Tag Archives: musk

#437477 If a Robot Is Conscious, Is It OK to ...

In the Star Trek: The Next Generation episode “The Measure of a Man,” Data, an android crew member of the Enterprise, is to be dismantled for research purposes unless Captain Picard can argue that Data deserves the same rights as a human being. Naturally the question arises: What is the basis upon which something has rights? What gives an entity moral standing?

The philosopher Peter Singer argues that creatures that can feel pain or suffer have a claim to moral standing. He argues that nonhuman animals have moral standing, since they can feel pain and suffer. Limiting it to people would be a form of speciesism, something akin to racism and sexism.

Without endorsing Singer’s line of reasoning, we might wonder if it can be extended further to an android robot like Data. It would require that Data can either feel pain or suffer. And how you answer that depends on how you understand consciousness and intelligence.

As real artificial intelligence technology advances toward Hollywood’s imagined versions, the question of moral standing grows more important. If AIs have moral standing, philosophers like me reason, it could follow that they have a right to life. That means you cannot simply dismantle them, and might also mean that people shouldn’t interfere with their pursuing their goals.

Two Flavors of Intelligence and a Test
IBM’s Deep Blue chess machine was successfully trained to beat grandmaster Gary Kasparov. But it could not do anything else. This computer had what’s called domain-specific intelligence.

On the other hand, there’s the kind of intelligence that allows for the ability to do a variety of things well. It is called domain-general intelligence. It’s what lets people cook, ski, and raise children—tasks that are related, but also very different.

Artificial general intelligence, AGI, is the term for machines that have domain-general intelligence. Arguably no machine has yet demonstrated that kind of intelligence. This summer, a startup called OpenAI released a new version of its Generative Pre-Training language model. GPT-3 is a natural language processing system, trained to read and write so that it can be easily understood by people.

It drew immediate notice, not just because of its impressive ability to mimic stylistic flourishes and put together plausible content, but also because of how far it had come from a previous version. Despite this impressive performance, GPT-3 doesn’t actually know anything beyond how to string words together in various ways. AGI remains quite far off.

Named after pioneering AI researcher Alan Turing, the Turing test helps determine when an AI is intelligent. Can a person conversing with a hidden AI tell whether it’s an AI or a human being? If he can’t, then for all practical purposes, the AI is intelligent. But this test says nothing about whether the AI might be conscious.

Two Kinds of Consciousness
There are two parts to consciousness. First, there’s the what-it’s-like-for-me aspect of an experience, the sensory part of consciousness. Philosophers call this phenomenal consciousness. It’s about how you experience a phenomenon, like smelling a rose or feeling pain.

In contrast, there’s also access consciousness. That’s the ability to report, reason, behave, and act in a coordinated and responsive manner to stimuli based on goals. For example, when I pass the soccer ball to my friend making a play on the goal, I am responding to visual stimuli, acting from prior training, and pursuing a goal determined by the rules of the game. I make the pass automatically, without conscious deliberation, in the flow of the game.

Blindsight nicely illustrates the difference between the two types of consciousness. Someone with this neurological condition might report, for example, that they cannot see anything in the left side of their visual field. But if asked to pick up a pen from an array of objects in the left side of their visual field, they can reliably do so. They cannot see the pen, yet they can pick it up when prompted—an example of access consciousness without phenomenal consciousness.

Data is an android. How do these distinctions play out with respect to him?

The Data Dilemma
The android Data demonstrates that he is self-aware in that he can monitor whether or not, for example, he is optimally charged or there is internal damage to his robotic arm.

Data is also intelligent in the general sense. He does a lot of distinct things at a high level of mastery. He can fly the Enterprise, take orders from Captain Picard and reason with him about the best path to take.

He can also play poker with his shipmates, cook, discuss topical issues with close friends, fight with enemies on alien planets, and engage in various forms of physical labor. Data has access consciousness. He would clearly pass the Turing test.

However, Data most likely lacks phenomenal consciousness—he does not, for example, delight in the scent of roses or experience pain. He embodies a supersized version of blindsight. He’s self-aware and has access consciousness—can grab the pen—but across all his senses he lacks phenomenal consciousness.

Now, if Data doesn’t feel pain, at least one of the reasons Singer offers for giving a creature moral standing is not fulfilled. But Data might fulfill the other condition of being able to suffer, even without feeling pain. Suffering might not require phenomenal consciousness the way pain essentially does.

For example, what if suffering were also defined as the idea of being thwarted from pursuing a just cause without causing harm to others? Suppose Data’s goal is to save his crewmate, but he can’t reach her because of damage to one of his limbs. Data’s reduction in functioning that keeps him from saving his crewmate is a kind of nonphenomenal suffering. He would have preferred to save the crewmate, and would be better off if he did.

In the episode, the question ends up resting not on whether Data is self-aware—that is not in doubt. Nor is it in question whether he is intelligent—he easily demonstrates that he is in the general sense. What is unclear is whether he is phenomenally conscious. Data is not dismantled because, in the end, his human judges cannot agree on the significance of consciousness for moral standing.

Should an AI Get Moral Standing?
Data is kind; he acts to support the well-being of his crewmates and those he encounters on alien planets. He obeys orders from people and appears unlikely to harm them, and he seems to protect his own existence. For these reasons he appears peaceful and easier to accept into the realm of things that have moral standing.

But what about Skynet in the Terminator movies? Or the worries recently expressed by Elon Musk about AI being more dangerous than nukes, and by Stephen Hawking on AI ending humankind?

Human beings don’t lose their claim to moral standing just because they act against the interests of another person. In the same way, you can’t automatically say that just because an AI acts against the interests of humanity or another AI it doesn’t have moral standing. You might be justified in fighting back against an AI like Skynet, but that does not take away its moral standing. If moral standing is given in virtue of the capacity to nonphenomenally suffer, then Skynet and Data both get it even if only Data wants to help human beings.

There are no artificial general intelligence machines yet. But now is the time to consider what it would take to grant them moral standing. How humanity chooses to answer the question of moral standing for nonbiological creatures will have big implications for how we deal with future AIs—whether kind and helpful like Data, or set on destruction, like Skynet.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: Ico Maker / Shutterstock.com Continue reading

Posted in Human Robots

#437145 3 Major Materials Science ...

Few recognize the vast implications of materials science.

To build today’s smartphone in the 1980s, it would cost about $110 million, require nearly 200 kilowatts of energy (compared to 2kW per year today), and the device would be 14 meters tall, according to Applied Materials CTO Omkaram Nalamasu.

That’s the power of materials advances. Materials science has democratized smartphones, bringing the technology to the pockets of over 3.5 billion people. But far beyond devices and circuitry, materials science stands at the center of innumerable breakthroughs across energy, future cities, transit, and medicine. And at the forefront of Covid-19, materials scientists are forging ahead with biomaterials, nanotechnology, and other materials research to accelerate a solution.

As the name suggests, materials science is the branch devoted to the discovery and development of new materials. It’s an outgrowth of both physics and chemistry, using the periodic table as its grocery store and the laws of physics as its cookbook.

And today, we are in the middle of a materials science revolution. In this article, we’ll unpack the most important materials advancements happening now.

Let’s dive in.

The Materials Genome Initiative
In June 2011 at Carnegie Mellon University, President Obama announced the Materials Genome Initiative, a nationwide effort to use open source methods and AI to double the pace of innovation in materials science. Obama felt this acceleration was critical to the US’s global competitiveness, and held the key to solving significant challenges in clean energy, national security, and human welfare. And it worked.

By using AI to map the hundreds of millions of different possible combinations of elements—hydrogen, boron, lithium, carbon, etc.—the initiative created an enormous database that allows scientists to play a kind of improv jazz with the periodic table.

This new map of the physical world lets scientists combine elements faster than ever before and is helping them create all sorts of novel elements. And an array of new fabrication tools are further amplifying this process, allowing us to work at altogether new scales and sizes, including the atomic scale, where we’re now building materials one atom at a time.

Biggest Materials Science Breakthroughs
These tools have helped create the metamaterials used in carbon fiber composites for lighter-weight vehicles, advanced alloys for more durable jet engines, and biomaterials to replace human joints. We’re also seeing breakthroughs in energy storage and quantum computing. In robotics, new materials are helping us create the artificial muscles needed for humanoid, soft robots—think Westworld in your world.

Let’s unpack some of the leading materials science breakthroughs of the past decade.

(1) Lithium-ion batteries

The lithium-ion battery, which today powers everything from our smartphones to our autonomous cars, was first proposed in the 1970s. It couldn’t make it to market until the 1990s, and didn’t begin to reach maturity until the past few years.

An exponential technology, these batteries have been dropping in price for three decades, plummeting 90 percent between 1990 and 2010, and 80 percent since. Concurrently, they’ve seen an eleven-fold increase in capacity.

But producing enough of them to meet demand has been an ongoing problem. Tesla has stepped up to the challenge: one of the company’s Gigafactories in Nevada churns out 20 gigawatts of energy storage per year, marking the first time we’ve seen lithium-ion batteries produced at scale.

Musk predicts 100 Gigafactories could store the energy needs of the entire globe. Other companies are moving quickly to integrate this technology as well: Renault is building a home energy storage based on their Zoe batteries, BMW’s 500 i3 battery packs are being integrated into the UK’s national energy grid, and Toyota, Nissan, and Audi have all announced pilot projects.

Lithium-ion batteries will continue to play a major role in renewable energy storage, helping bring down solar and wind energy prices to compete with those of coal and gasoline.

(2) Graphene

Derived from the same graphite found in everyday pencils, graphene is a sheet of carbon just one atom thick. It is nearly weightless, but 200 times stronger than steel. Conducting electricity and dissipating heat faster than any other known substance, this super-material has transformative applications.

Graphene enables sensors, high-performance transistors, and even gel that helps neurons communicate in the spinal cord. Many flexible device screens, drug delivery systems, 3D printers, solar panels, and protective fabric use graphene.

As manufacturing costs decrease, this material has the power to accelerate advancements of all kinds.

(3) Perovskite

Right now, the “conversion efficiency” of the average solar panel—a measure of how much captured sunlight can be turned into electricity—hovers around 16 percent, at a cost of roughly $3 per watt.

Perovskite, a light-sensitive crystal and one of our newer new materials, has the potential to get that up to 66 percent, which would double what silicon panels can muster.

Perovskite’s ingredients are widely available and inexpensive to combine. What do all these factors add up to? Affordable solar energy for everyone.

Materials of the Nano-World
Nanotechnology is the outer edge of materials science, the point where matter manipulation gets nano-small—that’s a million times smaller than an ant, 8,000 times smaller than a red blood cell, and 2.5 times smaller than a strand of DNA.

Nanobots are machines that can be directed to produce more of themselves, or more of whatever else you’d like. And because this takes place at an atomic scale, these nanobots can pull apart any kind of material—soil, water, air—atom by atom, and use these now raw materials to construct just about anything.

Progress has been surprisingly swift in the nano-world, with a bevy of nano-products now on the market. Never want to fold clothes again? Nanoscale additives to fabrics help them resist wrinkling and staining. Don’t do windows? Not a problem! Nano-films make windows self-cleaning, anti-reflective, and capable of conducting electricity. Want to add solar to your house? We’ve got nano-coatings that capture the sun’s energy.

Nanomaterials make lighter automobiles, airplanes, baseball bats, helmets, bicycles, luggage, power tools—the list goes on. Researchers at Harvard built a nanoscale 3D printer capable of producing miniature batteries less than one millimeter wide. And if you don’t like those bulky VR goggles, researchers are now using nanotech to create smart contact lenses with a resolution six times greater than that of today’s smartphones.

And even more is coming. Right now, in medicine, drug delivery nanobots are proving especially useful in fighting cancer. Computing is a stranger story, as a bioengineer at Harvard recently stored 700 terabytes of data in a single gram of DNA.

On the environmental front, scientists can take carbon dioxide from the atmosphere and convert it into super-strong carbon nanofibers for use in manufacturing. If we can do this at scale—powered by solar—a system one-tenth the size of the Sahara Desert could reduce CO2 in the atmosphere to pre-industrial levels in about a decade.

The applications are endless. And coming fast. Over the next decade, the impact of the very, very small is about to get very, very large.

Final Thoughts
With the help of artificial intelligence and quantum computing over the next decade, the discovery of new materials will accelerate exponentially.

And with these new discoveries, customized materials will grow commonplace. Future knee implants will be personalized to meet the exact needs of each body, both in terms of structure and composition.

Though invisible to the naked eye, nanoscale materials will integrate into our everyday lives, seamlessly improving medicine, energy, smartphones, and more.

Ultimately, the path to demonetization and democratization of advanced technologies starts with re-designing materials— the invisible enabler and catalyst. Our future depends on the materials we create.

(Note: This article is an excerpt from The Future Is Faster Than You Think—my new book, just released on January 28th! To get your own copy, click here!)

Join Me
(1) A360 Executive Mastermind: If you’re an exponentially and abundance-minded entrepreneur who would like coaching directly from me, consider joining my Abundance 360 Mastermind, a highly selective community of 360 CEOs and entrepreneurs who I coach for 3 days every January in Beverly Hills, Ca. Through A360, I provide my members with context and clarity about how converging exponential technologies will transform every industry. I’m committed to running A360 for the course of an ongoing 25-year journey as a “countdown to the Singularity.”

If you’d like to learn more and consider joining our 2021 membership, apply here.

(2) Abundance-Digital Online Community: I’ve also created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is Singularity University’s ‘onramp’ for exponential entrepreneurs—those who want to get involved and play at a higher level. Click here to learn more.

(Both A360 and Abundance-Digital are part of Singularity University—your participation opens you to a global community.)

This article originally appeared on diamandis.com. Read the original article here.

Image Credit: Anand Kumar from Pixabay Continue reading

Posted in Human Robots

#436774 AI Is an Energy-Guzzler. We Need to ...

There is a saying that has emerged among the tech set in recent years: AI is the new electricity. The platitude refers to the disruptive power of artificial intelligence for driving advances in everything from transportation to predicting the weather.

Of course, the computers and data centers that support AI’s complex algorithms are very much dependent on electricity. While that may seem pretty obvious, it may be surprising to learn that AI can be extremely power-hungry, especially when it comes to training the models that enable machines to recognize your face in a photo or for Alexa to understand a voice command.

The scale of the problem is difficult to measure, but there have been some attempts to put hard numbers on the environmental cost.

For instance, one paper published on the open-access repository arXiv claimed that the carbon emissions for training a basic natural language processing (NLP) model—algorithms that process and understand language-based data—are equal to the CO2 produced by the average American lifestyle over two years. A more robust model required the equivalent of about 17 years’ worth of emissions.

The authors noted that about a decade ago, NLP models could do the job on a regular commercial laptop. Today, much more sophisticated AI models use specialized hardware like graphics processing units, or GPUs, a chip technology popularized by Nvidia for gaming that also proved capable of supporting computing tasks for AI.

OpenAI, a nonprofit research organization co-founded by tech prophet and profiteer Elon Musk, said that the computing power “used in the largest AI training runs has been increasing exponentially with a 3.4-month doubling time” since 2012. That’s about the time that GPUs started making their way into AI computing systems.

Getting Smarter About AI Chip Design
While GPUs from Nvidia remain the gold standard in AI hardware today, a number of startups have emerged to challenge the company’s industry dominance. Many are building chipsets designed to work more like the human brain, an area that’s been dubbed neuromorphic computing.

One of the leading companies in this arena is Graphcore, a UK startup that has raised more than $450 million and boasts a valuation of $1.95 billion. The company’s version of the GPU is an IPU, which stands for intelligence processing unit.

To build a computer brain more akin to a human one, the big brains at Graphcore are bypassing the precise but time-consuming number-crunching typical of a conventional microprocessor with one that’s content to get by on less precise arithmetic.

The results are essentially the same, but IPUs get the job done much quicker. Graphcore claimed it was able to train the popular BERT NLP model in just 56 hours, while tripling throughput and reducing latency by 20 percent.

An article in Bloomberg compared the approach to the “human brain shifting from calculating the exact GPS coordinates of a restaurant to just remembering its name and neighborhood.”

Graphcore’s hardware architecture also features more built-in memory processing, boosting efficiency because there’s less need to send as much data back and forth between chips. That’s similar to an approach adopted by a team of researchers in Italy that recently published a paper about a new computing circuit.

The novel circuit uses a device called a memristor that can execute a mathematical function known as a regression in just one operation. The approach attempts to mimic the human brain by processing data directly within the memory.

Daniele Ielmini at Politecnico di Milano, co-author of the Science Advances paper, told Singularity Hub that the main advantage of in-memory computing is the lack of any data movement, which is the main bottleneck of conventional digital computers, as well as the parallel processing of data that enables the intimate interactions among various currents and voltages within the memory array.

Ielmini explained that in-memory computing can have a “tremendous impact on energy efficiency of AI, as it can accelerate very advanced tasks by physical computation within the memory circuit.” He added that such “radical ideas” in hardware design will be needed in order to make a quantum leap in energy efficiency and time.

It’s Not Just a Hardware Problem
The emphasis on designing more efficient chip architecture might suggest that AI’s power hunger is essentially a hardware problem. That’s not the case, Ielmini noted.

“We believe that significant progress could be made by similar breakthroughs at the algorithm and dataset levels,” he said.

He’s not the only one.

One of the key research areas at Qualcomm’s AI research lab is energy efficiency. Max Welling, vice president of Qualcomm Technology R&D division, has written about the need for more power-efficient algorithms. He has gone so far as to suggest that AI algorithms will be measured by the amount of intelligence they provide per joule.

One emerging area being studied, Welling wrote, is the use of Bayesian deep learning for deep neural networks.

It’s all pretty heady stuff and easily the subject of a PhD thesis. The main thing to understand in this context is that Bayesian deep learning is another attempt to mimic how the brain processes information by introducing random values into the neural network. A benefit of Bayesian deep learning is that it compresses and quantifies data in order to reduce the complexity of a neural network. In turn, that reduces the number of “steps” required to recognize a dog as a dog—and the energy required to get the right result.

A team at Oak Ridge National Laboratory has previously demonstrated another way to improve AI energy efficiency by converting deep learning neural networks into what’s called a spiking neural network. The researchers spiked their deep spiking neural network (DSNN) by introducing a stochastic process that adds random values like Bayesian deep learning.

The DSNN actually imitates the way neurons interact with synapses, which send signals between brain cells. Individual “spikes” in the network indicate where to perform computations, lowering energy consumption because it disregards unnecessary computations.

The system is being used by cancer researchers to scan millions of clinical reports to unearth insights on causes and treatments of the disease.

Helping battle cancer is only one of many rewards we may reap from artificial intelligence in the future, as long as the benefits of those algorithms outweigh the costs of using them.

“Making AI more energy-efficient is an overarching objective that spans the fields of algorithms, systems, architecture, circuits, and devices,” Ielmini said.

Image Credit: analogicus from Pixabay Continue reading

Posted in Human Robots

#436491 The Year’s Most Fascinating Tech ...

Last Saturday we took a look at some of the most-read Singularity Hub articles from 2019. This week, we’re featuring some of our favorite articles from the last year. As opposed to short pieces about what’s happening, these are long reads about why it matters and what’s coming next. Some of them make the news while others frame the news, go deep on big ideas, go behind the scenes, or explore the human side of technological progress.

We hope you find them as fascinating, inspiring, and illuminating as we did.

DeepMind and Google: The Battle to Control Artificial Intelligence
Hal Hodson | 1843
“[DeepMind cofounder and CEO Demis] Hassabis thought DeepMind would be a hybrid: it would have the drive of a startup, the brains of the greatest universities, and the deep pockets of one of the world’s most valuable companies. Every element was in place to hasten the arrival of [artificial general intelligence] and solve the causes of human misery.”

The Most Powerful Person in Silicon Valley
Katrina Brooker | Fast Company
“Billionaire Masayoshi Son—not Elon Musk, Jeff Bezos, or Mark Zuckerberg—has the most audacious vision for an AI-powered utopia where machines control how we live. And he’s spending hundreds of billions of dollars to realize it. Are you ready to live in Masa World?”

AR Will Spark the Next Big Tech Platform—Call It Mirrorworld
Kevin Kelly | Wired
“Eventually this melded world will be the size of our planet. It will be humanity’s greatest achievement, creating new levels of wealth, new social problems, and uncountable opportunities for billions of people. There are no experts yet to make this world; you are not late.”

Behind the Scenes of a Radical New Cancer Cure
Ilana Yurkiewicz | Undark
“I remember the first time I watched a patient get his Day 0 infusion. It felt anti-climactic. The entire process took about 15 minutes. The CAR-T cells are invisible to the naked eye, housed in a small plastic bag containing clear liquid. ‘That’s it?’ my patient asked when the nurse said it was over. The infusion part is easy. The hard part is everything that comes next.”

The Promise and Price of Cellular Therapies
Siddhartha Mukherjee | The New Yorker
“We like to imagine medical revolutions as, well, revolutionary—propelled forward through leaps of genius and technological innovation. But they are also evolutionary, nudged forward through the optimization of design and manufacture.”

Impossible Foods’ Rising Empire of Almost Meat
Chris Ip | Engadget
“Impossible says it wants to ultimately create a parallel universe of ersatz animal products from steak to eggs. …Yet as Impossible ventures deeper into the culinary uncanny valley, it also needs society to discard a fundamental cultural idea that dates back millennia and accept a new truth: Meat doesn’t have to come from animals.”

Inside the Amazon Warehouse Where Humans and Machines Become One
Matt Simon | Wired
“Seen from above, the scale of the system is dizzying. My robot, a little orange slab known as a ‘drive’ (or more formally and mythically, Pegasus), is just one of hundreds of its kind swarming a 125,000-square-foot ‘field’ pockmarked with chutes. It’s a symphony of electric whirring, with robots pausing for one another at intersections and delivering their packages to the slides.”

Boston Dynamics’ Robots Are Preparing to Leave the Lab—Is the World Ready?
James Vincent | The Verge
“After decades of kicking machines in parking lots, the company is set to launch its first ever commercial bot later this year: the quadrupedal Spot. It’s a crucial test for a company that’s spent decades pursuing long-sighted R&D. And more importantly, the success—or failure—of Spot will tell us a lot about our own robot future. Are we ready for machines to walk among us?”

I Cut the ‘Big Five’ Tech Giants From My Life. It Was Hell
Kashmir Hill | Gizmodo
“Critics of the big tech companies are often told, ‘If you don’t like the company, don’t use its products.’ I did this experiment to find out if that is possible, and I found out that it’s not—with the exception of Apple. …These companies are unavoidable because they control internet infrastructure, online commerce, and information flows.”

Why I (Still) Love Tech: In Defense of a Difficult Industry
Paul Ford | Wired
“The mysteries of software caught my eye when I was a boy, and I still see it with the same wonder, even though I’m now an adult. Proudshamed, yes, but I still love it, the mess of it, the code and toolkits, down to the pixels and the processors, and up to the buses and bridges. I love the whole made world. But I can’t deny that the miracle is over, and that there is an unbelievable amount of work left for us to do.”

The Peculiar Blindness of Experts
David Epstein | The Atlantic
“In business, esteemed (and lavishly compensated) forecasters routinely are wildly wrong in their predictions of everything from the next stock-market correction to the next housing boom. Reliable insight into the future is possible, however. It just requires a style of thinking that’s uncommon among experts who are certain that their deep knowledge has granted them a special grasp of what is to come.”

The Most Controversial Tree in the World
Rowan Jacobson | Pacific Standard
“…we are all GMOs, the beneficiaries of freakishly unlikely genetic mash-ups, and the real Island of Dr. Moreau is that blue-green botanical garden positioned third from the sun. Rather than changing the nature of nature, as I once thought, this might just be the very nature of nature.”

How an Augmented Reality Game Escalated Into Real-World Spy Warfare
Elizabeth Ballou | Vice
“In Ingress, players accept that every park and train station could be the site of an epic showdown, but that’s only the first step. The magic happens when other people accept that, too. When players feel like that magic is real, there are few limits to what they’ll do or where they’ll go for the sake of the game. ”

The Shady Cryptocurrency Boom on the Post-Soviet Frontier
Hannah Lucinda Smith | Wired
“…although the tourists won’t guess it as they stand at Kuchurgan’s gates, admiring how the evening light reflects off the silver plaque of Lenin, this plant is pumping out juice to a modern-day gold rush: a cryptocurrency boom that is underway all across the former Soviet Union, from the battlefields of eastern Ukraine to time-warp enclaves like Transnistria and freshly annexed Crimea.”

Scientists Are Totally Rethinking Animal Cognition
Ross Andersen | The Atlantic
“This idea that animals are conscious was long unpopular in the West, but it has lately found favor among scientists who study animal cognition. …For many scientists, the resonant mystery is no longer which animals are conscious, but which are not.”

I Wrote This on a 30-Year-Old Computer
Ian Bogost | The Atlantic
“[Back then] computing was an accompaniment to life, rather than the sieve through which all ideas and activities must filter. That makes using this 30-year-old device a surprising joy, one worth longing for on behalf of what it was at the time, rather than for the future it inaugurated.”

Image Credit: Wes Hicks / Unsplash Continue reading

Posted in Human Robots

#436482 50+ Reasons Our Favorite Emerging ...

For most of history, technology was about atoms, the manipulation of physical stuff to extend humankind’s reach. But in the last five or six decades, atoms have partnered with bits, the elemental “particles” of the digital world as we know it today. As computing has advanced at the accelerating pace described by Moore’s Law, technological progress has become increasingly digitized.

SpaceX lands and reuses rockets and self-driving cars do away with drivers thanks to automation, sensors, and software. Businesses find and hire talent from anywhere in the world, and for better and worse, a notable fraction of the world learns and socializes online. From the sequencing of DNA to artificial intelligence and from 3D printing to robotics, more and more new technologies are moving at a digital pace and quickly emerging to reshape the world around us.

In 2019, stories charting the advances of some of these digital technologies consistently made headlines. Below is, what is at best, an incomplete list of some of the big stories that caught our eye this year. With so much happening, it’s likely we’ve missed some notable headlines and advances—as well as some of your personal favorites. In either instance, share your thoughts and candidates for the biggest stories and breakthroughs on Facebook and Twitter.

With that said, let’s dive straight into the year.

Artificial Intelligence
No technology garnered as much attention as AI in 2019. With good reason. Intelligent computer systems are transitioning from research labs to everyday life. Healthcare, weather forecasting, business process automation, traffic congestion—you name it, and machine learning algorithms are likely beginning to work on it. Yet, AI has also been hyped up and overmarketed, and the latest round of AI technology, deep learning, is likely only one piece of the AI puzzle.

This year, Open AI’s game-playing algorithms beat some of the world’s best Dota 2 players, DeepMind notched impressive wins in Starcraft, and Carnegie Mellon University’s Libratus “crushed” pros at six-player Texas Hold‘em.
Speaking of games, AI’s mastery of the incredibly complex game of Go prompted a former world champion to quit, stating that AI ‘”cannot be defeated.”
But it isn’t just fun and games. Practical, powerful applications that make the best of AI’s pattern recognition abilities are on the way. Insilico Medicine, for example, used machine learning to help discover and design a new drug in just 46 days, and DeepMind is focused on using AI to crack protein folding.
Of course, AI can be a double-edged sword. When it comes to deepfakes and fake news, for example, AI makes both easier to create and detect, and early in the year, OpenAI created and announced a powerful AI text generator but delayed releasing it for fear of malicious use.
Recognizing AI’s power for good and ill, the OECD, EU, World Economic Forum, and China all took a stab at defining an ethical framework for the development and deployment of AI.

Computing Systems
Processors and chips kickstarted the digital boom and are still the bedrock of continued growth. While progress in traditional silicon-based chips continues, it’s slowing and getting more expensive. Some say we’re reaching the end of Moore’s Law. While that may be the case for traditional chips, specialized chips and entirely new kinds of computing are waiting in the wings.

In fall 2019, Google confirmed its quantum computer had achieved “quantum supremacy,” a term that means a quantum computer can perform a calculation a normal computer cannot. IBM pushed back on the claim, and it should be noted the calculation was highly specialized. But while it’s still early days, there does appear to be some real progress (and more to come).
Should quantum computing become truly practical, “the implications are staggering.” It could impact machine learning, medicine, chemistry, and materials science, just to name a few areas.
Specialized chips continue to take aim at machine learning—a giant new chip with over a trillion transistors, for example, may make machine learning algorithms significantly more efficient.
Cellular computers also saw advances in 2019 thanks to CRISPR. And the year witnessed the emergence of the first reprogrammable DNA computer and new chips inspired by the brain.
The development of hardware computing platforms is intrinsically linked to software. 2019 saw a continued move from big technology companies towards open sourcing (at least parts of) their software, potentially democratizing the use of advanced systems.

Networks
Increasing interconnectedness has, in many ways, defined the 21st century so far. Your phone is no longer just a phone. It’s access to the world’s population and accumulated knowledge—and it fits in your pocket. Pretty neat. This is all thanks to networks, which had some notable advances in 2019.

The biggest network development of the year may well be the arrival of the first 5G networks.
5G’s faster speeds promise advances across many emerging technologies.
Self-driving vehicles, for example, may become both smarter and safer thanks to 5G C-V2X networks. (Don’t worry with trying to remember that. If they catch on, they’ll hopefully get a better name.)
Wi-Fi may have heard the news and said “hold my beer,” as 2019 saw the introduction of Wi-Fi 6. Perhaps the most important upgrade, among others, is that Wi-Fi 6 ensures that the ever-growing number of network connected devices get higher data rates.
Networks also went to space in 2019, as SpaceX began launching its Starlink constellation of broadband satellites. In typical fashion, Elon Musk showed off the network’s ability to bounce data around the world by sending a Tweet.

Augmented Reality and Virtual Reality
Forget Pokemon Go (unless you want to add me as a friend in the game—in which case don’t forget Pokemon Go). 2019 saw AR and VR advance, even as Magic Leap, the most hyped of the lot, struggled to live up to outsized expectations and sell headsets.

Mixed reality AR and VR technologies, along with the explosive growth of sensor-based data about the world around us, is creating a one-to-one “Mirror World” of our physical reality—a digital world you can overlay on our own or dive into immersively thanks to AR and VR.
Facebook launched Replica, for example, which is a photorealistic virtual twin of the real world that, among other things, will help train AIs to better navigate their physical surroundings.
Our other senses (beyond eyes) may also become part of the Mirror World through the use of peripherals like a newly developed synthetic skin that aim to bring a sense of touch to VR.
AR and VR equipment is also becoming cheaper—with more producers entering the space—and more user-friendly. Instead of a wired headset requiring an expensive gaming PC, the new Oculus Quest is a wireless, self-contained step toward the mainstream.
Niche uses also continue to gain traction, from Google Glass’s Enterprise edition to the growth of AR and VR in professional education—including on-the-job-training and roleplaying emotionally difficult work encounters, like firing an employee.

Digital Biology and Biotech
The digitization of biology is happening at an incredible rate. With wild new research coming to light every year and just about every tech giant pouring money into new solutions and startups, we’re likely to see amazing advances in 2020 added to those we saw in 2019.

None were, perhaps, more visible than the success of protein-rich, plant-based substitutes for various meats. This was the year Beyond Meat was the top IPO on the NASDAQ stock exchange and people stood in line for the plant-based Impossible Whopper and KFC’s Beyond Chicken.
In the healthcare space, a report about three people with HIV who became virus free thanks to a bone marrow transplants of stem cells caused a huge stir. The research is still in relatively early stages, and isn’t suitable for most people, but it does provides a glimmer of hope.
CRISPR technology, which almost deserves its own section, progressed by leaps and bounds. One tweak made CRISPR up to 50 times more accurate, while the latest new CRISPR-based system, CRISPR prime, was described as a “word processor” for gene editing.
Many areas of healthcare stand to gain from CRISPR. For instance, cancer treatment, were a first safety test showed ‘promising’ results.
CRISPR’s many potential uses, however, also include some weird/morally questionable areas, which was exemplified by one the year’s stranger CRISPR-related stories about a human-monkey hybrid embryo in China.
Incidentally, China could be poised to take the lead on CRISPR thanks to massive investments and research programs.
As a consequence of quick advances in gene editing, we are approaching a point where we will be able to design our own biology—but first we need to have a serious conversation as a society about the ethics of gene editing and what lines should be drawn.

3D Printing
3D printing has quietly been growing both market size and the objects the printers are capable of producing. While both are impressive, perhaps the biggest story of 2019 is their increased speed.

One example was a boat that was printed in just three days, which also set three new world records for 3D printing.
3D printing is also spreading in the construction industry. In Mexico, the technology is being used to construct 50 new homes with subsidized mortgages of just $20/month.
3D printers also took care of all parts of a 640 square-meter home in Dubai.
Generally speaking, the use of 3D printing to make parts for everything from rocket engines (even entire rockets) to trains to cars illustrates the sturdiness of the technology, anno 2019.
In healthcare, 3D printing is also advancing the cause of bio-printed organs and, in one example, was used to print vascularized parts of a human heart.

Robotics
Living in Japan, I get to see Pepper, Aibo, and other robots on pretty much a daily basis. The novelty of that experience is spreading to other countries, and robots are becoming a more visible addition to both our professional and private lives.

We can’t talk about robots and 2019 without mentioning Boston Dynamics’ Spot robot, which went on sale for the general public.
Meanwhile, Google, Boston Dynamics’ former owner, rebooted their robotics division with a more down-to-earth focus on everyday uses they hope to commercialize.
SoftBank’s Pepper robot is working as a concierge and receptionist in various countries. It is also being used as a home companion. Not satisfied, Pepper rounded off 2019 by heading to the gym—to coach runners.
Indeed, there’s a growing list of sports where robots perform as well—or better—than humans.
2019 also saw robots launch an assault on the kitchen, including the likes of Samsung’s robot chef, and invade the front yard, with iRobot’s Terra robotic lawnmower.
In the borderlands of robotics, full-body robotic exoskeletons got a bit more practical, as the (by all accounts) user-friendly, battery-powered Sarcos Robotics Guardian XO went commercial.

Autonomous Vehicles
Self-driving cars did not—if you will forgive the play on words—stay quite on track during 2019. The fallout from Uber’s 2018 fatal crash marred part of the year, while some big players ratcheted back expectations on a quick shift to the driverless future. Still, self-driving cars, trucks, and other autonomous systems did make progress this year.

Winner of my unofficial award for best name in self-driving goes to Optimus Ride. The company also illustrates that self-driving may not be about creating a one-size-fits-all solution but catering to specific markets.
Self-driving trucks had a good year, with tests across many countries and states. One of the year’s odder stories was a self-driving truck traversing the US with a delivery of butter.
A step above the competition may be the future slogan (or perhaps not) of Boeing’s self-piloted air taxi that saw its maiden test flight in 2019. It joins a growing list of companies looking to create autonomous, flying passenger vehicles.
2019 was also the year where companies seemed to go all in on last-mile autonomous vehicles. Who wins that particular competition could well emerge during 2020.

Blockchain and Digital Currencies
Bitcoin continues to be the cryptocurrency equivalent of a rollercoaster, but the underlying blockchain technology is progressing more steadily. Together, they may turn parts of our financial systems cashless and digital—though how and when remains a slightly open question.

One indication of this was Facebook’s hugely controversial announcement of Libra, its proposed cryptocurrency. The company faced immediate pushback and saw a host of partners jump ship. Still, it brought the tech into mainstream conversations as never before and is putting the pressure on governments and central banks to explore their own digital currencies.
Deloitte’s in-depth survey of the state of blockchain highlighted how the technology has moved from fintech into just about any industry you can think of.
One of the biggest issues facing the spread of many digital currencies—Bitcoin in particular, you could argue—is how much energy it consumes to mine them. 2019 saw the emergence of several new digital currencies with a much smaller energy footprint.
2019 was also a year where we saw a new kind of digital currency, stablecoins, rise to prominence. As the name indicates, stablecoins are a group of digital currencies whose price fluctuations are more stable than the likes of Bitcoin.
In a geopolitical sense, 2019 was a year of China playing catch-up. Having initially banned blockchain, the country turned 180 degrees and announced that it was “quite close” to releasing a digital currency and a wave of blockchain-programs.

Renewable Energy and Energy Storage
While not every government on the planet seems to be a fan of renewable energy, it keeps on outperforming fossil fuel after fossil fuel in places well suited to it—even without support from some of said governments.

One of the reasons for renewable energy’s continued growth is that energy efficiency levels keep on improving.
As a result, an increased number of coal plants are being forced to close due to an inability to compete, and the UK went coal-free for a record two weeks.
We are also seeing more and more financial institutions refusing to fund fossil fuel projects. One such example is the European Investment Bank.
Renewable energy’s advance is tied at the hip to the rise of energy storage, which also had a breakout 2019, in part thanks to investments from the likes of Bill Gates.
The size and capabilities of energy storage also grew in 2019. The best illustration came from Australia were Tesla’s mega-battery proved that energy storage has reached a stage where it can prop up entire energy grids.

Image Credit: Mathew Schwartz / Unsplash Continue reading

Posted in Human Robots