Tag Archives: nature

#431836 Do Our Brains Use Deep Learning to Make ...

The first time Dr. Blake Richards heard about deep learning, he was convinced that he wasn’t just looking at a technique that would revolutionize artificial intelligence. He also knew he was looking at something fundamental about the human brain.
That was the early 2000s, and Richards was taking a course with Dr. Geoff Hinton at the University of Toronto. Hinton, a pioneer architect of the algorithm that would later take the world by storm, was offering an introductory course on his learning method inspired by the human brain.
The key words here are “inspired by.” Despite Richards’ conviction, the odds were stacked against him. The human brain, as it happens, seems to lack a critical function that’s programmed into deep learning algorithms. On the surface, the algorithms were violating basic biological facts already proven by neuroscientists.
But what if, superficial differences aside, deep learning and the brain are actually compatible?
Now, in a new study published in eLife, Richards, working with DeepMind, proposed a new algorithm based on the biological structure of neurons in the neocortex. Also known as the cortex, this outermost region of the brain is home to higher cognitive functions such as reasoning, prediction, and flexible thought.
The team networked their artificial neurons together into a multi-layered network and challenged it with a classic computer vision task—identifying hand-written numbers.
The new algorithm performed well. But the kicker is that it analyzed the learning examples in a way that’s characteristic of deep learning algorithms, even though it was completely based on the brain’s fundamental biology.
“Deep learning is possible in a biological framework,” concludes the team.
Because the model is only a computer simulation at this point, Richards hopes to pass the baton to experimental neuroscientists, who could actively test whether the algorithm operates in an actual brain.
If so, the data could then be passed back to computer scientists to work out the next generation of massively parallel and low-energy algorithms to power our machines.
It’s a first step towards merging the two fields back into a “virtuous circle” of discovery and innovation.
The blame game
While you’ve probably heard of deep learning’s recent wins against humans in the game of Go, you might not know the nitty-gritty behind the algorithm’s operations.
In a nutshell, deep learning relies on an artificial neural network with virtual “neurons.” Like a towering skyscraper, the network is structured into hierarchies: lower-level neurons process aspects of an input—for example, a horizontal or vertical stroke that eventually forms the number four—whereas higher-level neurons extract more abstract aspects of the number four.
To teach the network, you give it examples of what you’re looking for. The signal propagates forward in the network (like climbing up a building), where each neuron works to fish out something fundamental about the number four.
Like children trying to learn a skill the first time, initially the network doesn’t do so well. It spits out what it thinks a universal number four should look like—think a Picasso-esque rendition.
But here’s where the learning occurs: the algorithm compares the output with the ideal output, and computes the difference between the two (dubbed “error”). This error is then “backpropagated” throughout the entire network, telling each neuron: hey, this is how far off you were, so try adjusting your computation closer to the ideal.
Millions of examples and tweakings later, the network inches closer to the desired output and becomes highly proficient at the trained task.
This error signal is crucial for learning. Without efficient “backprop,” the network doesn’t know which of its neurons are off kilter. By assigning blame, the AI can better itself.
The brain does this too. How? We have no clue.
Biological No-Go
What’s clear, though, is that the deep learning solution doesn’t work.
Backprop is a pretty needy function. It requires a very specific infrastructure for it to work as expected.
For one, each neuron in the network has to receive the error feedback. But in the brain, neurons are only connected to a few downstream partners (if that). For backprop to work in the brain, early-level neurons need to be able to receive information from billions of connections in their downstream circuits—a biological impossibility.
And while certain deep learning algorithms adapt a more local form of backprop— essentially between neurons—it requires their connection forwards and backwards to be symmetric. This hardly ever occurs in the brain’s synapses.
More recent algorithms adapt a slightly different strategy, in that they implement a separate feedback pathway that helps the neurons to figure out errors locally. While it’s more biologically plausible, the brain doesn’t have a separate computational network dedicated to the blame game.
What it does have are neurons with intricate structures, unlike the uniform “balls” that are currently applied in deep learning.
Branching Networks
The team took inspiration from pyramidal cells that populate the human cortex.
“Most of these neurons are shaped like trees, with ‘roots’ deep in the brain and ‘branches’ close to the surface,” says Richards. “What’s interesting is that these roots receive a different set of inputs than the branches that are way up at the top of the tree.”
This is an illustration of a multi-compartment neural network model for deep learning. Left: Reconstruction of pyramidal neurons from mouse primary visual cortex. Right: Illustration of simplified pyramidal neuron models. Image Credit: CIFAR
Curiously, the structure of neurons often turn out be “just right” for efficiently cracking a computational problem. Take the processing of sensations: the bottoms of pyramidal neurons are right smack where they need to be to receive sensory input, whereas the tops are conveniently placed to transmit feedback errors.
Could this intricate structure be evolution’s solution to channeling the error signal?
The team set up a multi-layered neural network based on previous algorithms. But rather than having uniform neurons, they gave those in middle layers—sandwiched between the input and output—compartments, just like real neurons.
When trained with hand-written digits, the algorithm performed much better than a single-layered network, despite lacking a way to perform classical backprop. The cell-like structure itself was sufficient to assign error: the error signals at one end of the neuron are naturally kept separate from input at the other end.
Then, at the right moment, the neuron brings both sources of information together to find the best solution.
There’s some biological evidence for this: neuroscientists have long known that the neuron’s input branches perform local computations, which can be integrated with signals that propagate backwards from the so-called output branch.
However, we don’t yet know if this is the brain’s way of dealing blame—a question that Richards urges neuroscientists to test out.
What’s more, the network parsed the problem in a way eerily similar to traditional deep learning algorithms: it took advantage of its multi-layered structure to extract progressively more abstract “ideas” about each number.
“[This is] the hallmark of deep learning,” the authors explain.
The Deep Learning Brain
Without doubt, there will be more twists and turns to the story as computer scientists incorporate more biological details into AI algorithms.
One aspect that Richards and team are already eyeing is a top-down predictive function, in which signals from higher levels directly influence how lower levels respond to input.
Feedback from upper levels doesn’t just provide error signals; it could also be nudging lower processing neurons towards a “better” activity pattern in real-time, says Richards.
The network doesn’t yet outperform other non-biologically derived (but “brain-inspired”) deep networks. But that’s not the point.
“Deep learning has had a huge impact on AI, but, to date, its impact on neuroscience has been limited,” the authors say.
Now neuroscientists have a lead they could experimentally test: that the structure of neurons underlie nature’s own deep learning algorithm.
“What we might see in the next decade or so is a real virtuous cycle of research between neuroscience and AI, where neuroscience discoveries help us to develop new AI and AI can help us interpret and understand our experimental data in neuroscience,” says Richards.
Image Credit: christitzeimaging.com / Shutterstock.com Continue reading

Posted in Human Robots

#431689 Robotic Materials Will Distribute ...

The classical view of a robot as a mechanical body with a central “brain” that controls its behavior could soon be on its way out. The authors of a recent article in Science Robotics argue that future robots will have intelligence distributed throughout their bodies.
The concept, and the emerging discipline behind it, are variously referred to as “material robotics” or “robotic materials” and are essentially a synthesis of ideas from robotics and materials science. Proponents say advances in both fields are making it possible to create composite materials capable of combining sensing, actuation, computation, and communication and operating independently of a central processing unit.
Much of the inspiration for the field comes from nature, with practitioners pointing to the adaptive camouflage of the cuttlefish’s skin, the ability of bird wings to morph in response to different maneuvers, or the banyan tree’s ability to grow roots above ground to support new branches.
Adaptive camouflage and morphing wings have clear applications in the defense and aerospace sector, but the authors say similar principles could be used to create everything from smart tires able to calculate the traction needed for specific surfaces to grippers that can tailor their force to the kind of object they are grasping.
“Material robotics represents an acknowledgment that materials can absorb some of the challenges of acting and reacting to an uncertain world,” the authors write. “Embedding distributed sensors and actuators directly into the material of the robot’s body engages computational capabilities and offloads the rigid information and computational requirements from the central processing system.”
The idea of making materials more adaptive is not new, and there are already a host of “smart materials” that can respond to stimuli like heat, mechanical stress, or magnetic fields by doing things like producing a voltage or changing shape. These properties can be carefully tuned to create materials capable of a wide variety of functions such as movement, self-repair, or sensing.
The authors say synthesizing these kinds of smart materials, alongside other advanced materials like biocompatible conductors or biodegradable elastomers, is foundational to material robotics. But the approach also involves integration of many different capabilities in the same material, careful mechanical design to make the most of mechanical capabilities, and closing the loop between sensing and control within the materials themselves.
While there are stand-alone applications for such materials in the near term, like smart fabrics or robotic grippers, the long-term promise of the field is to distribute decision-making in future advanced robots. As they are imbued with ever more senses and capabilities, these machines will be required to shuttle huge amounts of control and feedback data to and fro, placing a strain on both their communication and computation abilities.
Materials that can process sensor data at the source and either autonomously react to it or filter the most relevant information to be passed on to the central processing unit could significantly ease this bottleneck. In a press release related to an earlier study, Nikolaus Correll, an assistant professor of computer science at the University of Colorado Boulder who is also an author of the current paper, pointed out this is a tactic used by the human body.
“The human sensory system automatically filters out things like the feeling of clothing rubbing on the skin,” he said. “An artificial skin with possibly thousands of sensors could do the same thing, and only report to a central ‘brain’ if it touches something new.”
There are still considerable challenges to realizing this vision, though, the authors say, noting that so far the young field has only produced proof of concepts. The biggest challenge remains manufacturing robotic materials in a way that combines all these capabilities in a small enough package at an affordable cost.
Luckily, the authors note, the field can draw on convergent advances in both materials science, such as the development of new bulk materials with inherent multifunctionality, and robotics, such as the ever tighter integration of components.
And they predict that doing away with the prevailing dichotomy of “brain versus body” could lay the foundations for the emergence of “robots with brains in their bodies—the foundation of inexpensive and ubiquitous robots that will step into the real world.”
Image Credit: Anatomy Insider / Shutterstock.com Continue reading

Posted in Human Robots

#431678 This Week’s Awesome Stories From ...

ARTIFICIAL INTELLIGENCE
Can A.I. Be Taught to Explain Itself?Cliff Kuang | New York Times“Kosinski’s results suggested something stranger: that artificial intelligences often excel by developing whole new ways of seeing, or even thinking, that are inscrutable to us. It’s a more profound version of what’s often called the ‘black box’ problem—the inability to discern exactly what machines are doing when they’re teaching themselves novel skills—and it has become a central concern in artificial-intelligence research.”
BIOTECH
Semi-Synthetic Life Form Now Fully Armed and OperationalAntonio Regalado | MIT Technology Review “By this year, the team had devised a more stable bacterium. But it wasn’t enough to endow the germ with a partly alien code—it needed to use that code to make a partly alien protein. That’s what Romesberg’s team, reporting today in the journal Nature, says it has done.”
COMPUTING
4 Strange New Ways to ComputeSamuel K. Moore | IEEE Spectrum “With Moore’s Law slowing, engineers have been taking a cold hard look at what will keep computing going when it’s gone…What follows includes a taste of both the strange and the potentially impactful.”
INNOVATION
Google X and the Science of Radical CreativityDerek Thompson | The Atlantic “But what X is attempting is nonetheless audacious. It is investing in both invention and innovation. Its founders hope to demystify and routinize the entire process of making a technological breakthrough—to nurture each moonshot, from question to idea to discovery to product—and, in so doing, to write an operator’s manual for radical creativity.”
PRIVACY AND SECURITY
Uber Paid Hackers to Delete Stolen Data on 57 Million PeopleEric Newcomer | Bloomberg “Hackers stole the personal data of 57 million customers and drivers from Uber Technologies Inc., a massive breach that the company concealed for more than a year. This week, the ride-hailing firm ousted its chief security officer and one of his deputies for their roles in keeping the hack under wraps, which included a $100,000 payment to the attackers.”
Image Credit: singpentinkhappy / Shutterstock.com Continue reading

Posted in Human Robots

#431653 9 Robot Animals Built From Nature’s ...

Millions of years of evolution have allowed animals to develop some elegant and highly efficient solutions to problems like locomotion, flight, and dexterity. As Boston Dynamics unveils its latest mechanical animals, here’s a rundown of nine recent robots that borrow from nature and why.
SpotMini – Boston Dynamics

Starting with BigDog in 2005, the US company has built a whole stable of four-legged robots in recent years. Their first product was designed to be a robotic packhorse for soldiers that borrowed the quadrupedal locomotion of animals to travel over terrain too rough for conventional vehicles.
The US Army ultimately rejected the robot for being too noisy, according to the Guardian, but since then the company has scaled down its design, first to the Spot, then a first edition of the SpotMini that came out last year.
The latter came with a robotic arm where its head should be and was touted as a domestic helper, but a sleeker second edition without the arm was released earlier this month. There’s little detail on what the new robot is designed for, but the more polished design suggests a more consumer-focused purpose.
OctopusGripper – Festo

Festo has released a long line of animal-inspired machines over the years, from a mechanical kangaroo to robotic butterflies. Its latest creation isn’t a full animal—instead it’s a gripper based on an octopus tentacle that can be attached to the end of a robotic arm.
The pneumatically-powered device is made of soft silicone and features two rows of suction cups on its inner edge. By applying compressed air the tentacle can wrap around a wide variety of differently shaped objects, just like its natural counterpart, and a vacuum can be applied to the larger suction cups to grip the object securely. Because it’s soft, it holds promise for robots required to operate safely in collaboration with humans.
CRAM – University of California, Berkeley

Cockroaches are renowned for their hardiness and ability to disappear down cracks that seem far too small for them. Researchers at UC Berkeley decided these capabilities could be useful for search and rescue missions and so set about experimenting on the insects to find out their secrets.
They found the bugs can squeeze into gaps a fifth of their normal standing height by splaying their legs out to the side without significantly slowing themselves down. So they built a palm-sized robot with a jointed plastic shell that could do the same to squeeze into crevices half its normal height.
Snake Robot – Carnegie Mellon University

Search and rescue missions are a common theme for animal-inspired robots, but the snake robot built by CMU researchers is one of the first to be tested in a real disaster.
A team of roboticists from the university helped Mexican Red Cross workers search collapsed buildings for survivors after the 7.1-magnitude earthquake that struck Mexico City in September. The snake design provides a small diameter and the ability to move in almost any direction, which makes the robot ideal for accessing tight spaces, though the team was unable to locate any survivors.
The snake currently features a camera on the front, but researchers told IEEE Spectrum that the experience helped them realize they should also add a microphone to listen for people trapped under the rubble.
Bio-Hybrid Stingray – Harvard University

Taking more than just inspiration from the animal kingdom, a group from Harvard built a robotic stingray out of silicone and rat heart muscle cells.
The robot uses the same synchronized undulations along the edge of its fins to propel itself as a ray does. But while a ray has two sets of muscles to pull the fins up and down, the new device has only one that pulls them down, with a springy gold skeleton that pulls them back up again. The cells are also genetically modified to be activated by flashes of light.
The project’s leader eventually hopes to engineer a human heart, and both his stingray and an earlier jellyfish bio-robot are primarily aimed at better understanding how that organ works.
Bat Bot – Caltech

Most recent advances in drone technology have come from quadcopters, but Caltech engineers think rigid devices with rapidly spinning propellers are probably not ideal for use in close quarters with humans.
That’s why they turned to soft-winged bats for inspiration. That’s no easy feat, though, considering bats use more than 40 joints with each flap of their wings, so the team had to optimize down to nine joints to avoid it becoming too bulky. The simplified bat can’t ascend yet, but its onboard computer and sensors let it autonomously carry out glides, turns, and dives.
Salto – UC Berkeley

While even the most advanced robots tend to plod around, tree-dwelling animals have the ability to spring from branch to branch to clear obstacles and climb quickly. This could prove invaluable for search and rescue robots by allowing them to quickly traverse disordered rubble.
UC Berkeley engineers turned to the Senegal bush baby for inspiration after determining it scored highest in “vertical jumping agility”—a combination of how high and how frequently an animal can jump. They recreated its ability to get into a super-low crouch that stores energy in its tendons to create a robot that could carry out parkour-style double jumps off walls to quickly gain height.
Pleurobot – École Polytechnique Fédérale de Lausanne

Normally robots are masters of air, land, or sea, but the robotic salamander built by researchers at EPFL can both walk and swim.
Its designers used X-ray videos to carefully study how the amphibians move before using this to build a true-to-life robotic version using 3D printed bones, motorized joints, and a synthetic nervous system made up of electronic circuitry.
The robot’s low center of mass and segmented legs make it great at navigating rough terrain without losing balance, and the ability to swim gives added versatility. They also hope it will help paleontologists gain a better understanding of the movements of the first tetrapods to transition from water to land, which salamanders are the best living analog of.
Eelume – Eelume

A snakelike body isn’t only useful on land—eels are living proof it’s an efficient way to travel underwater, too. Norwegian robotics company Eelume has borrowed these principles to build a robot capable of sub-sea inspection, maintenance, and repair.
The modular design allows operators to put together their own favored configuration of joints and payloads such as sensors and tools. And while an early version of the robot used the same method of locomotion as an eel, the latest version undergoing sea trials has added a variety of thrusters for greater speeds and more maneuverability.
Image Credit: Boston Dynamics / YouTube Continue reading

Posted in Human Robots

#431592 Reactive Content Will Get to Know You ...

The best storytellers react to their audience. They look for smiles, signs of awe, or boredom; they simultaneously and skillfully read both the story and their sitters. Kevin Brooks, a seasoned storyteller working for Motorola’s Human Interface Labs, explains, “As the storyteller begins, they must tune in to… the audience’s energy. Based on this energy, the storyteller will adjust their timing, their posture, their characterizations, and sometimes even the events of the story. There is a dialog between audience and storyteller.”
Shortly after I read the script to Melita, the latest virtual reality experience from Madrid-based immersive storytelling company Future Lighthouse, CEO Nicolas Alcalá explained to me that the piece is an example of “reactive content,” a concept he’s been working on since his days at Singularity University.

For the first time in history, we have access to technology that can merge the reactive and affective elements of oral storytelling with the affordances of digital media, weaving stunning visuals, rich soundtracks, and complex meta-narratives in a story arena that has the capability to know you more intimately than any conventional storyteller could.
It’s no understatement to say that the storytelling potential here is phenomenal.
In short, we can refer to content as reactive if it reads and reacts to users based on their body rhythms, emotions, preferences, and data points. Artificial intelligence is used to analyze users’ behavior or preferences to sculpt unique storylines and narratives, essentially allowing for a story that changes in real time based on who you are and how you feel.
The development of reactive content will allow those working in the industry to go one step further than simply translating the essence of oral storytelling into VR. Rather than having a narrative experience with a digital storyteller who can read you, reactive content has the potential to create an experience with a storyteller who knows you.
This means being able to subtly insert minor personal details that have a specific meaning to the viewer. When we talk to our friends we often use experiences we’ve shared in the past or knowledge of our audience to give our story as much resonance as possible. Targeting personal memories and aspects of our lives is a highly effective way to elicit emotions and aid in visualizing narratives. When you can do this with the addition of visuals, music, and characters—all lifted from someone’s past—you have the potential for overwhelmingly engaging and emotionally-charged content.
Future Lighthouse inform me that for now, reactive content will rely primarily on biometric feedback technology such as breathing, heartbeat, and eye tracking sensors. A simple example would be a story in which parts of the environment or soundscape change in sync with the user’s heartbeat and breathing, or characters who call you out for not paying attention.
The next step would be characters and situations that react to the user’s emotions, wherein algorithms analyze biometric information to make inferences about states of emotional arousal (“why are you so nervous?” etc.). Another example would be implementing the use of “arousal parameters,” where the audience can choose what level of “fear” they want from a VR horror story before algorithms modulate the experience using information from biometric feedback devices.
The company’s long-term goal is to gather research on storytelling conventions and produce a catalogue of story “wireframes.” This entails distilling the basic formula to different genres so they can then be fleshed out with visuals, character traits, and soundtracks that are tailored for individual users based on their deep data, preferences, and biometric information.
The development of reactive content will go hand in hand with a renewed exploration of diverging, dynamic storylines, and multi-narratives, a concept that hasn’t had much impact in the movie world thus far. In theory, the idea of having a story that changes and mutates is captivating largely because of our love affair with serendipity and unpredictability, a cultural condition theorist Arthur Kroker refers to as the “hypertextual imagination.” This feeling of stepping into the unknown with the possibility of deviation from the habitual translates as a comforting reminder that our own lives can take exciting and unexpected turns at any moment.
The inception of the concept into mainstream culture dates to the classic Choose Your Own Adventure book series that launched in the late 70s, which in its literary form had great success. However, filmic takes on the theme have made somewhat less of an impression. DVDs like I’m Your Man (1998) and Switching (2003) both use scene selection tools to determine the direction of the storyline.
A more recent example comes from Kino Industries, who claim to have developed the technology to allow filmmakers to produce interactive films in which viewers can use smartphones to quickly vote on which direction the narrative takes at numerous decision points throughout the film.
The main problem with diverging narrative films has been the stop-start nature of the interactive element: when I’m immersed in a story I don’t want to have to pick up a controller or remote to select what’s going to happen next. Every time the audience is given the option to take a new path (“press this button”, “vote on X, Y, Z”) the narrative— and immersion within that narrative—is temporarily halted, and it takes the mind a while to get back into this state of immersion.
Reactive content has the potential to resolve these issues by enabling passive interactivity—that is, input and output without having to pause and actively make decisions or engage with the hardware. This will result in diverging, dynamic narratives that will unfold seamlessly while being dependent on and unique to the specific user and their emotions. Passive interactivity will also remove the game feel that can often be a symptom of interactive experiences and put a viewer somewhere in the middle: still firmly ensconced in an interactive dynamic narrative, but in a much subtler way.
While reading the Melita script I was particularly struck by a scene in which the characters start to engage with the user and there’s a synchronicity between the user’s heartbeat and objects in the virtual world. As the narrative unwinds and the words of Melita’s character get more profound, parts of the landscape, which seemed to be flashing and pulsating at random, come together and start to mimic the user’s heartbeat.
In 2013, Jane Aspell of Anglia Ruskin University (UK) and Lukas Heydrich of the Swiss Federal Institute of Technology proved that a user’s sense of presence and identification with a virtual avatar could be dramatically increased by syncing the on-screen character with the heartbeat of the user. The relationship between bio-digital synchronicity, immersion, and emotional engagement is something that will surely have revolutionary narrative and storytelling potential.
Image Credit: Tithi Luadthong / Shutterstock.com Continue reading

Posted in Human Robots