Tag Archives: movements
#438779 Meet Catfish Charlie, the CIA’s ...
Photo: CIA Museum
CIA roboticists designed Catfish Charlie to take water samples undetected. Why they wanted a spy fish for such a purpose remains classified.
In 1961, Tom Rogers of the Leo Burnett Agency created Charlie the Tuna, a jive-talking cartoon mascot and spokesfish for the StarKist brand. The popular ad campaign ran for several decades, and its catchphrase “Sorry, Charlie” quickly hooked itself in the American lexicon.
When the CIA’s Office of Advanced Technologies and Programs started conducting some fish-focused research in the 1990s, Charlie must have seemed like the perfect code name. Except that the CIA’s Charlie was a catfish. And it was a robot.
More precisely, Charlie was an unmanned underwater vehicle (UUV) designed to surreptitiously collect water samples. Its handler controlled the fish via a line-of-sight radio handset. Not much has been revealed about the fish’s construction except that its body contained a pressure hull, ballast system, and communications system, while its tail housed the propulsion. At 61 centimeters long, Charlie wouldn’t set any biggest-fish records. (Some species of catfish can grow to 2 meters.) Whether Charlie reeled in any useful intel is unknown, as details of its missions are still classified.
For exploring watery environments, nothing beats a robot
The CIA was far from alone in its pursuit of UUVs nor was it the first agency to do so. In the United States, such research began in earnest in the 1950s, with the U.S. Navy’s funding of technology for deep-sea rescue and salvage operations. Other projects looked at sea drones for surveillance and scientific data collection.
Aaron Marburg, a principal electrical and computer engineer who works on UUVs at the University of Washington’s Applied Physics Laboratory, notes that the world’s oceans are largely off-limits to crewed vessels. “The nature of the oceans is that we can only go there with robots,” he told me in a recent Zoom call. To explore those uncharted regions, he said, “we are forced to solve the technical problems and make the robots work.”
Image: Thomas Wells/Applied Physics Laboratory/University of Washington
An oil painting commemorates SPURV, a series of underwater research robots built by the University of Washington’s Applied Physics Lab. In nearly 400 deployments, no SPURVs were lost.
One of the earliest UUVs happens to sit in the hall outside Marburg’s office: the Self-Propelled Underwater Research Vehicle, or SPURV, developed at the applied physics lab beginning in the late ’50s. SPURV’s original purpose was to gather data on the physical properties of the sea, in particular temperature and sound velocity. Unlike Charlie, with its fishy exterior, SPURV had a utilitarian torpedo shape that was more in line with its mission. Just over 3 meters long, it could dive to 3,600 meters, had a top speed of 2.5 m/s, and operated for 5.5 hours on a battery pack. Data was recorded to magnetic tape and later transferred to a photosensitive paper strip recorder or other computer-compatible media and then plotted using an IBM 1130.
Over time, SPURV’s instrumentation grew more capable, and the scope of the project expanded. In one study, for example, SPURV carried a fluorometer to measure the dispersion of dye in the water, to support wake studies. The project was so successful that additional SPURVs were developed, eventually completing nearly 400 missions by the time it ended in 1979.
Working on underwater robots, Marburg says, means balancing technical risks and mission objectives against constraints on funding and other resources. Support for purely speculative research in this area is rare. The goal, then, is to build UUVs that are simple, effective, and reliable. “No one wants to write a report to their funders saying, ‘Sorry, the batteries died, and we lost our million-dollar robot fish in a current,’ ” Marburg says.
A robot fish called SoFi
Since SPURV, there have been many other unmanned underwater vehicles, of various shapes and sizes and for various missions, developed in the United States and elsewhere. UUVs and their autonomous cousins, AUVs, are now routinely used for scientific research, education, and surveillance.
At least a few of these robots have been fish-inspired. In the mid-1990s, for instance, engineers at MIT worked on a RoboTuna, also nicknamed Charlie. Modeled loosely on a blue-fin tuna, it had a propulsion system that mimicked the tail fin of a real fish. This was a big departure from the screws or propellers used on UUVs like SPURV. But this Charlie never swam on its own; it was always tethered to a bank of instruments. The MIT group’s next effort, a RoboPike called Wanda, overcame this limitation and swam freely, but never learned to avoid running into the sides of its tank.
Fast-forward 25 years, and a team from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) unveiled SoFi, a decidedly more fishy robot designed to swim next to real fish without disturbing them. Controlled by a retrofitted Super Nintendo handset, SoFi could dive more than 15 meters, control its own buoyancy, and swim around for up to 40 minutes between battery charges. Noting that SoFi’s creators tested their robot fish in the gorgeous waters off Fiji, IEEE Spectrum’s Evan Ackerman noted, “Part of me is convinced that roboticists take on projects like these…because it’s a great way to justify a trip somewhere exotic.”
SoFi, Wanda, and both Charlies are all examples of biomimetics, a term coined in 1974 to describe the study of biological mechanisms, processes, structures, and substances. Biomimetics looks to nature to inspire design.
Sometimes, the resulting technology proves to be more efficient than its natural counterpart, as Richard James Clapham discovered while researching robotic fish for his Ph.D. at the University of Essex, in England. Under the supervision of robotics expert Huosheng Hu, Clapham studied the swimming motion of Cyprinus carpio, the common carp. He then developed four robots that incorporated carplike swimming, the most capable of which was iSplash-II. When tested under ideal conditions—that is, a tank 5 meters long, 2 meters wide, and 1.5 meters deep—iSpash-II obtained a maximum velocity of 11.6 body lengths per second (or about 3.7 m/s). That’s faster than a real carp, which averages a top velocity of 10 body lengths per second. But iSplash-II fell short of the peak performance of a fish darting quickly to avoid a predator.
Of course, swimming in a test pool or placid lake is one thing; surviving the rough and tumble of a breaking wave is another matter. The latter is something that roboticist Kathryn Daltorio has explored in depth.
Daltorio, an assistant professor at Case Western Reserve University and codirector of the Center for Biologically Inspired Robotics Research there, has studied the movements of cockroaches, earthworms, and crabs for clues on how to build better robots. After watching a crab navigate from the sandy beach to shallow water without being thrown off course by a wave, she was inspired to create an amphibious robot with tapered, curved feet that could dig into the sand. This design allowed her robot to withstand forces up to 138 percent of its body weight.
Photo: Nicole Graf
This robotic crab created by Case Western’s Kathryn Daltorio imitates how real crabs grab the sand to avoid being toppled by waves.
In her designs, Daltorio is following architect Louis Sullivan’s famous maxim: Form follows function. She isn’t trying to imitate the aesthetics of nature—her robot bears only a passing resemblance to a crab—but rather the best functionality. She looks at how animals interact with their environments and steals evolution’s best ideas.
And yet, Daltorio admits, there is also a place for realistic-looking robotic fish, because they can capture the imagination and spark interest in robotics as well as nature. And unlike a hyperrealistic humanoid, a robotic fish is unlikely to fall into the creepiness of the uncanny valley.
In writing this column, I was delighted to come across plenty of recent examples of such robotic fish. Ryomei Engineering, a subsidiary of Mitsubishi Heavy Industries, has developed several: a robo-coelacanth, a robotic gold koi, and a robotic carp. The coelacanth was designed as an educational tool for aquariums, to present a lifelike specimen of a rarely seen fish that is often only known by its fossil record. Meanwhile, engineers at the University of Kitakyushu in Japan created Tai-robot-kun, a credible-looking sea bream. And a team at Evologics, based in Berlin, came up with the BOSS manta ray.
Whatever their official purpose, these nature-inspired robocreatures can inspire us in return. UUVs that open up new and wondrous vistas on the world’s oceans can extend humankind’s ability to explore. We create them, and they enhance us, and that strikes me as a very fair and worthy exchange.
This article appears in the March 2021 print issue as “Catfish, Robot, Swimmer, Spy.”
About the Author
Allison Marsh is an associate professor of history at the University of South Carolina and codirector of the university’s Ann Johnson Institute for Science, Technology & Society. Continue reading
#438014 Meet Blueswarm, a Smart School of ...
Anyone who’s seen an undersea nature documentary has marveled at the complex choreography that schooling fish display, a darting, synchronized ballet with a cast of thousands.
Those instinctive movements have inspired researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), and the Wyss Institute for Biologically Inspired Engineering. The results could improve the performance and dependability of not just underwater robots, but other vehicles that require decentralized locomotion and organization, such as self-driving cars and robotic space exploration.
The fish collective called Blueswarm was created by a team led by Radhika Nagpal, whose lab is a pioneer in self-organizing systems. The oddly adorable robots can sync their movements like biological fish, taking cues from their plastic-bodied neighbors with no external controls required. Nagpal told IEEE Spectrum that this marks a milestone, demonstrating complex 3D behaviors with implicit coordination in underwater robots.
“Insights from this research will help us develop future miniature underwater swarms that can perform environmental monitoring and search in visually-rich but fragile environments like coral reefs,” Nagpal said. “This research also paves a way to better understand fish schools, by synthetically recreating their behavior.”
The research is published in Science Robotics, with Florian Berlinger as first author. Berlinger said the “Bluedot” robots integrate a trio of blue LED lights, a lithium-polymer battery, a pair of cameras, a Raspberry Pi computer and four controllable fins within a 3D-printed hull. The fish-lens cameras detect LED’s of their fellow swimmers, and apply a custom algorithm to calculate distance, direction and heading.
Based on that simple production and detection of LED light, the team proved that Blueswarm could self-organize behaviors, including aggregation, dispersal and circle formation—basically, swimming in a clockwise synchronization. Researchers also simulated a successful search mission, an autonomous Finding Nemo. Using their dispersion algorithm, the robot school spread out until one could detect a red light in the tank. Its blue LEDs then flashed, triggering the aggregation algorithm to gather the school around it. Such a robot swarm might prove valuable in search-and-rescue missions at sea, covering miles of open water and reporting back to its mates.
“Each Bluebot implicitly reacts to its neighbors’ positions,” Berlinger said. The fish—RoboCod, perhaps?—also integrate a Wifi module to allow uploading new behaviors remotely. The lab’s previous efforts include a 1,000-strong army of “Kilobots,” and a robotic construction crew inspired by termites. Both projects operated in two-dimensional space. But a 3D environment like air or water posed a tougher challenge for sensing and movement.
In nature, Berlinger notes, there’s no scaly CEO to direct the school’s movements. Nor do fish communicate their intentions. Instead, so-called “implicit coordination” guides the school’s collective behavior, with individual members executing high-speed moves based on what they see their neighbors doing. That decentralized, autonomous organization has long fascinated scientists, including in robotics.
“In these situations, it really benefits you to have a highly autonomous robot swarm that is self-sufficient. By using implicit rules and 3D visual perception, we were able to create a system with a high degree of autonomy and flexibility underwater where things like GPS and WiFi are not accessible.”
Berlinger adds the research could one day translate to anything that requires decentralized robots, from self-driving cars and Amazon warehouse vehicles to exploration of faraway planets, where poor latency makes it impossible to transmit commands quickly. Today’s semi-autonomous cars face their own technical hurdles in reliably sensing and responding to their complex environments, including when foul weather obscures onboard sensors or road markers, or when they can’t fix position via GPS. An entire subset of autonomous-car research involves vehicle-to-vehicle (V2V) communications that could give cars a hive mind to guide individual or collective decisions— avoiding snarled traffic, driving safely in tight convoys, or taking group evasive action during a crash that’s beyond their sensory range.
“Once we have millions of cars on the road, there can’t be one computer orchestrating all the traffic, making decisions that work for all the cars,” Berlinger said.
The miniature robots could also work long hours in places that are inaccessible to humans and divers, or even large tethered robots. Nagpal said the synthetic swimmers could monitor and collect data on reefs or underwater infrastructure 24/7, and work into tiny places without disturbing fragile equipment or ecosystems.
“If we could be as good as fish in that environment, we could collect information and be non-invasive, in cluttered environments where everything is an obstacle,” Nagpal said. Continue reading
#437957 Meet Assembloids, Mini Human Brains With ...
It’s not often that a twitching, snowman-shaped blob of 3D human tissue makes someone’s day.
But when Dr. Sergiu Pasca at Stanford University witnessed the tiny movement, he knew his lab had achieved something special. You see, the blob was evolved from three lab-grown chunks of human tissue: a mini-brain, mini-spinal cord, and mini-muscle. Each individual component, churned to eerie humanoid perfection inside bubbling incubators, is already a work of scientific genius. But Pasca took the extra step, marinating the three components together inside a soup of nutrients.
The result was a bizarre, Lego-like human tissue that replicates the basic circuits behind how we decide to move. Without external prompting, when churned together like ice cream, the three ingredients physically linked up into a fully functional circuit. The 3D mini-brain, through the information highway formed by the artificial spinal cord, was able to make the lab-grown muscle twitch on demand.
In other words, if you think isolated mini-brains—known formally as brain organoids—floating in a jar is creepy, upgrade your nightmares. The next big thing in probing the brain is assembloids—free-floating brain circuits—that now combine brain tissue with an external output.
The end goal isn’t to freak people out. Rather, it’s to recapitulate our nervous system, from input to output, inside the controlled environment of a Petri dish. An autonomous, living brain-spinal cord-muscle entity is an invaluable model for figuring out how our own brains direct the intricate muscle movements that allow us stay upright, walk, or type on a keyboard.
It’s the nexus toward more dexterous brain-machine interfaces, and a model to understand when brain-muscle connections fail—as in devastating conditions like Lou Gehrig’s disease or Parkinson’s, where people slowly lose muscle control due to the gradual death of neurons that control muscle function. Assembloids are a sort of “mini-me,” a workaround for testing potential treatments on a simple “replica” of a person rather than directly on a human.
From Organoids to Assembloids
The miniature snippet of the human nervous system has been a long time in the making.
It all started in 2014, when Dr. Madeleine Lancaster, then a post-doc at Stanford, grew a shockingly intricate 3D replica of human brain tissue inside a whirling incubator. Revolutionarily different than standard cell cultures, which grind up brain tissue to reconstruct as a flat network of cells, Lancaster’s 3D brain organoids were incredibly sophisticated in their recapitulation of the human brain during development. Subsequent studies further solidified their similarity to the developing brain of a fetus—not just in terms of neuron types, but also their connections and structure.
With the finding that these mini-brains sparked with electrical activity, bioethicists increasingly raised red flags that the blobs of human brain tissue—no larger than the size of a pea at most—could harbor the potential to develop a sense of awareness if further matured and with external input and output.
Despite these concerns, brain organoids became an instant hit. Because they’re made of human tissue—often taken from actual human patients and converted into stem-cell-like states—organoids harbor the same genetic makeup as their donors. This makes it possible to study perplexing conditions such as autism, schizophrenia, or other brain disorders in a dish. What’s more, because they’re grown in the lab, it’s possible to genetically edit the mini-brains to test potential genetic culprits in the search for a cure.
Yet mini-brains had an Achilles’ heel: not all were made the same. Rather, depending on the region of the brain that was reverse engineered, the cells had to be persuaded by different cocktails of chemical soups and maintained in isolation. It was a stark contrast to our own developing brains, where regions are connected through highways of neural networks and work in tandem.
Pasca faced the problem head-on. Betting on the brain’s self-assembling capacity, his team hypothesized that it might be possible to grow different mini-brains, each reflecting a different brain region, and have them fuse together into a synchronized band of neuron circuits to process information. Last year, his idea paid off.
In one mind-blowing study, his team grew two separate portions of the brain into blobs, one representing the cortex, the other a deeper part of the brain known to control reward and movement, called the striatum. Shockingly, when put together, the two blobs of human brain tissue fused into a functional couple, automatically establishing neural highways that resulted in one of the most sophisticated recapitulations of a human brain. Pasca crowned this tissue engineering crème-de-la-crème “assembloids,” a portmanteau between “assemble” and “organoids.”
“We have demonstrated that regionalized brain spheroids can be put together to form fused structures called brain assembloids,” said Pasca at the time.” [They] can then be used to investigate developmental processes that were previously inaccessible.”
And if that’s possible for wiring up a lab-grown brain, why wouldn’t it work for larger neural circuits?
Assembloids, Assemble
The new study is the fruition of that idea.
The team started with human skin cells, scraped off of eight healthy people, and transformed them into a stem-cell-like state, called iPSCs. These cells have long been touted as the breakthrough for personalized medical treatment, before each reflects the genetic makeup of its original host.
Using two separate cocktails, the team then generated mini-brains and mini-spinal cords using these iPSCs. The two components were placed together “in close proximity” for three days inside a lab incubator, gently floating around each other in an intricate dance. To the team’s surprise, under the microscope using tracers that glow in the dark, they saw highways of branches extending from one organoid to the other like arms in a tight embrace. When stimulated with electricity, the links fired up, suggesting that the connections weren’t just for show—they’re capable of transmitting information.
“We made the parts,” said Pasca, “but they knew how to put themselves together.”
Then came the ménage à trois. Once the mini-brain and spinal cord formed their double-decker ice cream scoop, the team overlaid them onto a layer of muscle cells—cultured separately into a human-like muscular structure. The end result was a somewhat bizarre and silly-looking snowman, made of three oddly-shaped spherical balls.
Yet against all odds, the brain-spinal cord assembly reached out to the lab-grown muscle. Using a variety of tools, including measuring muscle contraction, the team found that this utterly Frankenstein-like snowman was able to make the muscle component contract—in a way similar to how our muscles twitch when needed.
“Skeletal muscle doesn’t usually contract on its own,” said Pasca. “Seeing that first twitch in a lab dish immediately after cortical stimulation is something that’s not soon forgotten.”
When tested for longevity, the contraption lasted for up to 10 weeks without any sort of breakdown. Far from a one-shot wonder, the isolated circuit worked even better the longer each component was connected.
Pasca isn’t the first to give mini-brains an output channel. Last year, the queen of brain organoids, Lancaster, chopped up mature mini-brains into slices, which were then linked to muscle tissue through a cultured spinal cord. Assembloids are a step up, showing that it’s possible to automatically sew multiple nerve-linked structures together, such as brain and muscle, sans slicing.
The question is what happens when these assembloids become more sophisticated, edging ever closer to the inherent wiring that powers our movements. Pasca’s study targets outputs, but what about inputs? Can we wire input channels, such as retinal cells, to mini-brains that have a rudimentary visual cortex to process those examples? Learning, after all, depends on examples of our world, which are processed inside computational circuits and delivered as outputs—potentially, muscle contractions.
To be clear, few would argue that today’s mini-brains are capable of any sort of consciousness or awareness. But as mini-brains get increasingly more sophisticated, at what point can we consider them a sort of AI, capable of computation or even something that mimics thought? We don’t yet have an answer—but the debates are on.
Image Credit: christitzeimaging.com / Shutterstock.com Continue reading