind of reception you get. LTE can be great, if you have good reception; it’s all about where the tower is. I’m pretty sure that WiFi is going to be the primary thing for at least the next few years.

DeVidts also mentioned that an unfortunate side effect of the new depth sensors is that hanging a t-shirt on your Double to give it some personality will likely render it partially blind, so that's just something to keep in mind. To make up for this, you can switch around the colorful trim surrounding the screen, which is nowhere near as fun.

When the Double 3 is ready for shipping in late September, US $2,000 will get you the new head with all the sensors and stuff, which seamlessly integrates with your Double 2 base. Buying Double 3 straight up (with the included charging dock) will run you $4,ooo. This is by no means an inexpensive robot, and my impression is that it’s not really designed for individual consumers. But for commercial, corporate, healthcare, or education applications, $4k for a robot as capable as the Double 3 is really quite a good deal—especially considering the kinds of use cases for which it’s ideal.

[ Double Robotics ] Continue reading

Posted in Human Robots

#435593 AI at the Speed of Light

Neural networks shine for solving tough problems such as facial and voice recognition, but conventional electronic versions are limited in speed and hungry for power. In theory, optics could beat digital electronic computers in the matrix calculations used in neural networks. However, optics had been limited by their inability to do some complex calculations that had required electronics. Now new experiments show that all-optical neural networks can tackle those problems.

The key attraction of neural networks is their massive interconnections among processors, comparable to the complex interconnections among neurons in the brain. This lets them perform many operations simultaneously, like the human brain does when looking at faces or listening to speech, making them more efficient for facial and voice recognition than traditional electronic computers that execute one instruction at a time.

Today's electronic neural networks have reached eight million neurons, but their future use in artificial intelligence may be limited by their high power usage and limited parallelism in connections. Optical connections through lenses are inherently parallel. The lens in your eye simultaneously focuses light from across your field of view onto the retina in the back of your eye, where an array of light-detecting nerve cells detects the light. Each cell then relays the signal it receives to neurons in the brain that process the visual signals to show us an image.

Glass lenses process optical signals by focusing light, which performs a complex mathematical operation called a Fourier transform that preserves the information in the original scene but rearranges is completely. One use of Fourier transforms is converting time variations in signal intensity into a plot of the frequencies present in the signal. The military used this trick in the 1950s to convert raw radar return signals recorded by an aircraft in flight into a three-dimensional image of the landscape viewed by the plane. Today that conversion is done electronically, but the vacuum-tube computers of the 1950s were not up to the task.

Development of neural networks for artificial intelligence started with electronics, but their AI applications have been limited by their slow processing and need for extensive computing resources. Some researchers have developed hybrid neural networks, in which optics perform simple linear operations, but electronics perform more complex nonlinear calculations. Now two groups have demonstrated simple all-optical neural networks that do all processing with light.

In May, Wolfram Pernice of the Institute of Physics at the University of Münster in Germany and colleagues reported testing an all-optical “neuron” in which signals change target materials between liquid and solid states, an effect that has been used for optical data storage. They demonstrated nonlinear processing, and produced output pulses like those from organic neurons. They then produced an integrated photonic circuit that incorporated four optical neurons operating at different wavelengths, each of which connected to 15 optical synapses. The photonic circuit contained more than 140 components and could recognize simple optical patterns. The group wrote that their device is scalable, and that the technology promises “access to the high speed and high bandwidth inherent to optical systems, thus enabling the direct processing of optical telecommunication and visual data.”

Now a group at the Hong Kong University of Science and Technology reports in Optica that they have made an all-optical neural network based on a different process, electromagnetically induced transparency, in which incident light affects how atoms shift between quantum-mechanical energy levels. The process is nonlinear and can be triggered by very weak light signals, says Shengwang Du, a physics professor and coauthor of the paper.

In their demonstration, they illuminated rubidium-85 atoms cooled by lasers to about 10 microKelvin (10 microdegrees above absolute zero). Although the technique may seem unusually complex, Du said the system was the most accessible one in the lab that could produce the desired effects. “As a pure quantum atomic system [it] is ideal for this proof-of-principle experiment,” he says.

Next, they plan to scale up the demonstration using a hot atomic vapor center, which is less expensive, does not require time-consuming preparation of cold atoms, and can be integrated with photonic chips. Du says the major challenges are reducing cost of the nonlinear processing medium and increasing the scale of the all-optical neural network for more complex tasks.

“Their demonstration seems valid,” says Volker Sorger, an electrical engineer at George Washington University in Washington who was not involved in either demonstration. He says the all-optical approach is attractive because it offers very high parallelism, but the update rate is limited to about 100 hertz because of the liquid crystals used in their test, and he is not completely convinced their approach can be scaled error-free. Continue reading

Posted in Human Robots

#435589 Construction Robots Learn to Excavate by ...

Pavel Savkin remembers the first time he watched a robot imitate his movements. Minutes earlier, the engineer had finished “showing” the robotic excavator its new goal by directing its movements manually. Now, running on software Savkin helped design, the robot was reproducing his movements, gesture for gesture. “It was like there was something alive in there—but I knew it was me,” he said.

Savkin is the CTO of SE4, a robotics software project that styles itself the “driver” of a fleet of robots that will eventually build human colonies in space. For now, SE4 is focused on creating software that can help developers communicate with robots, rather than on building hardware of its own.
The Tokyo-based startup showed off an industrial arm from Universal Robots that was running SE4’s proprietary software at SIGGRAPH in July. SE4’s demonstration at the Los Angeles innovation conference drew the company’s largest audience yet. The robot, nicknamed Squeezie, stacked real blocks as directed by SE4 research engineer Nathan Quinn, who wore a VR headset and used handheld controls to “show” Squeezie what to do.

As Quinn manipulated blocks in a virtual 3D space, the software learned a set of ordered instructions to be carried out in the real world. That order is essential for remote operations, says Quinn. To build remotely, developers need a way to communicate instructions to robotic builders on location. In the age of digital construction and industrial robotics, giving a computer a blueprint for what to build is a well-explored art. But operating on a distant object—especially under conditions that humans haven’t experienced themselves—presents challenges that only real-time communication with operators can solve.

The problem is that, in an unpredictable setting, even simple tasks require not only instruction from an operator, but constant feedback from the changing environment. Five years ago, the Swedish fiber network provider umea.net (part of the private Umeå Energy utility) took advantage of the virtual reality boom to promote its high-speed connections with the help of a viral video titled “Living with Lag: An Oculus Rift Experiment.” The video is still circulated in VR and gaming circles.

In the experiment, volunteers donned headgear that replaced their real-time biological senses of sight and sound with camera and audio feeds of their surroundings—both set at a 3-second delay. Thus equipped, volunteers attempt to complete everyday tasks like playing ping-pong, dancing, cooking, and walking on a beach, with decidedly slapstick results.

At outer-orbit intervals, including SE4’s dream of construction projects on Mars, the limiting factor in communication speed is not an artificial delay, but the laws of physics. The shifting relative positions of Earth and Mars mean that communications between the planets—even at the speed of light—can take anywhere from 3 to 22 minutes.

A long-distance relationship

Imagine trying to manage a construction project from across an ocean without the benefit of intelligent workers: sending a ship to an unknown world with a construction crew and blueprints for a log cabin, and four months later receiving a letter back asking how to cut down a tree. The parallel problem in long-distance construction with robots, according to SE4 CEO Lochlainn Wilson, is that automation relies on predictability. “Every robot in an industrial setting today is expecting a controlled environment.”
Platforms for applying AR and VR systems to teach tasks to artificial intelligences, as SE4 does, are already proliferating in manufacturing, healthcare, and defense. But all of the related communications systems are bound by physics and, specifically, the speed of light.
The same fundamental limitation applies in space. “Our communications are light-based, whether they’re radio or optical,” says Laura Seward Forczyk, a planetary scientist and consultant for space startups. “If you’re going to Mars and you want to communicate with your robot or spacecraft there, you need to have it act semi- or mostly-independently so that it can operate without commands from Earth.”

Semantic control
That’s exactly what SE4 aims to do. By teaching robots to group micro-movements into logical units—like all the steps to building a tower of blocks—the Tokyo-based startup lets robots make simple relational judgments that would allow them to receive a full set of instruction modules at once and carry them out in order. This sidesteps the latency issue in real-time bilateral communications that could hamstring a project or at least make progress excruciatingly slow.
The key to the platform, says Wilson, is the team’s proprietary operating software, “Semantic Control.” Just as in linguistics and philosophy, “semantics” refers to meaning itself, and meaning is the key to a robot’s ability to make even the smallest decisions on its own. “A robot can scan its environment and give [raw data] to us, but it can’t necessarily identify the objects around it and what they mean,” says Wilson.

That’s where human intelligence comes in. As part of the demonstration phase, the human operator of an SE4-controlled machine “annotates” each object in the robot’s vicinity with meaning. By labeling objects in the VR space with useful information—like which objects are building material and which are rocks—the operator helps the robot make sense of its real 3D environment before the building begins.

Giving robots the tools to deal with a changing environment is an important step toward allowing the AI to be truly independent, but it’s only an initial step. “We’re not letting it do absolutely everything,” said Quinn. “Our robot is good at moving an object from point A to point B, but it doesn’t know the overall plan.” Wilson adds that delegating environmental awareness and raw mechanical power to separate agents is the optimal relationship for a mixed human-robot construction team; it “lets humans do what they’re good at, while robots do what they do best.”

This story was updated on 4 September 2019. Continue reading

Posted in Human Robots