Tag Archives: motor

#437735 Robotic Chameleon Tongue Snatches Nearby ...

Chameleons may be slow-moving lizards, but their tongues can accelerate at astounding speeds, snatching insects before they have any chance of fleeing. Inspired by this remarkable skill, researchers in South Korea have developed a robotic tongue that springs forth quickly to snatch up nearby items.

They envision the tool, called Snatcher, being used by drones and robots that need to collect items without getting too close to them. “For example, a quadrotor with this manipulator will be able to snatch distant targets, instead of hovering and picking up,” explains Gwang-Pil Jung, a researcher at Seoul National University of Science and Technology (SeoulTech) who co-designed the new device.

There has been other research into robotic chameleon tongues, but what’s unique about Snatcher is that it packs chameleon-tongue fast snatching performance into a form factor that’s portable—the total size is 12 x 8.5 x 8.5 centimeters and it weighs under 120 grams. Still, it’s able to fast snatch up to 30 grams from 80 centimeters away in under 600 milliseconds.

Image: SeoulTech

The fast snatching deployable arm is powered by a wind-up spring attached to a motor (a series elastic actuator) combined with an active clutch. The clutch is what allows the single spring to drive both the shooting and the retracting.

To create Snatcher, Jung and a colleague at SeoulTech, Dong-Jun Lee, set about developing a spring-like device that’s controlled by an active clutch combined with a single series elastic actuator. Powered by a wind-up spring, a steel tapeline—analogous to a chameleon’s tongue—passes through two geared feeders. The clutch is what allows the single spring unwinding in one direction to drive both the shooting and the retracting, by switching a geared wheel between driving the forward feeder or the backward feeder.

The end result is a lightweight snatching device that can retrieve an object 0.8 meters away within 600 milliseconds. Jung notes that some other, existing devices designed for retrieval are capable of accomplishing the task quicker, at about 300 milliseconds, but these designs tend to be bulky. A more detailed description of Snatcher was published July 21 in IEEE Robotics and Automation Letters.

Photo: Dong-Jun Lee and Gwang-Pil Jung/SeoulTech

Snatcher’s relative small size means that it can be installed on a DJI Phantom drone. The researchers want to find out if their system can help make package delivery or retrieval faster and safer.

“Our final goal is to install the Snatcher to a commercial drone and achieve meaningful work, such as grasping packages,” says Jung. One of the challenges they still need to address is how to power the actuation system more efficiently. “To solve this issue, we are finding materials having high energy density.” Another improvement is designing a chameleon tongue-like gripper, replacing the simple hook that’s currently used to pick up objects. “We are planning to make a bi-stable gripper to passively grasp a target object as soon as the gripper contacts the object,” says Jung.

< Back to IEEE Journal Watch Continue reading

Posted in Human Robots

#437707 Video Friday: This Robot Will Restock ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

CLAWAR 2020 – August 24-26, 2020 – [Online Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online Conference]
IROS 2020 – October 25-29, 2020 – Las Vegas, Nev., USA
CYBATHLON 2020 – November 13-14, 2020 – [Online Event]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today's videos.

Tokyo startup Telexistence has recently unveiled a new robot called the Model-T, an advanced teleoperated humanoid that can use tools and grasp a wide range of objects. Japanese convenience store chain FamilyMart plans to test the Model-T to restock shelves in up to 20 stores by 2022. In the trial, a human “pilot” will operate the robot remotely, handling items like beverage bottles, rice balls, sandwiches, and bento boxes.

With Model-T and AWP, FamilyMart and TX aim to realize a completely new store operation by remoteizing and automating the merchandise restocking work, which requires a large number of labor-hours. As a result, stores can operate with less number of workers and enable them to recruit employees regardless of the store’s physical location.

[ Telexistence ]

Quadruped dance-off should be a new robotics competition at IROS or ICRA.

I dunno though, that moonwalk might keep Spot in the lead…

[ Unitree ]

Through a hybrid of simulation and real-life training, this air muscle robot is learning to play table tennis.

Table tennis requires to execute fast and precise motions. To gain precision it is necessary to explore in this high-speed regimes, however, exploration can be safety-critical at the same time. The combination of RL and muscular soft robots allows to close this gap. While robots actuated by pneumatic artificial muscles generate high forces that are required for e.g. smashing, they also offer safe execution of explosive motions due to antagonistic actuation.

To enable practical training without real balls, we introduce Hybrid Sim and Real Training (HYSR) that replays prerecorded real balls in simulation while executing actions on the real system. In this manner, RL can learn the challenging motor control of the PAM-driven robot while executing ~15000 hitting motions.

[ Max Planck Institute ]

Thanks Dieter!

Anthony Cowley wrote in to share his recent thesis work on UPSLAM, a fast and lightweight SLAM technique that records data in panoramic depth images (just PNGs) that are easy to visualize and even easier to share between robots, even on low-bandwidth networks.

[ UPenn ]

Thanks Anthony!

GITAI’s G1 is the space dedicated general-purpose robot. G1 robot will enable automation of various tasks internally & externally on space stations and for lunar base development.

[ Gitai ]

The University of Michigan has a fancy new treadmill that’s built right into the floor, which proves to be a bit much for Mini Cheetah.

But Cassie Blue won’t get stuck on no treadmill! She goes for a 0.3 mile walk across campus, which ends when a certain someone ran the gantry into Cassie Blue’s foot.

[ Michigan Robotics ]

Some serious quadruped research going on at UT Austin Human Centered Robotics Lab.

[ HCRL ]

Will Burrard-Lucas has spent lockdown upgrading his slightly indestructible BeetleCam wildlife photographing robot.

[ Will Burrard-Lucas ]

Teleoperated surgical robots are becoming commonplace in operating rooms, but many are massive (sometimes taking up an entire room) and are difficult to manipulate, especially if a complication arises and the robot needs to removed from the patient. A new collaboration between the Wyss Institute, Harvard University, and Sony Corporation has created the mini-RCM, a surgical robot the size of a tennis ball that weighs as much as a penny, and performed significantly better than manually operated tools in delicate mock-surgical procedures. Importantly, its small size means it is more comparable to the human tissues and structures on which it operates, and it can easily be removed by hand if needed.

[ Harvard Wyss ]

Yaskawa appears to be working on a robot that can scan you with a temperature gun and then jam a mask on your face?

[ Motoman ]

Maybe we should just not have people working in mines anymore, how about that?

[ Exyn ]

Many current human-robot interactive systems tend to use accurate and fast – but also costly – actuators and tracking systems to establish working prototypes that are safe to use and deploy for user studies. This paper presents an embedded framework to build a desktop space for human-robot interaction, using an open-source robot arm, as well as two RGB cameras connected to a Raspberry Pi-based controller that allow a fast yet low-cost object tracking and manipulation in 3D. We show in our evaluations that this facilitates prototyping a number of systems in which user and robot arm can commonly interact with physical objects.

[ Paper ]

IBM Research is proud to host professor Yoshua Bengio — one of the world’s leading experts in AI — in a discussion of how AI can contribute to the fight against COVID-19.

[ IBM Research ]

Ira Pastor, ideaXme life sciences ambassador interviews Professor Dr. Hiroshi Ishiguro, the Director of the Intelligent Robotics Laboratory, of the Department of Systems Innovation, in the Graduate School of Engineering Science, at Osaka University, Japan.

[ ideaXme ]

A CVPR talk from Stanford’s Chelsea Finn on “Generalization in Visuomotor Learning.”

[ Stanford ] Continue reading

Posted in Human Robots

#437695 Video Friday: Even Robots Know That You ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

CLAWAR 2020 – August 24-26, 2020 – [Online Conference]
Other Than Human – September 3-10, 2020 – Stockholm, Sweden
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online Conference]
IROS 2020 – October 25-29, 2020 – Las Vegas, Nev., USA
CYBATHLON 2020 – November 13-14, 2020 – [Online Event]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today's videos.

From the Robotics and Perception Group at UZH comes Flightmare, a simulation environment for drones that combines a slick rendering engine with a robust physics engine that can run as fast as your system can handle.

Flightmare is composed of two main components: a configurable rendering engine built on Unity and a flexible physics engine for dynamics simulation. Those two components are totally decoupled and can run independently from each other. Flightmare comes with several desirable features: (i) a large multi-modal sensor suite, including an interface to extract the 3D point-cloud of the scene; (ii) an API for reinforcement learning which can simulate hundreds of quadrotors in parallel; and (iii) an integration with a virtual-reality headset for interaction with the simulated environment. Flightmare can be used for various applications, including path-planning, reinforcement learning, visual-inertial odometry, deep learning, human-robot interaction, etc.

[ Flightmare ]

Quadruped robots yelling at people to maintain social distancing is really starting to become a thing, for better or worse.

We introduce a fully autonomous surveillance robot based on a quadruped platform that can promote social distancing in complex urban environments. Specifically, to achieve autonomy, we mount multiple cameras and a 3D LiDAR on the legged robot. The robot then uses an onboard real-time social distancing detection system to track nearby pedestrian groups. Next, the robot uses a crowd-aware navigation algorithm to move freely in highly dynamic scenarios. The robot finally uses a crowd aware routing algorithm to effectively promote social distancing by using human-friendly verbal cues to send suggestions to overcrowded pedestrians.

[ Project ]

Thanks Fan!

The Personal Robotics Group at Oregon State University is looking at UV germicidal irradiation for surface disinfection with a Fetch Manipulator Robot.

Fetch Robot disinfecting dance party woo!

[ Oregon State ]

How could you not take a mask from this robot?

[ Reachy ]

This work presents the design, development and autonomous navigation of the alpha-version of our Resilient Micro Flyer, a new type of collision-tolerant small aerial robot tailored to traversing and searching within highly confined environments including manhole-sized tubes. The robot is particularly lightweight and agile, while it implements a rigid collision-tolerant design which renders it resilient during forcible interaction with the environment. Furthermore, the design of the system is enhanced through passive flaps ensuring smoother and more compliant collision which was identified to be especially useful in very confined settings.

[ ARL ]

Pepper can make maps and autonomously navigate, which is interesting, but not as interesting as its posture when it's wandering around.

Dat backing into the charging dock tho.

[ Pepper ]

RatChair a strategy for displacing big objects by attaching relatively small vibration sources. After learning how several random bursts of vibration affect its pose, an optimization algorithm discovers the optimal sequence of vibration patterns required to (slowly but surely) move the object to a specified position.

This is from 2015, why isn't all of my furniture autonomous yet?!

[ KAIST ]

The new SeaDrone Pro is designed to be the underwater equivalent of a quadrotor. This video is a rendering, but we've been assured that it does actually exist.

[ SeaDrone ]

Thanks Eduardo!

Porous Loops is a lightweight composite facade panel that shows the potential of 3D printing of mineral foams for building scale applications.

[ ETH ]

Thanks Fan!

Here's an interesting idea for a robotic gripper- it's what appears to be a snap bracelet coupled to a pneumatic actuator that allows the snap bracelet to be reset.

[ Georgia Tech ]

Graze is developing a commercial robotic lawnmower. They're also doing a sort of crowdfunded investment thing, which probably explains the painfully overproduced nature of the following video:

A couple things about this: the hard part, which the video skips over almost entirely, is the mapping, localization, and understanding where to mow and where not to mow. The pitch deck seems to suggest that this is mostly done through computer vision, a thing that's perhaps easy to do under controlled ideal conditions, but difficult to apply to a world full lawns that are all different. The commercial aspect is interesting because golf courses are likely as standardized as you can get, but the emphasis here on how much money they can make without really addressing any of the technical stuff makes me raise an eyebrow or two.

[ Graze ]

The record & playback X-series arm demo allows the user to record the arm's movements while motors are torqued off. Then, the user may torque the motor's on and watch the movements they just made playback!

[ Interbotix ]

Shadow Robot has a new teleop system for its hand. I'm guessing that it's even trickier to use than it looks.

[ Shadow Robot ]

Quanser Interactive Labs is a collection of virtual hardware-based laboratory activities that supplement traditional or online courses. Same as working with physical systems in the lab, students work with virtual twins of Quanser's most popular plants, develop their mathematical models, implement and simulate the dynamic behavior of these systems, design controllers, and validate them on a high-fidelity 3D real-time virtual models. The virtual systems not only look like the real ones, they also behave, can be manipulated, measured, and controlled like real devices. And finally, when students go to the lab, they can deploy their virtually-validated designs on actual physical equipment.

[ Quanser ]

This video shows robot-assisted heart surgery. It's amazing to watch if you haven't seen this sort of thing before, but be aware that there is a lot of blood.

This video demonstrates a fascinating case of robotic left atrial myxoma excision, narrated by Joel Dunning, Middlesbrough, UK. The Robotic platform provides superior visualisation and enhanced dexterity, through keyhole incisions. Robotic surgery is an integral part of our Minimally Invasive Cardiothoracic Surgery Program.

[ Tristan D. Yan ]

Thanks Fan!

In this talk, we present our work on learning control policies directly in simulation that are deployed onto real drones without any fine tuning. The presentation covers autonomous drone racing, drone acrobatics, and uncertainty estimation in deep networks.

[ RPG ] Continue reading

Posted in Human Robots

#437643 Video Friday: Matternet Launches Urban ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

IROS 2020 – October 25-25, 2020 – [Online]
Bay Area Robotics Symposium – November 20, 2020 – [Online]
ACRA 2020 – December 8-10, 2020 – [Online]
Let us know if you have suggestions for next week, and enjoy today's videos.

Sixteen teams chose their roster of virtual robots and sensor payloads, some based on real-life subterranean robots, and submitted autonomy and mapping algorithms that SubT Challenge officials then tested across eight cave courses in the cloud-based SubT Simulator. Their robots traversed the cave environments autonomously, without any input or adjustments from human operators. The Cave Circuit Virtual Competition teams earned points by correctly finding, identifying, and localizing up to 20 artifacts hidden in the cave courses within five-meter accuracy.

[ SubT ]

This year, the KUKA Innovation Award’s international jury of experts received a total of more than 40 ideas. The five finalist teams had time until November to implement their ideas. A KUKA LBR Med lightweight robot – the first robotic component to be certified for integration into a medical device – has been made available to them for this purpose. Beyond this, the teams have received a training for the hardware and coaching from KUKA experts throughout the competition. At virtual.MEDICA from 16-19.11.2020, the finalists presented their concepts to an international audience of experts and to the Innovation Award jury.

The winner of the KUKA Innovation Award 2020, worth 20,000 euros, is Team HIFUSK from the Scuola Superiore Sant'Anna in Italy.

[ KUKA Innovation Award ]

Like everything else the in-person Cybathlon event was cancelled, but the competition itself took place, just a little more distributed than it would have been otherwise.

[ Cybathlon ]

Matternet, developer of the world's leading urban drone logistics platform, today announced the launch of operations at Labor Berlin Charité Vivantes in Germany. The program kicked-off November 17, 2020 with permanent operations expected to take flight next year, creating the first urban BVLOS [Beyond Visual Line of Sight] medical drone delivery network in the European Union. The drone network expects to significantly improve the timeliness and efficiency of Labor Berlin’s diagnostics services by providing an option to avoid roadway delays, which will improve patient experience with potentially life-saving benefits and lower costs.

Routine BVLOS over an urban area? Impressive.

[ Matternet ]

Robots playing diabolo!

Thanks Thilo!

[ OMRON Sinic X]

Anki's tech has been repackaged into this robot that serves butter:

[ Butter Robot ]

Berkshire Grey just announced our Picking With Purpose Program in which we’ve partnered our robotic automation solutions with food rescue organizations City Harvest and The Greater Boston Food Bank to pick, pack, and distribute food to families in need in time for Thanksgiving. Berkshire Grey donated about 40,000 pounds of food, used one of our robotic automation systems to pick and pack that food into meal boxes for families in need, and our team members volunteered to run the system. City Harvest and The Greater Boston Food Bank are distributing the 4,000 meal boxes we produced. This is just the beginning. We are building a sponsorship program to make Picking With Purpose an ongoing initiative.

[ Berkshire Grey ]

Thanks Peter!

We posted a video previously of Cassie learning to skip, but here's a much more detailed look (accompanying an ICRA submission) that includes some very impressive stair descending.

[ DRL ]

From garage inventors to university students and entrepreneurs, NASA is looking for ideas on how to excavate the Moon’s icy regolith, or dirt, and deliver it to a hypothetical processing plant at the lunar South Pole. The NASA Break the Ice Lunar Challenge, a NASA Centennial Challenge, is now open for registration. The competition will take place over two phases and will reward new ideas and approaches for a system architecture capable of excavating and moving icy regolith and water on the lunar surface.

[ NASA ]

Adaptation to various scene configurations and object properties, stability and dexterity in robotic grasping manipulation is far from explored. This work presents an origami-based shape morphing fingertip design to actively tackle the grasping stability and dexterity problems. The proposed fingertip utilizes origami as its skeleton providing degrees of freedom at desired positions and motor-driven four-bar-linkages as its transmission components to achieve a compact size of the fingertip.

[ Paper ]

“If Roboy crashes… you die.”

[ Roboy ]

Traditionally lunar landers, as well as other large space exploration vehicles, are powered by solar arrays or small nuclear reactors. Rovers and small robots, however, are not big enough to carry their own dedicated power supplies and must be tethered to their larger counterparts via electrical cables. Tethering severely restricts mobility, and cables are prone to failure due to lunar dust (regolith) interfering with electrical contact points. Additionally, as robots become smaller and more complex, they are fitted with additional sensors that require more power, further exacerbating the problem. Lastly, solar arrays are not viable for charging during the lunar night. WiBotic is developing rapid charging systems and energy monitoring base stations for lunar robots, including the CubeRover – a shoebox-sized robot designed by Astrobotic – that will operate autonomously and charge wirelessly on the Moon.

[ WiBotic ]

Watching pick and place robots is my therapy.

[ Soft Robotics ]

It's really, really hard to beat liquid fuel for energy storage, as Quaternium demonstrates with their hybrid drone.

[ Quaternium ]

Thanks Gregorio!

State-of-the-art quadrotor simulators have a rigid and highly-specialized structure: either are they really fast, physically accurate, or photo-realistic. In this work, we propose a novel quadrotor simulator: Flightmare.

[ Flightmare ]

Drones that chuck fire-fighting balls into burning buildings, sure!

[ LARICS ]

If you missed ROS World, that's okay, because all of the talks are now online. Here's the opening keynote from Vivian Chu and Diligent robotics, along with a couple fun lightning talks.

[ ROS World 2020 ]

This week's CMU RI Seminar is by Chelsea Finn from Stanford University, on Data Scalability for Robot Learning.

Recent progress in robot learning has demonstrated how robots can acquire complex manipulation skills from perceptual inputs through trial and error, particularly with the use of deep neural networks. Despite these successes, the generalization and versatility of robots across environment conditions, tasks, and objects remains a major challenge. And, unfortunately, our existing algorithms and training set-ups are not prepared to tackle such challenges, which demand large and diverse sets of tasks and experiences. In this talk, I will discuss two central challenges that pertain to data scalability: first, acquiring large datasets of diverse and useful interactions with the world, and second, developing algorithms that can learn from such datasets. Then, I will describe multiple approaches that we might take to rethink our algorithms and data pipelines to serve these goals. This will include algorithms that allow a real robot to explore its environment in a targeted manner with minimal supervision, approaches that can perform robot reinforcement learning with videos of human trial-and-error experience, and visual model-based RL approaches that are not bottlenecked by their capacity to model everything about the world.

[ CMU RI ] Continue reading

Posted in Human Robots

#437630 How Toyota Research Envisions the Future ...

Yesterday, the Toyota Research Institute (TRI) showed off some of the projects that it’s been working on recently, including a ceiling-mounted robot that could one day help us with household chores. That system is just one example of how TRI envisions the future of robotics and artificial intelligence. As TRI CEO Gill Pratt told us, the company is focusing on robotics and AI technology for “amplifying, rather than replacing, human beings.” In other words, Toyota wants to develop robots not for convenience or to do our jobs for us, but rather to allow people to continue to live and work independently even as we age.

To better understand Toyota’s vision of robotics 15 to 20 years from now, it’s worth watching the 20-minute video below, which depicts various scenarios “where the application of robotic capabilities is enabling members of an aging society to live full and independent lives in spite of the challenges that getting older brings.” It’s a long video, but it helps explains TRI’s perspective on how robots will collaborate with humans in our daily lives over the next couple of decades.

Those are some interesting conceptual telepresence-controlled bipeds they’ve got running around in that video, right?

For more details, we sent TRI some questions on how it plans to go from concepts like the ones shown in the video to real products that can be deployed in human environments. Below are answers from TRI CEO Gill Pratt, who is also chief scientist for Toyota Motor Corp.; Steffi Paepcke, senior UX designer at TRI; and Max Bajracharya, VP of robotics at TRI.

IEEE Spectrum: TRI seems to have a more explicit focus on eventual commercialization than most of the robotics research that we cover. At what point TRI starts to think about things like reliability and cost?

Photo: TRI

Toyota is exploring robots capable of manipulating dishes in a sink and a dishwasher, performing experiments and simulations to make sure that the robots can handle a wide range of conditions.

Gill Pratt: It’s a really interesting question, because the normal way to think about this would be to say, well, both reliability and cost are product development tasks. But actually, we need to think about it at the earliest possible stage with research as well. The hardware that we use in the laboratory for doing experiments, we don’t worry about cost there, or not nearly as much as you’d worry about for a product. However, in terms of what research we do, we very much have to think about, is it possible (if the research is successful) for it to end up in a product that has a reasonable cost. Because if a customer can’t afford what we come up with, maybe it has some academic value but it’s not actually going to make a difference in their quality of life in the real world. So we think about cost very much from the beginning.

The same is true with reliability. Right now, we’re working very hard to make our control techniques robust to wide variations in the environment. For instance, in work that Russ Tedrake is doing with manipulating dishes in a sink and a dishwasher, both in physical testing and in simulation, we’re doing thousands and now millions of different experiments to make sure that we can handle the edge cases and it works over a very wide range of conditions.

A tremendous amount of work that we do is trying to bring robotics out of the age of doing demonstrations. There’s been a history of robotics where for some time, things have not been reliable, so we’d catch the robot succeeding just once and then show that video to the world, and people would get the mis-impression that it worked all of the time. Some researchers have been very good about showing the blooper reel too, to show that some of the time, robots don’t work.

“A tremendous amount of work that we do is trying to bring robotics out of the age of doing demonstrations. There’s been a history of robotics where for some time, things have not been reliable, so we’d catch the robot succeeding just once and then show that video to the world, and people would get the mis-impression that it worked all of the time.”
—Gill Pratt, TRI

In the spirit of sharing things that didn’t work, can you tell us a bit about some of the robots that TRI has had under development that didn’t make it into the demo yesterday because they were abandoned along the way?

Steffi Paepcke: We’re really looking at how we can connect people; it can be hard to stay in touch and see our loved ones as much as we would like to. There have been a few prototypes that we’ve worked on that had to be put on the shelf, at least for the time being. We were exploring how to use light so that people could be ambiently aware of one another across distances. I was very excited about that—the internal name was “glowing orb.” For a variety of reasons, it didn’t work out, but it was really fascinating to investigate different modalities for keeping in touch.

Another prototype we worked on—we found through our research that grocery shopping is obviously an important part of life, and for a lot of older adults, it’s not necessarily the right answer to always have groceries delivered. Getting up and getting out of the house keeps you physically active, and a lot of people prefer to continue doing it themselves. But it can be challenging, especially if you’re purchasing heavy items that you need to transport. We had a prototype that assisted with grocery shopping, but when we pivoted our focus to Japan, we found that the inside of a Japanese home really needs to stay inside, and the outside needs to stay outside, so a robot that traverses both domains is probably not the right fit for a Japanese audience, and those were some really valuable lessons for us.

Photo: TRI

Toyota recently demonstrated a gantry robot that would hang from the ceiling to perform tasks like wiping surfaces and clearing clutter.

I love that TRI is exploring things like the gantry robot both in terms of near-term research and as part of its long-term vision, but is a robot like this actually worth pursuing? Or more generally, what’s the right way to compromise between making an environment robot friendly, and asking humans to make changes to their homes?

Max Bajracharya: We think a lot about the problems that we’re trying to address in a holistic way. We don’t want to just give people a robot, and assume that they’re not going to change anything about their lifestyle. We have a lot of evidence from people who use automated vacuum cleaners that people will adapt to the tools you give them, and they’ll change their lifestyle. So we want to think about what is that trade between changing the environment, and giving people robotic assistance and tools.

We certainly think that there are ways to make the gantry system plausible. The one you saw today is obviously a prototype and does require significant infrastructure. If we’re going to retrofit a home, that isn’t going to be the way to do it. But we still feel like we’re very much in the prototype phase, where we’re trying to understand whether this is worth it to be able to bypass navigation challenges, and coming up with the pros and cons of the gantry system. We’re evaluating whether we think this is the right approach to solving the problem.

To what extent do you think humans should be either directly or indirectly in the loop with home and service robots?

Bajracharya: Our goal is to amplify people, so achieving this is going to require robots to be in a loop with people in some form. One thing we have learned is that using people in a slow loop with robots, such as teaching them or helping them when they make mistakes, gives a robot an important advantage over one that has to do everything perfectly 100 percent of the time. In unstructured human environments, robots are going to encounter corner cases, and are going to need to learn to adapt. People will likely play an important role in helping the robots learn. Continue reading

Posted in Human Robots