Tag Archives: model
#437763 Peer Review of Scholarly Research Gets ...
In the world of academics, peer review is considered the only credible validation of scholarly work. Although the process has its detractors, evaluation of academic research by a cohort of contemporaries has endured for over 350 years, with “relatively minor changes.” However, peer review may be set to undergo its biggest revolution ever—the integration of artificial intelligence.
Open-access publisher Frontiers has debuted an AI tool called the Artificial Intelligence Review Assistant (AIRA), which purports to eliminate much of the grunt work associated with peer review. Since the beginning of June 2020, every one of the 11,000-plus submissions Frontiers received has been run through AIRA, which is integrated into its collaborative peer-review platform. This also makes it accessible to external users, accounting for some 100,000 editors, authors, and reviewers. Altogether, this helps “maximize the efficiency of the publishing process and make peer-review more objective,” says Kamila Markram, founder and CEO of Frontiers.
AIRA’s interactive online platform, which is a first of its kind in the industry, has been in development for three years.. It performs three broad functions, explains Daniel Petrariu, director of project management: assessing the quality of the manuscript, assessing quality of peer review, and recommending editors and reviewers. At the initial validation stage, the AI can make up to 20 recommendations and flag potential issues, including language quality, plagiarism, integrity of images, conflicts of interest, and so on. “This happens almost instantly and with [high] accuracy, far beyond the rate at which a human could be expected to complete a similar task,” Markram says.
“We have used a wide variety of machine-learning models for a diverse set of applications, including computer vision, natural language processing, and recommender systems,” says Markram. This includes simple bag-of-words models, as well as more sophisticated deep-learning ones. AIRA also leverages a large knowledge base of publications and authors.
Markram notes that, to address issues of possible AI bias, “We…[build] our own datasets and [design] our own algorithms. We make sure no statistical biases appear in the sampling of training and testing data. For example, when building a model to assess language quality, scientific fields are equally represented so the model isn’t biased toward any specific topic.” Machine- and deep-learning approaches, along with feedback from domain experts, including errors, are captured and used as additional training data. “By regularly re-training, we make sure our models improve in terms of accuracy and stay up-to-date.”
The AI’s job is to flag concerns; humans take the final decisions, says Petrariu. As an example, he cites image manipulation detection—something AI is super-efficient at but is nearly impossible for a human to perform with the same accuracy. “About 10 percent of our flagged images have some sort of problem,” he adds. “[In academic publishing] nobody has done this kind of comprehensive check [using AI] before,” says Petrariu. AIRA, he adds, facilitates Frontiers’ mission to make science open and knowledge accessible to all. Continue reading
#437758 Remotely Operated Robot Takes Straight ...
Roboticists love hard problems. Challenges like the DRC and SubT have helped (and are still helping) to catalyze major advances in robotics, but not all hard problems require a massive amount of DARPA funding—sometimes, a hard problem can just be something very specific that’s really hard for a robot to do, especially relative to the ease with which a moderately trained human might be able to do it. Catching a ball. Putting a peg in a hole. Or using a straight razor to shave someone’s face without Sweeney Todd-izing them.
This particular roboticist who sees straight-razor face shaving as a hard problem that robots should be solving is John Peter Whitney, who we first met back at IROS 2014 in Chicago when (working at Disney Research) he introduced an elegant fluidic actuator system. These actuators use tubes containing a fluid (like air or water) to transmit forces from a primary robot to a secondary robot in a very efficient way that also allows for either compliance or very high fidelity force feedback, depending on the compressibility of the fluid.
Photo: John Peter Whitney/Northeastern University
Barber meets robot: Boston based barber Jesse Cabbage [top, right] observes the machine created by roboticist John Peter Whitney. Before testing the robot on Whitney’s face, they used his arm for a quick practice [bottom].
Whitney is now at Northeastern University, in Boston, and he recently gave a talk at the RSS workshop on “Reacting to Contact,” where he suggested that straight razor shaving would be an interesting and valuable problem for robotics to work toward, due to its difficulty and requirement for an extremely high level of both performance and reliability.
Now, a straight razor is sort of like a safety razor, except with the safety part removed, which in fact does make it significantly less safe for humans, much less robots. Also not ideal for those worried about safety is that as part of the process the razor ends up in distressingly close proximity to things like the artery that is busily delivering your brain’s entire supply of blood, which is very close to the top of the list of things that most people want to keep blades very far away from. But that didn’t stop Whitney from putting his whiskers where his mouth is and letting his robotic system mediate the ministrations of a professional barber. It’s not an autonomous robotic straight-razor shave (because Whitney is not totally crazy), but it’s a step in that direction, and requires that the hardware Whitney developed be dead reliable.
Perhaps that was a poor choice of words. But, rest assured that Whitney lived long enough to answer our questions after. Here’s the video; it’s part of a longer talk, but it should start in the right spot, at about 23:30.
If Whitney looked a little bit nervous to you, that’s because he was. “This was the first time I’d ever been shaved by someone (something?!) else with a straight razor,” he told us, and while having a professional barber at the helm was some comfort, “the lack of feeling and control on my part was somewhat unsettling.” Whitney says that the barber, Jesse Cabbage of Dentes Barbershop in Somerville, Mass., was surprised by how well he could feel the tactile sensations being transmitted from the razor. “That’s one of the reasons we decided to make this video,” Whitney says. “I can’t show someone how something feels, so the next best thing is to show a delicate task that either from experience or intuition makes it clear to the viewer that the system must have these properties—otherwise the task wouldn’t be possible.”
And as for when Whitney might be comfortable getting shaved by a robotic system without a human in the loop? It’s going to take a lot of work, as do most other hard problems in robotics. “There are two parts to this,” he explains. “One is fault-tolerance of the components themselves (software, electronics, etc.) and the second is the quality of the perception and planning algorithms.”
He offers a comparison to self-driving cars, in which similar (or greater) risks are incurred: “To learn how to perceive, interpret, and adapt, we need a very high-fidelity model of the problem, or a wealth of data and experience, or both” he says. “But in the case of shaving we are greatly lacking in both!” He continues with the analogy: “I think there is a natural progression—the community started with autonomous driving of toy cars on closed courses and worked up to real cars carrying human passengers; in robotic manipulation we are beginning to move out of the ‘toy car’ stage and so I think it’s good to target high-consequence hard problems to help drive progress.”
The ultimate goal is much more general than the creation of a dedicated straight razor shaving robot. This particular hardware system is actually a testbed for exploring MRI-compatible remote needle biopsy.
Of course, the ultimate goal here is much more general than the creation of a dedicated straight razor shaving robot; it’s a challenge that includes a host of sub-goals that will benefit robotics more generally. This particular hardware system Whitney is developing is actually a testbed for exploring MRI-compatible remote needle biopsy, and he and his students are collaborating with Brigham and Women’s Hospital in Boston on adapting this technology to prostate biopsy and ablation procedures. They’re also exploring how delicate touch can be used as a way to map an environment and localize within it, especially where using vision may not be a good option. “These traits and behaviors are especially interesting for applications where we must interact with delicate and uncertain environments,” says Whitney. “Medical robots, assistive and rehabilitation robots and exoskeletons, and shared-autonomy teleoperation for delicate tasks.”
A paper with more details on this robotic system, “Series Elastic Force Control for Soft Robotic Fluid Actuators,” is available on arXiv. Continue reading
#437709 iRobot Announces Major Software Update, ...
Since the release of the very first Roomba in 2002, iRobot’s long-term goal has been to deliver cleaner floors in a way that’s effortless and invisible. Which sounds pretty great, right? And arguably, iRobot has managed to do exactly this, with its most recent generation of robot vacuums that make their own maps and empty their own dustbins. For those of us who trust our robots, this is awesome, but iRobot has gradually been realizing that many Roomba users either don’t want this level of autonomy, or aren’t ready for it.
Today, iRobot is announcing a major new update to its app that represents a significant shift of its overall approach to home robot autonomy. Humans are being brought back into the loop through software that tries to learn when, where, and how you clean so that your Roomba can adapt itself to your life rather than the other way around.
To understand why this is such a shift for iRobot, let’s take a very brief look back at how the Roomba interface has evolved over the last couple of decades. The first generation of Roomba had three buttons on it that allowed (or required) the user to select whether the room being vacuumed was small or medium or large in size. iRobot ditched that system one generation later, replacing the room size buttons with one single “clean” button. Programmable scheduling meant that users no longer needed to push any buttons at all, and with Roombas able to find their way back to their docking stations, all you needed to do was empty the dustbin. And with the most recent few generations (the S and i series), the dustbin emptying is also done for you, reducing direct interaction with the robot to once a month or less.
Image: iRobot
iRobot CEO Colin Angle believes that working toward more intelligent human-robot collaboration is “the brave new frontier” of AI. “This whole journey has been earning the right to take this next step, because a robot can’t be responsive if it’s incompetent,” he says. “But thinking that autonomy was the destination was where I was just completely wrong.”
The point that the top-end Roombas are at now reflects a goal that iRobot has been working toward since 2002: With autonomy, scheduling, and the clean base to empty the bin, you can set up your Roomba to vacuum when you’re not home, giving you cleaner floors every single day without you even being aware that the Roomba is hard at work while you’re out. It’s not just hands-off, it’s brain-off. No noise, no fuss, just things being cleaner thanks to the efforts of a robot that does its best to be invisible to you. Personally, I’ve been completely sold on this idea for home robots, and iRobot CEO Colin Angle was as well.
“I probably told you that the perfect Roomba is the Roomba that you never see, you never touch, you just come home everyday and it’s done the right thing,” Angle told us. “But customers don’t want that—they want to be able to control what the robot does. We started to hear this a couple years ago, and it took a while before it sunk in, but it made sense.”
How? Angle compares it to having a human come into your house to clean, but you weren’t allowed to tell them where or when to do their job. Maybe after a while, you’ll build up the amount of trust necessary for that to work, but in the short term, it would likely be frustrating. And people get frustrated with their Roombas for this reason. “The desire to have more control over what the robot does kept coming up, and for me, it required a pretty big shift in my view of what intelligence we were trying to build. Autonomy is not intelligence. We need to do something more.”
That something more, Angle says, is a partnership as opposed to autonomy. It’s an acknowledgement that not everyone has the same level of trust in robots as the people who build them. It’s an understanding that people want to have a feeling of control over their homes, that they have set up the way that they want, and that they’ve been cleaning the way that they want, and a robot shouldn’t just come in and do its own thing.
This change in direction also represents a substantial shift in resources for iRobot, and the company has pivoted two-thirds of its engineering organization to focus on software-based collaborative intelligence rather than hardware.
“Until the robot proves that it knows enough about your home and about the way that you want your home cleaned,” Angle says, “you can’t move forward.” He adds that this is one of those things that seem obvious in retrospect, but even if they’d wanted to address the issue before, they didn’t have the technology to solve the problem. Now they do. “This whole journey has been earning the right to take this next step, because a robot can’t be responsive if it’s incompetent,” Angle says. “But thinking that autonomy was the destination was where I was just completely wrong.”
The previous iteration of the iRobot app (and Roombas themselves) are built around one big fat CLEAN button. The new approach instead tries to figure out in much more detail where the robot should clean, and when, using a mixture of autonomous technology and interaction with the user.
Where to Clean
Knowing where to clean depends on your Roomba having a detailed and accurate map of its environment. For several generations now, Roombas have been using visual mapping and localization (VSLAM) to build persistent maps of your home. These maps have been used to tell the Roomba to clean in specific rooms, but that’s about it. With the new update, Roombas with cameras will be able to recognize some objects and features in your home, including chairs, tables, couches, and even countertops. The robots will use these features to identify where messes tend to happen so that they can focus on those areas—like around the dining room table or along the front of the couch.
We should take a minute here to clarify how the Roomba is using its camera. The original (primary?) purpose of the camera was for VSLAM, where the robot would take photos of your home, downsample them into QR-code-like patterns of light and dark, and then use those (with the assistance of other sensors) to navigate. Now the camera is also being used to take pictures of other stuff around your house to make that map more useful.
Photo: iRobot
The robots will now try to fit into the kinds of cleaning routines that many people already have established. For example, the app may suggest an “after dinner” routine that cleans just around the kitchen and dining room table.
This is done through machine learning using a library of images of common household objects from a floor perspective that iRobot had to develop from scratch. Angle clarified for us that this is all done via a neural net that runs on the robot, and that “no recognizable images are ever stored on the robot or kept, and no images ever leave the robot.” Worst case, if all the data iRobot has about your home gets somehow stolen, the hacker would only know that (for example) your dining room has a table in it and the approximate size and location of that table, because the map iRobot has of your place only stores symbolic representations rather than images.
Another useful new feature is intended to help manage the “evil Roomba places” (as Angle puts it) that every home has that cause Roombas to get stuck. If the place is evil enough that Roomba has to call you for help because it gave up completely, Roomba will now remember, and suggest that either you make some changes or that it stops cleaning there, which seems reasonable.
When to Clean
It turns out that the primary cause of mission failure for Roombas is not that they get stuck or that they run out of battery—it’s user cancellation, usually because the robot is getting in the way or being noisy when you don’t want it to be. “If you kill a Roomba’s job because it annoys you,” points out Angle, “how is that robot being a good partner? I think it’s an epic fail.” Of course, it’s not the robot’s fault, because Roombas only clean when we tell them to, which Angle says is part of the problem. “People actually aren’t very good at making their own schedules—they tend to oversimplify, and not think through what their schedules are actually about, which leads to lots of [figurative] Roomba death.”
To help you figure out when the robot should actually be cleaning, the new app will look for patterns in when you ask the robot to clean, and then recommend a schedule based on those patterns. That might mean the robot cleans different areas at different times every day of the week. The app will also make scheduling recommendations that are event-based as well, integrated with other smart home devices. Would you prefer the Roomba to clean every time you leave the house? The app can integrate with your security system (or garage door, or any number of other things) and take care of that for you.
More generally, Roomba will now try to fit into the kinds of cleaning routines that many people already have established. For example, the app may suggest an “after dinner” routine that cleans just around the kitchen and dining room table. The app will also, to some extent, pay attention to the environment and season. It might suggest increasing your vacuuming frequency if pollen counts are especially high, or if it’s pet shedding season and you have a dog. Unfortunately, Roomba isn’t (yet?) capable of recognizing dogs on its own, so the app has to cheat a little bit by asking you some basic questions.
A Smarter App
Image: iRobot
The previous iteration of the iRobot app (and Roombas themselves) are built around one big fat CLEAN button. The new approach instead tries to figure out in much more detail where the robot should clean, and when, using a mixture of autonomous technology and interaction with the user.
The app update, which should be available starting today, is free. The scheduling and recommendations will work on every Roomba model, although for object recognition and anything related to mapping, you’ll need one of the more recent and fancier models with a camera. Future app updates will happen on a more aggressive schedule. Major app releases should happen every six months, with incremental updates happening even more frequently than that.
Angle also told us that overall, this change in direction also represents a substantial shift in resources for iRobot, and the company has pivoted two-thirds of its engineering organization to focus on software-based collaborative intelligence rather than hardware. “It’s not like we’re done doing hardware,” Angle assured us. “But we do think about hardware differently. We view our robots as platforms that have longer life cycles, and each platform will be able to support multiple generations of software. We’ve kind of decoupled robot intelligence from hardware, and that’s a change.”
Angle believes that working toward more intelligent collaboration between humans and robots is “the brave new frontier of artificial intelligence. I expect it to be the frontier for a reasonable amount of time to come,” he adds. “We have a lot of work to do to create the type of easy-to-use experience that consumer robots need.” Continue reading