Tag Archives: model

#439006 Low-Cost Drones Learn Precise Control ...

I’ll admit to having been somewhat skeptical about the strategy of dangling payloads on long tethers for drone delivery. I mean, I get why Wing does it— it keeps the drone and all of its spinny bits well away from untrained users while preserving the capability of making deliveries to very specific areas that may have nearby obstacles. But it also seems like you’re adding some risk as well, because once your payload is out on that long tether, it’s more or less out of your control in at least two axes. And you can forget about your drone doing anything while this is going on, because who the heck knows what’s going to happen to your payload if the drone starts moving around?

NYU roboticists, that’s who.

This research is by Guanrui Li, Alex Tunchez, and Giuseppe Loianno at the Agile Robotics and Perception Lab (ARPL) at NYU. As you can see from the video, the drone makes keeping rock-solid control over that suspended payload look easy, but it’s very much not, especially considering that everything you see is running onboard the drone itself at 500Hz— all it takes is an IMU and a downward-facing monocular camera, along with the drone’s Snapdragon processor.

To get this to work, the drone has to be thinking about two things. First, there’s state estimation, which is the behavior of the drone itself along with its payload at the end of the tether. The drone figures this out by watching how the payload moves using its camera and tracking its own movement with its IMU. Second, there’s predicting what the payload is going to do next, and how that jibes (or not) with what the drone wants to do next. The researchers developed a model predictive control (MPC) system for this, with some added perception constraints to make sure that the behavior of the drone keeps the payload in view of the camera.

At the moment, the top speed of the system is 4 m/s, but it sounds like rather than increasing the speed of a single payload-swinging drone, the next steps will be to make the overall system more complicated by somehow using multiple drones to cooperatively manage tethered payloads that are too big or heavy for one drone to handle alone.

For more on this, we spoke with Giuseppe Loianno, head of the ARPL.

IEEE Spectrum: We've seen some examples of delivery drones delivering suspended loads. How will this work improve their capabilities?

Giuseppe Loianno: For the first time, we jointly design a perception-constrained model predictive control and state estimation approaches to enable the autonomy of a quadrotor with a cable suspended payload using onboard sensing and computation. The proposed control method guarantees the visibility of the payload in the robot camera as well as the respect of the system dynamics and actuator constraints. These are critical design aspects to guarantee safety and resilience for such a complex and delicate task involving transportation of objects.

The additional challenge involves the fact that we aim to solve the aforementioned problem using a minimal sensor suite for autonomous navigation made by a single camera and IMU. This is an ambitious goal since it concurrently involves estimating the load and the vehicle states. Previous approaches leverage GPS or motion capture systems for state estimation and do not consider the perception and physical constraints when solving the problem. We are confident that our solution will contribute to making a reality the autonomous delivery process in warehouses or in dense urban areas where the GPS signal is currently absent or shadowed.

Will it make a difference to delivery systems that use an actuated cable and only leave the load suspended for the delivery itself?

This is certainly an interesting question. We believe that adding an actuated cable will introduce more disadvantages than benefits. Certainly, an actuated cable can be leveraged to compensate for cable's swinging motions in windy conditions and/or increase the delivery precision. However, the introduction of additional actuated mechanisms and components come at the price of an increased system mass and inertia. This will reduce the overall flight time and the vehicle’s agility as well as the system resilience with respect to the transportation task. Finally, active mechanisms are also more difficult to design compared to passive ones.

What's challenging about doing all of this on-vehicle?

There are several challenges to solve on-board this problem. First, it is very difficult to concurrently run perception and action on such computationally constrained platforms in real-time. Second, the first aspect becomes even more challenging if we consider as in our case a perception-based constrained receding horizon control problem that aims to guarantee the visibility of the payload during the motion, while concurrently respecting all the system physical and sensing limitations. Finally, it has been challenging to run the entire system at a high rate to fully unleash the system’s agility. We are currently able to reach rates of 500 Hz.

Can your method adapt to loads of varying shapes, sizes, and masses? What about aerodynamics or flying in wind?

Technically, our approach can easily be adapted to varying objects sizes and masses. Our previous contributions have already shown the ability to estimate online changes in the vehicle/load configuration and can potentially be used to operate the proposed system in dynamic conditions, where the load’s characteristics are unknown and/or may vary across consecutive flights. This can be useful for both package delivery or warehouse operations, where different types of objects need to be transported or manipulated.

The aerodynamics problem is a great point. Overall, our past work has investigated the aerodynamics of wind disturbances for a single robot without a load. Formulating these problems for the proposed system is challenging and is still an open research question. We have some ideas to approach this problem combining Bayesian estimation techniques with more recent machine learning approaches and we will tackle it in the near future.

What are the limitations on the performance of the system? How fast and agile can it be with a suspended payload?

The limits of the performances are established by the actuating and sensing system. Our approach intrinsically considers both physical and sensing limitations of our system. From a sensing and computation perspective, we believe to be close to the limits with speeds of up to 4 m/s. Faster speeds can potentially introduce motion blur while decreasing the load tracking precision. Moreover, faster motions will increase as well aerodynamic disturbances that we have just mentioned. In the future, modeling these phenomena and their incorporation in the proposed solution can further push the agility.

Your paper talks about extending this approach to multiple vehicles cooperatively transporting a payload, can you tell us more about that?

We are currently working on a distributed perception and control approach for cooperative transportation. We already have some very exciting results that we will share with you very soon! Overall, we can employ a team of aerial robots to cooperatively transport a payload to increase the payload capacity and endow the system with additional resilience in case of vehicles’ failures. A cooperative cable suspended payload cooperative transportation system allows as well to concurrently and independently control the load’s position and orientation. This is not possible just using rigid connections. We believe that our approach will have a strong impact in real-world settings for delivery and constructions in warehouses and GPS-denied environments such as dense urban areas. Moreover, in post disaster scenarios, a team of physically interconnected aerial robots can deliver supplies and establish communication in areas where GPS signal is intermittent or unavailable.

PCMPC: Perception-Constrained Model Predictive Control for Quadrotors with Suspended Loads using a Single Camera and IMU, by Guanrui Li, Alex Tunchez, and Giuseppe Loianno from NYU, will be presented (virtually) at ICRA 2021.

<Back to IEEE Journal Watch Continue reading

Posted in Human Robots

#439004 Video Friday: A Walking, Wheeling ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
Let us know if you have suggestions for next week, and enjoy today's videos.

This is a pretty terrible video, I think because it was harvested from WeChat, which is where Tencent decided to premiere its new quadruped robot.

Not bad, right? Its name is Max, it has a top speed of 25 kph thanks to its elbow wheels, and we know almost nothing else about it.

[ Tencent ]

Thanks Fan!

Can't bring yourself to mask-shame others? Build a robot to do it for you instead!

[ GitHub ]

Researchers at Georgia Tech have recently developed an entirely soft, long-stroke electromagnetic actuator using liquid metal, compliant magnetic composites, and silicone polymers. The robot was inspired by the motion of the Xenia coral, which pulses its polyps to circulate oxygen under water to promote photosynthesis.

In this work, power applied to soft coils generates an electromagnetic field, which causes the internal compliant magnet to move upward. This forces the squishy silicone linkages to convert linear to the rotational motion with an arclength of up to 42 mm with a bandwidth up to 30 Hz. This highly deformable, fast, and long-stroke actuator topology can be utilized for a variety of applications from biomimicry to fully-soft grasping to wearables applications.

[ Paper ] via [ Georgia Tech ]

Thanks Noah!

Jueying Mini Lite may look a little like a Boston Dynamics Spot, but according to DeepRobotics, its coloring is based on Bruce Lee's Kung Fu clothes.

[ DeepRobotics ]

Henrique writes, “I would like to share with you the supplementary video of our recent work accepted to ICRA 2021. The video features a quadruped and a full-size humanoid performing dynamic jumps, after a brief animated intro of what direct transcription is. Me and my colleagues have put a lot of hard work into this, and I am very proud of the results.”

Making big robots jump is definitely something to be proud of!

[ SLMC Edinburgh ]

Thanks Henrique!

The finals of the Powered Exoskeleton Race for Cybathlon Global 2020.

[ Cybathlon ]

Thanks Fan!

It's nice that every once in a while, the world can get excited about science and robots.

[ NASA ]

Playing the Imperial March over footage of an army of black quadrupeds may not be sending quite the right message.

[ Unitree ]

Kod*lab PhD students Abriana Stewart-Height, Diego Caporale and Wei-Hsi Chen, with former Kod*lab student Garrett Wenger were on set in the summer of 2019 to operate RHex for the filming of Lapsis, a first feature film by director and screenwriter Noah Hutton.

[ Kod*lab ]

In class 2.008, Design and Manufacturing II, mechanical engineering students at MIT learn the fundamental principles of manufacturing at scale by designing and producing their own yo-yos. Instructors stress the importance of sustainable practices in the global supply chain.

[ MIT ]

A short history of robotics, from ABB.

[ ABB ]

In this paper, we propose a whole-body planning framework that unifies dynamic locomotion and manipulation tasks by formulating a single multi-contact optimal control problem. This is demonstrated in a set of real hardware experiments done in free-motion, such as base or end-effector pose tracking, and while pushing/pulling a heavy resistive door. Robustness against model mismatches and external disturbances is also verified during these test cases.

[ Paper ]

This paper presents PANTHER, a real-time perception-aware (PA) trajectory planner in dynamic environments. PANTHER plans trajectories that avoid dynamic obstacles while also keeping them in the sensor field of view (FOV) and minimizing the blur to aid in object tracking.

Extensive hardware experiments in unknown dynamic environments with all the computation running onboard are presented, with velocities of up to 5.8 m/s, and with relative velocities (with respect to the obstacles) of up to 6.3 m/s. The only sensors used are an IMU, a forward-facing depth camera, and a downward-facing monocular camera.

[ MIT ]

With our SaaS solution, we enable robots to inspect industrial facilities. One of the robots our software supports, is the Boston Dynamics Spot robot. In this video we demonstrate how autonomous industrial inspection with the Boston Dynamics Spot Robot is performed with our teach and repeat solution.

[ Energy Robotics ]

In this week’s episode of Tech on Deck, learn about our first technology demonstration sent to Station: The Robotic Refueling Mission. This tech demo helped us develop the tools and techniques needed to robotically refuel a satellite in space, an important capability for space exploration.

[ NASA ]

At Covariant we are committed to research and development that will bring AI Robotics to the real world. As a part of this, we believe it's important to educate individuals on how these exciting innovations will make a positive, fundamental and global impact for years to come. In this presentation, our co-founder Pieter Abbeel breaks down his thoughts on the current state of play for AI robotics.

[ Covariant ]

How do you fly a helicopter on Mars? It takes Ingenuity and Perseverance. During this technology demo, Farah Alibay and Tim Canham will get into the details of how these craft will manage this incredible task.

[ NASA ]

Complex real-world environments continue to present significant challenges for fielding robotic teams, which often face expansive spatial scales, difficult and dynamic terrain, degraded environmental conditions, and severe communication constraints. Breakthrough technologies call for integrated solutions across autonomy, perception, networking, mobility, and human teaming thrusts. As such, the DARPA OFFSET program and the DARPA Subterranean Challenge seek novel approaches and new insights for discovering and demonstrating these innovative technologies, to help close critical gaps for robotic operations in complex urban and underground environments.

[ UPenn ] Continue reading

Posted in Human Robots

#438807 Visible Touch: How Cameras Can Help ...

The dawn of the robot revolution is already here, and it is not the dystopian nightmare we imagined. Instead, it comes in the form of social robots: Autonomous robots in homes and schools, offices and public spaces, able to interact with humans and other robots in a socially acceptable, human-perceptible way to resolve tasks related to core human needs.

To design social robots that “understand” humans, robotics scientists are delving into the psychology of human communication. Researchers from Cornell University posit that embedding the sense of touch in social robots could teach them to detect physical interactions and gestures. They describe a way of doing so by relying not on touch but on vision.

A USB camera inside the robot captures shadows of hand gestures on the robot’s surface and classifies them with machine-learning software. They call this method ShadowSense, which they define as a modality between vision and touch, bringing “the high resolution and low cost of vision-sensing to the close-up sensory experience of touch.”

Touch-sensing in social or interactive robots is usually achieved with force sensors or capacitive sensors, says study co-author Guy Hoffman of the Sibley School of Mechanical and Aerospace Engineering at Cornell University. The drawback to his group’s approach has been that, even to achieve coarse spatial resolution, many sensors are needed in a small area.

However, working with non-rigid, inflatable robots, Hoffman and his co-researchers installed a consumer-grade USB camera to which they attached a fisheye lens for a wider field of vision.

“Given that the robot is already hollow, and has a soft and translucent skin, we could do touch interaction by looking at the shadows created by people touching the robot,” says Hoffman. They used deep neural networks to interpret the shadows. “And we were able to do it with very high accuracy,” he says. The robot was able to interpret six different gestures, including one- or two-handed touch, pointing, hugging and punching, with an accuracy of 87.5 to 96 percent, depending on the lighting.

This is not the first time that computer vision has been used for tactile sensing, though the scale and application of ShadowSense is unique. “Photography has been used for touch mainly in robotic grasping,” says Hoffman. By contrast, Hoffman and collaborators wanted to develop a sense that could be “felt” across the whole of the device.

The potential applications for ShadowSense include mobile robot guidance using touch, and interactive screens on soft robots. A third concerns privacy, especially in home-based social robots. “We have another paper currently under review that looks specifically at the ability to detect gestures that are further away [from the robot’s skin],” says Hoffman. This way, users would be able to cover their robot’s camera with a translucent material and still allow it to interpret actions and gestures from shadows. Thus, even though it’s prevented from capturing a high-resolution image of the user or their surrounding environment, using the right kind of training datasets, the robot can continue to monitor some kinds of non-tactile activities.

In its current iteration, Hoffman says, ShadowSense doesn’t do well in low-light conditions. Environmental noise, or shadows from surrounding objects, also interfere with image classification. Relying on one camera also means a single point of failure. “I think if this were to become a commercial product, we would probably [have to] work a little bit better on image detection,” says Hoffman.

As it was, the researchers used transfer learning—reusing a pre-trained deep-learning model in a new problem—for image analysis. “One of the problems with multi-layered neural networks is that you need a lot of training data to make accurate predictions,” says Hoffman. “Obviously, we don’t have millions of examples of people touching a hollow, inflatable robot. But we can use pre-trained networks trained on general images, which we have billions of, and we only retrain the last layers of the network using our own dataset.” Continue reading

Posted in Human Robots

#438613 Video Friday: Digit Takes a Hike

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

HRI 2021 – March 8-11, 2021 – [Online Conference]
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
Let us know if you have suggestions for next week, and enjoy today's videos.

It's winter in Oregon, so everything is damp, all the time. No problem for Digit!

Also the case for summer in Oregon.

[ Agility Robotics ]

While other organisms form collective flocks, schools, or swarms for such purposes as mating, predation, and protection, the Lumbriculus variegatus worms are unusual in their ability to braid themselves together to accomplish tasks that unconnected individuals cannot. A new study reported by researchers at the Georgia Institute of Technology describes how the worms self-organize to act as entangled “active matter,” creating surprising collective behaviors whose principles have been applied to help blobs of simple robots evolve their own locomotion.

No, this doesn't squick me out at all, why would it.

[ Georgia Tech ]

A few years ago, we wrote about Zhifeng Huang's jet-foot equipped bipedal robot, and he's been continuing to work on it to the point where it can now step over gaps that are an absolutely astonishing 147% of its leg length.

[ Paper ]

Thanks Zhifeng!

The Inception Drive is a novel, ultra-compact design for an Infinitely Variable Transmission (IVT) that uses nested-pulleys to adjust the gear ratio between input and output shafts. This video shows the first proof-of-concept prototype for a “Fully Balanced” design, where the spinning masses within the drive are completely balanced to reduce vibration, thereby allowing the drive to operate more efficiently and at higher speeds than achievable on an unbalanced design.

As shown in this video, the Inception Drive can change both the speed and direction of rotation of the output shaft while keeping the direction and speed of the input shaft constant. This ability to adjust speed and direction within such a compact package makes the Inception Drive a compelling choice for machine designers in a wide variety of fields, including robotics, automotive, and renewable-energy generation.

[ SRI ]

Robots with kinematic loops are known to have superior mechanical performance. However, due to these loops, their modeling and control is challenging, and prevents a more widespread use. In this paper, we describe a versatile Inverse Kinematics (IK) formulation for the retargeting of expressive motions onto mechanical systems with loops.

[ Disney Research ]

Watch Engineered Arts put together one of its Mesmer robots in a not at all uncanny way.

[ Engineered Arts ]

There's been a bunch of interesting research into vision-based tactile sensing recently; here's some from Van Ho at JAIST:

[ Paper ]

Thanks Van!

This is really more of an automated system than a robot, but these little levitating pucks are very very slick.

ACOPOS 6D is based on the principle of magnetic levitation: Shuttles with integrated permanent magnets float over the surface of electromagnetic motor segments. The modular motor segments are 240 x 240 millimeters in size and can be arranged freely in any shape. A variety of shuttle sizes carry payloads of 0.6 to 14 kilograms and reach speeds of up to 2 meters per second. They can move freely in two-dimensional space, rotate and tilt along three axes and offer precise control over the height of levitation. All together, that gives them six degrees of motion control freedom.

[ ACOPOS ]

Navigation and motion control of a robot to a destination are tasks that have historically been performed with the assumption that contact with the environment is harmful. This makes sense for rigid-bodied robots where obstacle collisions are fundamentally dangerous. However, because many soft robots have bodies that are low-inertia and compliant, obstacle contact is inherently safe. We find that a planner that takes into account and capitalizes on environmental contact produces paths that are more robust to uncertainty than a planner that avoids all obstacle contact.

[ CHARM Lab ]

The quadrotor experts at UZH have been really cranking it up recently.

Aerodynamic forces render accurate high-speed trajectory tracking with quadrotors extremely challenging. These complex aerodynamic effects become a significant disturbance at high speeds, introducing large positional tracking errors, and are extremely difficult to model. To fly at high speeds, feedback control must be able to account for these aerodynamic effects in real-time. This necessitates a modelling procedure that is both accurate and efficient to evaluate. Therefore, we present an approach to model aerodynamic effects using Gaussian Processes, which we incorporate into a Model Predictive Controller to achieve efficient and precise real-time feedback control, leading to up to 70% reduction in trajectory tracking error at high speeds. We verify our method by extensive comparison to a state-of-the-art linear drag model in synthetic and real-world experiments at speeds of up to 14m/s and accelerations beyond 4g.

[ Paper ]

I have not heard much from Harvest Automation over the last couple years and their website was last updated in 2016, but I guess they're selling robots in France, so that's good?

[ Harvest Automation ]

Last year, Clearpath Robotics introduced a ROS package for Spot which enables robotics developers to leverage ROS capabilities out-of-the-box. Here at OTTO Motors, we thought it would be a compelling test case to see just how easy it would be to integrate Spot into our test fleet of OTTO materials handling robots.

[ OTTO Motors ]

Video showcasing recent robotics activities at PRISMA Lab, coordinated by Prof. Bruno Siciliano, at Università di Napoli Federico II.

[ PRISMA Lab ]

Thanks Fan!

State estimation framework developed by the team CoSTAR for the DARPA Subterranean Challenge, where the team achieved 2nd and 1st places in the Tunnel and Urban circuits.

[ Paper ]

Highlights from the 2020 ROS Industrial conference.

[ ROS Industrial ]

Thanks Thilo!

Not robotics, but entertaining anyway. From the CHI 1995 Technical Video Program, “The Tablet Newspaper: a Vision for the Future.”

[ CHI 1995 ]

This week's GRASP on Robotics seminar comes from Allison Okamura at Stanford, on “Wearable Haptic Devices for Ubiquitous Communication.”

Haptic devices allow touch-based information transfer between humans and intelligent systems, enabling communication in a salient but private manner that frees other sensory channels. For such devices to become ubiquitous, their physical and computational aspects must be intuitive and unobtrusive. We explore the design of a wide array of haptic feedback mechanisms, ranging from devices that can be actively touched by the fingertips to multi-modal haptic actuation mounted on the arm. We demonstrate how these devices are effective in virtual reality, human-machine communication, and human-human communication.

[ UPenn ] Continue reading

Posted in Human Robots

#438080 Boston Dynamics’ Spot Robot Is Now ...

Boston Dynamics has been working on an arm for its Spot quadruped for at least five years now. There have been plenty of teasers along the way, including this 45-second clip from early 2018 of Spot using its arm to open a door, which at 85 million views seems to be Boston Dynamics’ most popular video ever by a huge margin. Obviously, there’s a substantial amount of interest in turning Spot from a highly dynamic but mostly passive sensor platform into a mobile manipulator that can interact with its environment.

As anyone who’s done mobile manipulation will tell you, actually building an arm is just the first step—the really tricky part is getting that arm to do exactly what you want it to do. In particular, Spot’s arm needs to be able to interact with the world with some amount of autonomy in order to be commercially useful, because you can’t expect a human (remote or otherwise) to spend all their time positioning individual joints or whatever to pick something up. So the real question about this arm is whether Boston Dynamics has managed to get it to a point where it’s autonomous enough that users with relatively little robotics experience will be able to get it to do useful tasks without driving themselves nuts.

Today, Boston Dynamics is announcing commercial availability of the Spot arm, along with some improved software called Scout plus a self-charging dock that’ll give the robot even more independence. And to figure out exactly what Spot’s new arm can do, we spoke with Zachary Jackowski, Spot Chief Engineer at Boston Dynamics.

Although Boston Dynamics’ focus has been on dynamic mobility and legged robots, the company has been working on manipulation for a very long time. We first saw an arm prototype on an early iteration of Spot in 2016, where it demonstrated some impressive functionality, including loading a dishwasher and fetching a beer in a way that only resulted in a minor catastrophe. But we’re guessing that Spot’s arm can trace its history back to BigDog’s crazy powerful hydraulic face-arm, which was causing mayhem with cinder blocks back in 2013:

Spot’s arm is not quite that powerful (it has to drag cinder blocks along the ground rather than fling them into space), but you can certainly see the resemblance. Here’s the video that Boston Dynamics posted yesterday to introduce Spot’s new arm:

A couple of things jumped out from this video right away. First, Spot is doing whole body manipulation with its arm, as opposed to just acting as a four-legged base that brings the arm where it needs to go. Planning looks to be very tightly integrated, such that if you ask the robot to manipulate an object, its arm, legs, and torso all work together to optimize that manipulation. Also, when Spot flips that electrical switch, you see the robot successfully grasp the switch, and then reposition its body in a way that looks like it provides better leverage for the flip, which is a neat trick. It looks like it may be able to use the strength of its legs to augment the strength of its arm, as when it’s dragging the cinder block around, which is surely an homage to BigDog. The digging of a hole is particularly impressive. But again, the real question is how much of this is autonomous or semi-autonomous in a way that will be commercially useful?

Before we get to our interview with Spot Chief Engineer Zack Jackowski, it’s worth watching one more video that Boston Dynamics shared with us:

This is notable because Spot is opening a door that’s not ADA compliant, and the robot is doing it with a simple two-finger gripper. Most robots you see interacting with doors rely on ADA compliant hardware, meaning (among other things) a handle that can be pushed rather than a knob that has to be twisted, because it’s much more challenging for a robot to grasp and twist a smooth round door knob than it is to just kinda bash down on a handle. That capability, combined with Spot being able to pass through a spring-loaded door, potentially opens up a much wider array of human environments to the robot, and that’s where we started our conversation with Jackowski.

IEEE Spectrum: At what point did you decide that for Spot’s arm to be useful, it had to be able to handle round door knobs?

Zachary Jackowski: We're like a lot of roboticists, where someone in a meeting about manipulation would say “it's time for the round doorknob” and people would start groaning a little bit. But the reality is that, in order to make a robot useful, you have to engage with the environments that users have. Spot’s arm uses a very simple gripper—it’s a one degree of freedom gripper, but a ton of thought has gone into all of the fine geometric contours of it such that it can grab that ADA compliant lever handle, and it’ll also do an enclosing grasp around a round door knob. The major point of a robot like Spot is to engage with the environment you have, and so you can’t cut out stuff like round door knobs.

We're thrilled to be launching the arm and getting it out with users and to have them start telling us what doors it works really well on, and what they're having trouble with. And we're going to be working on rapidly improving all this stuff. We went through a few campaigns of like, “this isn’t ready until we can open every single door at Boston Dynamics!” But every single door at Boston Dynamics and at our test lab is a small fraction of all the doors in the world. So we're prepared to learn a lot this year.

When we see Spot open a door, or when it does those other manipulation behaviors in the launch video, how much of that is autonomous, how much is scripted, and to what extent is there a human in the loop?

All of the scenes where the robot does a pick, like the snow scene or the laundry scene, that is actually an almost fully integrated autonomous behavior that has a bit of a script wrapped around it. We trained a detector for an object, and the robot is identifying that object in the environment, picking it, and putting it in the bin all autonomously. The scripted part of that is telling the robot to perform a series of picks.

One of the things that we’re excited about, and that roboticists have been excited about going back probably all the way to the DRC, is semi-autonomous manipulation. And so we have modes built into the interface where if you see an object that you want the robot to grab, all you have to do is tap that object on the screen, and the robot will walk up to it, use the depth camera in its gripper to capture a depth map, and plan a grasp on its own in real time. That’s all built-in, too.

The jump rope—robots don’t just go and jump rope on their own. We scripted an arm motion to move the rope, and wrote a script using our API to coordinate all three robots. Drawing “Boston Dynamics” in chalk in our parking lot was scripted also. One of our engineers wrote a really cool G-code interpreter that vectorizes graphics so that Spot can draw them.

So for an end user, if you wanted Spot to autonomously flip some switches for you, you’d just have to train Spot on your switches, and then Spot could autonomously perform the task?

There are a couple of ways that task could break down depending on how you’re interfacing with the robot. If you’re a tablet user, you’d probably just identify the switch yourself on the tablet’s screen, and the robot will figure out the grasp, and grasp it. Then you’ll enter a constrained manipulation mode on the tablet, and the robot will be able to actuate the switch. But the robot will take care of the complicated controls aspects, like figuring out how hard it has to pull, the center of rotation of the switch, and so on.

The video of Spot digging was pretty cool—how did that work?

That’s mostly a scripted behavior. There are some really interesting control systems topics in there, like how you’d actually do the right kinds of force control while you insert the trowel into the dirt, and how to maintain robot stability while you do it. The higher level task of how to make a good hole in the dirt—that’s scripted. But the part of the problem that’s actually digging, you need the right control system to actually do that, or you’ll dig your trowel into the ground and flip your robot over.

The last time we saw Boston Dynamics robots flipping switches and turning valves I think might have been during the DRC in 2015, when they had expert robot operators with control over every degree of freedom. How are things different now with Spot, and will non-experts in the commercial space really be able to get the robot to do useful tasks?

A lot of the things, like “pick the stuff up in the room,” or ‘turn that switch,” can all be done by a lightly trained operator using just the tablet interface. If you want to actually command all of Spot’s arm degrees of freedom, you can do that— not through the tablet, but the API does expose all of it. That’s actually a notable difference from the base robot; we’ve never opened up the part of the API that lets you command individual leg degrees of freedom, because we don’t think it’s productive for someone to do that. The arm is a little bit different. There are a lot of smart people working on arm motion planning algorithms, and maybe you want to plan your arm trajectory in a super precise way and then do a DRC-style interface where you click to approve it. You can do all that through the API if you want, but fundamentally, it’s also user friendly. It follows our general API design philosophy of giving you the highest level pieces of the toolbox that will enable you to solve a complex problem that we haven't thought of.

Looking back on it now, it’s really cool to see, after so many years, robots do the stuff that Gill Pratt was excited about kicking off with the DRC. And now it’s just a thing you can buy.

Is Spot’s arm safe?

You should follow the same safety rules that you’d follow when working with Spot normally, and that’s that you shouldn’t get within two meters of the robot when it’s powered on. Spot is not a cobot. You shouldn’t hug it. Fundamentally, the places where the robot is the most valuable are places where people don’t want to be, or shouldn’t be.

We’ve seen how people reacted to earlier videos of Spot using its arm—can you help us set some reasonable expectations for what this means for Spot?

You know, it gets right back to the normal assumptions about our robots that people make that aren’t quite reality. All of this manipulation work we’re doing— the robot’s really acting as a tool. Even if it’s an autonomous behavior, it’s a tool. The robot is digging a hole because it’s got a set of instructions that say “apply this much force over this much distance here, here, and here.”

It’s not digging a hole and planting a tree because it loves trees, as much as I’d love to build a robot that works like that.

Photo: Boston Dynamics

There isn’t too much to say about the dock, except that it’s a requirement for making Spot long-term autonomous. The uncomfortable looking charging contacts that Spot impales itself on also include hardwired network connectivity, which is important because Spot often comes back home with a huge amount of data that all needs to be offloaded and processed. Docking and undocking are autonomous— as soon as the robot sees the fiducial markers on the dock, auto docking is enabled and it takes one click to settle the robot down.

During a brief remote demo, we also learned some other interesting things about Spot’s updated remote interface. It’s very latency tolerant, since you don’t have to drive the robot directly (although you can if you want to). Click a point on the camera view and Spot will move there autonomously while avoiding obstacles, meaning that even if you’re dealing with seconds of lag, the robot will continue making safe progress. This will be especially important if (when?) Spot starts exploring the Moon.

The remote interface also has an option to adjust how close Spot can get to obstacles, or to turn the obstacle avoidance off altogether. The latter functionality is useful if Spot sees something as an obstacle that really isn’t, like a curtain, while the former is useful if the robot is operating in an environment where it needs to give an especially wide berth to objects that could be dangerous to run into. “The robot’s not perfect—robots will never be perfect,” Jackowski reminds us, which is something we really (seriously) appreciate hearing from folks working on powerful, dynamic robots. “No matter how good the robot is, you should always de-risk as much as possible.”

Another part of that de-risking is having the user let Spot know when it’s about to go up or down some stairs by putting into “Stair Mode” with a toggle switch in the remote interface. Stairs are still a challenge for Spot, and Stair Mode slows the robot down and encourages it to pitch its body more aggressively to get a better view of the stairs. You’re encouraged to use stair mode, and also encouraged to send Spot up and down stairs with its “head” pointing up the stairs both ways, but these are not requirements for stair navigation— if you want to, you can send Spot down stairs head first without putting it in stair mode. Jackowski says that eventually, Spot will detect stairways by itself even when not in stair mode and adjust itself accordingly, but for now, that de-risking is solidly in the hands of the user.

Spot’s sensor payload, which is what we were trying out for the demo, provided a great opportunity for us to hear Spot STOMP STOMP STOMPING all over the place, which was also an opportunity for us to ask Jackowski why they can’t make Spot a little quieter. “It’s advantageous for Spot to step a little bit hard for the same reason it’s advantageous for you to step a little bit hard if you’re walking around blindfolded—that reason is that it really lets you know where the ground is, particularly when you’re not sure what to expect.” He adds, “It’s all in the name of robustness— the robot might be a little louder, but it’s a little more sure of its footing.”

Boston Dynamics isn’t yet ready to disclose the price of an arm-equipped Spot, but if you’re a potential customer, now is the time to contact the Boston Dynamics sales team to ask them about it. As a reminder, the base model of Spot costs US $74,500, with extra sensing or compute adding a substantial premium on top of that.

There will be a livestream launch event taking place at 11am ET today, during which Boston Dynamics’ CEO Robert Playter, VP of Marketing Michael Perry, and other folks from Boston Dynamics will make presentations on this new stuff. It’ll be live at this link, or you can watch it below. Continue reading

Posted in Human Robots