Tag Archives: mobile robot
#437912 “Boston Dynamics Will Continue to ...
Last week’s announcement that Hyundai acquired Boston Dynamics from SoftBank left us with a lot of questions. We attempted to answer many of those questions ourselves, which is typically bad practice, but sometimes it’s the only option when news like that breaks.
Fortunately, yesterday we were able to speak with Michael Patrick Perry, vice president of business development at Boston Dynamics, who candidly answered our questions about Boston Dynamics’ new relationship with Hyundai and what the near future has in store.
IEEE Spectrum: Boston Dynamics is worth 1.1 billion dollars! Can you put that valuation into context for us?
Michael Patrick Perry: Since 2018, we’ve shifted to becoming a commercial organization. And that’s included a number of things, like taking our existing technology and bringing it to market for the first time. We’ve gone from zero to 400 Spot robots deployed, building out an ecosystem of software developers, sensor providers, and integrators. With that scale of deployment and looking at the pipeline of opportunities that we have lined up over the next year, I think people have started to believe that this isn’t just a one-off novelty—that there’s actual value that Spot is able to create. Secondly, with some of our efforts in the logistics market, we’re getting really strong signals both with our Pick product and also with some early discussions around Handle’s deployment in warehouses, which we think are going to be transformational for that industry.
So, the thing that’s really exciting is that two years ago, we were talking about this vision, and people said, “Wow, that sounds really cool, let’s see how you do.” And now we have the validation from the market saying both that this is actually useful, and that we’re able to execute. And that’s where I think we’re starting to see belief in the long-term viability of Boston Dynamics, not just as a cutting-edge research shop, but also as a business.
Photo: Boston Dynamics
Boston Dynamics says it has deployed 400 Spot robots, building out an “ecosystem of software developers, sensor providers, and integrators.”
How would you describe Hyundai’s overall vision for the future of robotics, and how do they want Boston Dynamics to fit into that vision?
In the immediate term, Hyundai’s focus is to continue our existing trajectories, with Spot, Handle, and Atlas. They believe in the work that we’ve done so far, and we think that combining with a partner that understands many of the industries in which we’re targeting, whether its manufacturing, construction, or logistics, can help us improve our products. And obviously as we start thinking about producing these robots at scale, Hyundai’s expertise in manufacturing is going to be really helpful for us.
Looking down the line, both Boston Dynamics and Hyundai believe in the value of smart mobility, and they’ve made a number of plays in that space. Whether it’s urban air mobility or autonomous driving, they’ve been really thinking about connecting the digital and the physical world through moving systems, whether that’s a car, a vertical takeoff and landing multi-rotor vehicle, or a robot. We are well positioned to take on robotics side of that while also connecting to some of these other autonomous services.
Can you tell us anything about the kind of robotics that the Hyundai Motor Group has going on right now?
So they’re working on a lot of really interesting stuff—exactly how that connects, you know, it’s early days, and we don’t have anything explicitly to share. But they’ve got a smart and talented robotics team that’s working in a variety of directions that shares overlap with us. Obviously, a lot of things related to autonomous driving shares some DNA with the work that we’re doing in autonomy for Spot and Handle, so it’s pretty exciting to see.
What are you most excited about here? How do you think this deal will benefit Boston Dynamics?
I think there are a number of things. One is that they have an expertise in hardware, in a way that’s unique. They understand and appreciate the complexity of creating large complex robotic systems. So I think there’s some shared understanding of what it takes to create a great hardware product. And then also they have the resources to help us actually build those products with them together—they have manufacturing resources and things like that.
“Robotics isn’t a short term game. We’ve scaled pretty rapidly but if you start looking at what the full potential of a company like Boston Dynamics is, it’s going to take years to realize, and I think Hyundai is committed to that long-term vision”
Another thing that’s exciting is that Hyundai has some pretty visionary bets for autonomous driving and unmanned aerial systems, and all of that fits very neatly into the connected vision of robotics that we were talking about before. Robotics isn’t a short term game. We’ve scaled pretty rapidly for a robotics company in terms of the scale of robots we’ve able to deploy in the field, but if you start looking at what the full potential of a company like Boston Dynamics is, it’s going to take years to realize, and I think Hyundai is committed to that long-term vision.
And when you’ve been talking with Hyundai, what are they most excited about?
I think they’re really excited about our existing products and our technology. Looking at some of the things that Spot, Pick, and Handle are able to do now, there are applications that many of Hyundai’s customers could benefit from in terms of mobility, remote sensing, and material handling. Looking down the line, Hyundai is also very interested in smart city technology, and mobile robotics is going to be a core piece of that.
We tend to focus on Spot and Handle and Atlas in terms of platform capabilities, but can you talk a bit about some of the component-level technology that’s unique to Boston Dynamics, and that could be of interest to Hyundai?
Creating very power-dense actuator design is something that we’ve been successful at for several years, starting back with BigDog and LS3. And Handle has some hydraulic actuators and valves that are pretty unique in terms of their design and capability. Fundamentally, we have a systems engineering approach that brings together both hardware and software internally. You’ll often see different groups that specialize in something, like great mechanical or electrical engineering groups, or great controls teams, but what I think makes Boston Dynamics so special is that we’re able to put everything on the table at once to create a system that’s incredibly capable. And that’s why with something like Spot, we’re able to produce it at scale, while also making it flexible enough for all the different applications that the robot is being used for right now.
It’s hard to talk specifics right now, but there are obviously other disciplines within mechanical engineering or electrical engineering or controls for robots or autonomous systems where some of our technology could be applied.
Photo: Boston Dynamics
Boston Dynamics is in the process of commercializing Handle, iterating on its design and planning to get box-moving robots on-site with customers in the next year or two.
While Boston Dynamics was part of Google, and then SoftBank, it seems like there’s been an effort to maintain independence. Is it going to be different with Hyundai? Will there be more direct integration or collaboration?
Obviously it’s early days, but right now, we have support to continue executing against all the plans that we have. That includes all the commercialization of Spot, as well as things for Atlas, which is really going to be pushing the capability of our team to expand into new areas. That’s going to be our immediate focus, and we don’t see anything that’s going to pull us away from that core focus in the near term.
As it stands right now, Boston Dynamics will continue to be Boston Dynamics under this new ownership.
How much of what you do at Boston Dynamics right now would you characterize as fundamental robotics research, and how much is commercialization? And how do you see that changing over the next couple of years?
We have been expanding our commercial team, but we certainly keep a lot of the core capabilities of fundamental robotics research. Some of it is very visible, like the new behavior development for Atlas where we’re pushing the limits of perception and path planning. But a lot of the stuff that we’re working on is a little bit under the hood, things that are less obvious—terrain handling, intervention handling, how to make safe faults, for example. Initially when Spot started slipping on things, it would flail around trying to get back up. We’ve had to figure out the right balance between the robot struggling to stand, and when it should decide to just lock its limbs and fall over because it’s safer to do that.
I’d say the other big thrust for us is manipulation. Our gripper for Spot is coming out early next year, and that’s going to unlock a new set of capabilities for us. We have years and years of locomotion experience, but the ability to manipulate is a space that’s still relatively new to us. So we’ve been ramping up a lot of work over the last several years trying to get to an early but still valuable iteration of the technology, and we’ll continue pushing on that as we start learning what’s most useful to our customers.
“I’d say the other big thrust for us is manipulation. Our gripper for Spot is coming out early next year, and that’s going to unlock a new set of capabilities for us. We have years and years of locomotion experience, but the ability to manipulate is a space that’s still relatively new to us”
Looking back, Spot as a commercial robot has a history that goes back to robots like LS3 and BigDog, which were very ambitious projects funded by agencies like DARPA without much in the way of commercial expectations. Do you think these very early stage, very expensive, very technical projects are still things that Boston Dynamics can take on?
Yes—I would point to a lot of the things we do with Atlas as an example of that. While we don’t have immediate plans to commercialize Atlas, we can point to technologies that come out of Atlas that have enabled some of our commercial efforts over time. There’s not necessarily a clear roadmap of how every piece of Atlas research is going to feed over into a commercial product; it’s more like, this is a really hard fundamental robotics challenge, so let’s tackle it and learn things that we can then benefit from across the company.
And fundamentally, our team loves doing cool stuff with robots, and you’ll continue seeing that in the months to come.
Photo: Boston Dynamics
Spot’s arm with gripper is coming out early next year, and Boston Dynamics says that’s going to “unlock a new set of capabilities for us.”
What would it take to commercialize Atlas? And are you getting closer with Handle?
We’re in the process of commercializing Handle. We’re at a relatively early stage, but we have a plan to get the first versions for box moving on-site with customers in the next year or two. Last year, we did some on-site deployments as proof-of-concept trials, and using the feedback from that, we did a new design pass on the robot, and we’re looking at increasing our manufacturing capability. That’s all in progress.
For Atlas, it’s like the Formula 1 of robots—you’re not going to take a Formula 1 car and try to make it less capable so that you can drive it on the road. We’re still trying to see what are some applications that would necessitate an energy and computationally intensive humanoid robot as opposed to something that’s more inherently stable. Trying to understand that application space is something that we’re interested in, and then down the line, we could look at creating new morphologies to help address specific applications. In many ways, Handle is the first version of that, where we said, “Atlas is good at moving boxes but it’s very complicated and expensive, so let’s create a simpler and smaller design that can achieve some of the same things.”
The press release mentioned a mobile robot for warehouses that will be introduced next year—is that Handle?
Yes, that’s the work that we’re doing on Handle.
As we start thinking about a whole robotic solution for the warehouse, we have to look beyond a high power, low footprint, dynamic platform like Handle and also consider things that are a little less exciting on video. We need a vision system that can look at a messy stack of boxes and figure out how to pick them up, we need an interface between a robot and an order building system—things where people might question why Boston Dynamics is focusing on them because it doesn’t fit in with our crazy backflipping robots, but it’s really incumbent on us to create that full end-to-end solution.
Are you confident that under Hyundai’s ownership, Boston Dynamics will be able to continue taking the risks required to remain on the cutting edge of robotics?
I think we will continue to push the envelope of what robots are capable of, and I think in the near term, you’ll be able to see that realized in our products and the research that we’re pushing forward with. 2021 is going to be a great year for us. Continue reading →
#437884 Hyundai Buys Boston Dynamics for Nearly ...
This morning just after 3 a.m. ET, Boston Dynamics sent out a media release confirming that Hyundai Motor Group has acquired a controlling interest in the company that values Boston Dynamics at US $1.1 billion:
Under the agreement, Hyundai Motor Group will hold an approximately 80 percent stake in Boston Dynamics and SoftBank, through one of its affiliates, will retain an approximately 20 percent stake in Boston Dynamics after the closing of the transaction.
The release is very long, but does have some interesting bits—we’ll go through them, and talk about what this might mean for both Boston Dynamics and Hyundai.
We’ve asked Boston Dynamics for comment, but they’ve been unusually quiet for the last few days (I wonder why!). So at this point just keep in mind that the only things we know for sure are the ones in the release. If (when?) we hear anything from either Boston Dynamics or Hyundai, we’ll update this post.
The first thing to be clear on is that the acquisition is split between Hyundai Motor Group’s affiliates, including Hyundai Motor, Hyundai Mobis, and Hyundai Glovis. Hyundai Motor makes cars, Hyundai Mobis makes car parts and seems to be doing some autonomous stuff as well, and Hyundai Glovis does logistics. There are many other groups that share the Hyundai name, but they’re separate entities, at least on paper. For example, there’s a Hyundai Robotics, but that’s part of Hyundai Heavy Industries, a different company than Hyundai Motor Group. But for this article, when we say “Hyundai,” we’re talking about Hyundai Motor Group.
What’s in it for Hyundai?
Let’s get into the press release, which is filled with press release-y terms like “synergies” and “working together”—you can view the whole thing here—but still has some parts that convey useful info.
By establishing a leading presence in the field of robotics, the acquisition will mark another major step for Hyundai Motor Group toward its strategic transformation into a Smart Mobility Solution Provider. To propel this transformation, Hyundai Motor Group has invested substantially in development of future technologies, including in fields such as autonomous driving technology, connectivity, eco-friendly vehicles, smart factories, advanced materials, artificial intelligence (AI), and robots.
If Hyundai wants to be a “Smart Mobility Solution Provider” with a focus on vehicles, it really seems like there’s a whole bunch of other ways they could have spent most of a billion dollars that would get them there quicker. Will Boston Dynamics’ expertise help them develop autonomous driving technology? Sure, I guess, but why not just buy an autonomous car startup instead? Boston Dynamics is more about “robots,” which happens to be dead last on the list above.
There was some speculation a couple of weeks ago that Hyundai was going to try and leverage Boston Dynamics to make a real version of this hybrid wheeled/legged concept car, so if that’s what Hyundai means by “Smart Mobility Solution Provider,” then I suppose the Boston Dynamics acquisition makes more sense. Still, I think that’s unlikely, because it’s just a concept car, after all.
In addition to “smart mobility,” which seems like a longer-term goal for Hyundai, the company also mentions other, more immediate benefits from the acquisition:
Advanced robotics offer opportunities for rapid growth with the potential to positively impact society in multiple ways. Boston Dynamics is the established leader in developing agile, mobile robots that have been successfully integrated into various business operations. The deal is also expected to allow Hyundai Motor Group and Boston Dynamics to leverage each other’s respective strengths in manufacturing, logistics, construction and automation.
“Successfully integrated” might be a little optimistic here. They’re talking about Spot, of course, but I think the best you could say at this point is that Spot is in the middle of some promising pilot projects. Whether it’ll be successfully integrated in the sense that it’ll have long-term commercial usefulness and value remains to be seen. I’m optimistic about this as well, but Spot is definitely not there yet.
What does probably hold a lot of value for Hyundai is getting Spot, Pick, and perhaps even Handle into that “manufacturing, logistics, construction” stuff. This is the bread and butter for robots right now, and Boston Dynamics has plenty of valuable technology to offer in those spaces.
Photo: Bob O’Connor
Boston Dynamics is selling Spot for $74,500, shipping included.
Betting on Spot and Pick
With Boston Dynamics founder Marc Raibert’s transition to Chairman of the company, the CEO position is now occupied by Robert Playter, the long-time VP of engineering and more recently COO at Boston Dynamics. Here’s his statement from the release:
“Boston Dynamics’ commercial business has grown rapidly as we’ve brought to market the first robot that can automate repetitive and dangerous tasks in workplaces designed for human-level mobility. We and Hyundai share a view of the transformational power of mobility and look forward to working together to accelerate our plans to enable the world with cutting edge automation, and to continue to solve the world’s hardest robotics challenges for our customers.”
Whether Spot is in fact “the first robot that can automate repetitive and dangerous tasks in workplaces designed for human-level mobility” on the market is perhaps something that could be argued against, although I won’t. Whether or not it was the first robot that can do these kinds of things, it’s definitely not the only robot that do these kinds of things, and going forward, it’s going to be increasingly challenging for Spot to maintain its uniqueness.
For a long time, Boston Dynamics totally owned the quadruped space. Now, they’re one company among many—ANYbotics and Unitree are just two examples of other quadrupeds that are being successfully commercialized. Spot is certainly very capable and easy to use, and we shouldn’t underestimate the effort required to create a robot as complex as Spot that can be commercially used and supported. But it’s not clear how long they’ll maintain that advantage, with much more affordable platforms coming out of Asia, and other companies offering some unique new capabilities.
Photo: Boston Dynamics
Boston Dynamics’ Handle is an all-electric robot featuring a leg-wheel hybrid mobility system, a manipulator arm with a vacuum gripper, and a counterbalancing tail.
Boston Dynamics’ picking system, which stemmed from their 2019 acquisition of Kinema Systems, faces the same kinds of challenges—it’s very good, but it’s not totally unique.
Boston Dynamics produces highly capable mobile robots with advanced mobility, dexterity and intelligence, enabling automation in difficult, dangerous, or unstructured environments. The company launched sales of its first commercial robot, Spot in June of 2020 and has since sold hundreds of robots in a variety of industries, such as power utilities, construction, manufacturing, oil and gas, and mining. Boston Dynamics plans to expand the Spot product line early next year with an enterprise version of the robot with greater levels of autonomy and remote inspection capabilities, and the release of a robotic arm, which will be a breakthrough in mobile manipulation.
Boston Dynamics is also entering the logistics automation market with the industry leading Pick, a computer vision-based depalletizing solution, and will introduce a mobile robot for warehouses in 2021.
Huh. We’ll be trying to figure out what “greater levels of autonomy” means, as well as whether the “mobile robot for warehouses” is Handle, or something more like an autonomous mobile robot (AMR) platform. I’d honestly be surprised if Handle was ready for work outside of Boston Dynamics next year, and it’s hard to imagine how Boston Dynamics could leverage their expertise into the AMR space with something that wouldn’t just seem… Dull, compared to what they usually do. I hope to be surprised, though!
A new deep-pocketed benefactor
Hyundai Motor Group’s decision to acquire Boston Dynamics is based on its growth potential and wide range of capabilities.
“Wide range of capabilities” we get, but that other phrase, “growth potential,” has a heck of a lot wrapped up in it. At the moment, Boston Dynamics is nowhere near profitable, as far as we know. SoftBank acquired Boston Dynamics in 2017 for between one hundred and two hundred million, and over the last three years they’ve poured hundreds of millions more into Boston Dynamics.
Hyundai’s 80 percent stake just means that they’ll need to take over the majority of that support, and perhaps even increase it if Boston Dynamics’ growth is one of their primary goals. Hyundai can’t have a reasonable expectation that Boston Dynamics will be profitable any time soon; they’re selling Spots now, but it’s an open question whether Spot will manage to find a scalable niche in which it’ll be useful in the sort of volume that will make it a sustainable commercial success. And even if it does become a success, it seems unlikely that Spot by itself will make a significant dent in Boston Dynamics’ burn rate anytime soon. Boston Dynamics will have more products of course, but it’s going to take a while, and Hyundai will need to support them in the interim.
Depending on whether Hyundai views Boston Dynamics as a company that does research or a company that makes robots that are useful and profitable, it may be difficult for Boston Dynamics to justify the cost to develop the
next Atlas, when the
current one still seems so far from commercialization
It’s become clear that to sustain itself, Boston Dynamics needs a benefactor with very deep pockets and a long time horizon. Initially, Boston Dynamics’ business model (or whatever you want to call it) was to do bespoke projects for defense-ish folks like DARPA, but from what we understand Boston Dynamics stopped that sort of work after Google acquired them back in 2013. From one perspective, that government funding did exactly what it was supposed to do, which was to fund the development of legged robots through low TRLs (technology readiness levels) to the point where they could start to explore commercialization.
The question now, though, is whether Hyundai is willing to let Boston Dynamics undertake the kinds of low-TRL, high-risk projects that led from BigDog to LS3 to Spot, and from PETMAN to DRC Atlas to the current Atlas. So will Hyundai be cool about the whole thing and be the sort of benefactor that’s willing to give Boston Dynamics the resources that they need to keep doing what they’re doing, without having to answer too many awkward questions about things like practicality and profitability? Hyundai can certainly afford to do this, but so could SoftBank, and Google—the question is whether Hyundai will want to, over the length of time that’s required for the development of the kind of ultra-sophisticated robotics hardware that Boston Dynamics specializes in.
To put it another way: Depending whether Hyundai’s perspective on Boston Dynamics is as a company that does research or a company that makes robots that are useful and profitable, it may be difficult for Boston Dynamics to justify the cost to develop the next Atlas, when the current one still seems so far from commercialization.
Google, SoftBank, now Hyundai
Boston Dynamics possesses multiple key technologies for high-performance robots equipped with perception, navigation, and intelligence.
Hyundai Motor Group’s AI and Human Robot Interaction (HRI) expertise is highly synergistic with Boston Dynamics’s 3D vision, manipulation, and bipedal/quadruped expertise.
As it turns out, Hyundai Motors does have its own robotics lab, called Hyundai Motors Robotics Lab. Their website is not all that great, but here’s a video from last year:
I’m not entirely clear on what Hyundai means when they use the word “synergistic” when they talk about their robotics lab and Boston Dynamics, but it’s a little bit concerning. Usually, when a big company buys a little company that specializes in something that the big company is interested in, the idea is that the little company, to some extent, will be absorbed into the big company to give them some expertise in that area. Historically, however, Boston Dynamics has been highly resistant to this, maintaining its post-acquisition independence and appearing to be very reluctant to do anything besides what it wants to do, at whatever pace it wants to do it, and as by itself as possible.
From what we understand, Boston Dynamics didn’t integrate particularly well with Google’s robotics push in 2013, and we haven’t seen much evidence that SoftBank’s experience was much different. The most direct benefit to SoftBank (or at least the most visible one) was the addition of a fleet of Spot robots to the SoftBank Hawks baseball team cheerleading squad, along with a single (that we know about) choreographed gymnastics routine from an Atlas robot that was only shown on video.
And honestly, if you were a big manufacturing company with a bunch of money and you wanted to build up your own robotics program quickly, you’d probably have much better luck picking up some smaller robotics companies who were a bit less individualistic and would probably be more amenable to integration and would cost way less than a billion dollars-ish. And if integration is ultimately Hyundai’s goal, we’ll be very sad, because it’ll likely signal the end of Boston Dynamics doing the unfettered crazy stuff that we’ve grown to love.
Photo: Bob O’Connor
Possibly the most agile humanoid robot ever built, Atlas can run, climb, jump over obstacles, and even get up after a fall.
Boston Dynamics contemplates its future
The release ends by saying that the transaction is “subject to regulatory approvals and other customary closing conditions” and “is expected to close by June of 2021.” Again, you can read the whole thing here.
My initial reaction is that, despite the “synergies” described by Hyundai, it’s certainly not immediately obvious why the company wants to own 80 percent of Boston Dynamics. I’d also like a better understanding of how they arrived at the $1.1 billion valuation. I’m not saying this because I don’t believe in what Boston Dynamics is doing or in the inherent value of the company, because I absolutely do, albeit perhaps in a slightly less tangible sense. But when you start tossing around numbers like these, a big pile of expectations inevitably comes along with them. I hope that Boston Dynamics is unique enough that the kinds of rules that normally apply to robotics companies (or companies in general) can be set aside, at least somewhat, but I also worry that what made Boston Dynamics great was the explicit funding for the kinds of radical ideas that eventually resulted in robots like Atlas and Spot.
Can Hyundai continue giving Boston Dynamics the support and freedom that they need to keep doing the kinds of things that have made them legendary? I certainly hope so. Continue reading →
#437857 Video Friday: Robotic Third Hand Helps ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):
ICRA 2020 – June 1-15, 2020 – [Virtual Conference]
RSS 2020 – July 12-16, 2020 – [Virtual Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today’s videos.
We are seeing some exciting advances in the development of supernumerary robotic limbs. But one thing about this technology remains a major challenge: How do you control the extra limb if your own hands are busy—say, if you’re carrying a package? MIT researchers at Professor Harry Asada’s lab have an idea. They are using subtle finger movements in sensorized gloves to control the supernumerary limb. The results are promising, and they’ve demonstrated a waist-mounted arm with a qb SoftHand that can help you with doors, elevators, and even handshakes.
[ Paper ]
ROBOPANDA
Fluid actuated soft robots, or fluidic elastomer actuators, have shown great potential in robotic applications where large compliance and safe interaction are dominant concerns. They have been widely studied in wearable robotics, prosthetics, and rehabilitations in recent years. However, such soft robots and actuators are tethered to a bulky pump and controlled by various valves, limiting their applications to a small confined space. In this study, we report a new and effective approach to fluidic power actuation that is untethered, easy to design, fabricate, control, and allows various modes of actuation. In the proposed approach, a sealed elastic tube filled with fluid (gas or liquid) is segmented by adaptors. When twisting a segment, two major effects could be observed: (1) the twisted segment exhibits a contraction force and (2) other segments inflate or deform according to their constraint patterns.
[ Paper ]
And now: “Magnetic cilia carpets.”
[ ETH Zurich ]
To adhere to government recommendations while maintaining requirements for social distancing during the COVID-19 pandemic, Yaskawa Motoman is now utilizing an HC10DT collaborative robot to take individual employee temperatures. Named “Covie”, the design and fabrication of the robotic solution and its software was a combined effort by Yaskawa Motoman’s Technology Advancement Team (TAT) and Product Solutions Group (PSG), as well as a group of robotics students from the University of Dayton.
They should have programmed it to nod if your temperature was normal, and smacked you upside the head while yelling “GO HOME” if it wasn’t.
[ Yaskawa ]
Driving slowly on pre-defined routes, ZMP’s RakuRo autonomous vehicle helps people with mobility challenges enjoy cherry blossoms in Japan.
RakuRo costs about US $1,000 per month to rent, but ZMP suggests that facilities or groups of ~10 people could get together and share one, which makes the cost much more reasonable.
[ ZMP ]
Jessy Grizzle from the Dynamic Legged Locomotion Lab at the University of Michigan writes:
Our lab closed on March 20, 2020 under the State of Michigan’s “Stay Home, Stay Safe” order. For a 24-hour period, it seemed that our labs would be “sanitized” during our absence. Since we had no idea what that meant, we decided that Cassie Blue needed to “Stay Home, Stay Safe” as well. We loaded up a very expensive robot and took her off campus. On May 26, we were allowed to re-open our laboratory. After thoroughly cleaning the lab, disinfecting tools and surfaces, developing and getting approval for new safe operation procedures, we then re-organized our work areas to respect social distancing requirements and brought Cassie back to the laboratory.
During the roughly two months we were working remotely, the lab’s members got a lot done. Papers were written, dissertation proposals were composed, and plans for a new course, ROB 101, Computational Linear Algebra, were developed with colleagues. In addition, one of us (Yukai Gong) found the lockdown to his liking! He needed the long period of quiet to work through some new ideas for how to control 3D bipedal robots.
[ Michigan Robotics ]
Thanks Jesse and Bruce!
You can tell that this video of how Pepper has been useful during COVID-19 is not focused on the United States, since it refers to the pandemic in past tense.
[ Softbank Robotics ]
NASA’s water-seeking robotic Moon rover just booked a ride to the Moon’s South Pole. Astrobotic of Pittsburgh, Pennsylvania, has been selected to deliver the Volatiles Investigating Polar Exploration Rover, or VIPER, to the Moon in 2023.
[ NASA ]
This could be the most impressive robotic gripper demo I have ever seen.
[ Soft Robotics ]
Whiz, an autonomous vacuum sweeper, innovates the cleaning industry by automating tedious tasks for your team. Easy to train, easy to use, Whiz works with your staff to deliver a high-quality clean while increasing efficiency and productivity.
[ Softbank Robotics ]
About 40 seconds into this video, a robot briefly chases a goose.
[ Ghost Robotics ]
SwarmRail is a new concept for rail-guided omnidirectional mobile robot systems. It aims for a highly flexible production process in the factory of the future by opening up the available work space from above. This means that transport and manipulation tasks can be carried out by floor- and ceiling-bound robot systems. The special feature of the system is the combination of omnidirectionally mobile units with a grid-shaped rail network, which is characterized by passive crossings and a continuous gap between the running surfaces of the rails. Through this gap, a manipulator operating below the rail can be connected to a mobile unit traveling on the rail.
[ DLRRMC ]
RightHand Robotics (RHR), a leader in providing robotic piece-picking solutions, is partnered with PALTAC Corporation, Japan’s largest wholesaler of consumer packaged goods. The collaboration introduces RightHand’s newest piece-picking solution to the Japanese market, with multiple workstations installed in PALTAC’s newest facility, RDC Saitama, which opened in 2019 in Sugito, Saitama Prefecture, Japan.
[ RightHand Robotics ]
From the ICRA 2020, a debate on the “Future of Robotics Research,” addressing such issues as “robotics research is over-reliant on benchmark datasets and simulation” and “robots designed for personal or household use have failed because of fundamental misunderstandings of Human-Robot Interaction (HRI).”
[ Robotics Debates ]
MassRobotics has a series of interviews where robotics celebrities are interviewed by high school students.The students are perhaps a little awkward (remember being in high school?), but it’s honest and the questions are interesting. The first two interviews are with Laurie Leshin, who worked on space robots at NASA and is now President of Worcester Polytechnic Institute, and Colin Angle, founder and CEO of iRobot.
[ MassRobotics ]
Thanks Andrew!
In this episode of the Voices from DARPA podcast, Dr. Timothy Chung, a program manager since 2016 in the agency’s Tactical Technology Office, delves into his robotics and autonomous technology programs – the Subterranean (SubT) Challenge and OFFensive Swarm-Enabled Tactics (OFFSET). From robot soccer to live-fly experimentation programs involving dozens of unmanned aircraft systems (UASs), he explains how he aims to assist humans heading into unknown environments via advances in collaborative autonomy and robotics.
[ DARPA ] Continue reading →
#437820 In-Shoe Sensors and Mobile Robots Keep ...
In shoe sensor
Researchers at Stevens Institute of Technology are leveraging some of the newest mechanical and robotic technologies to help some of our oldest populations stay healthy, active, and independent.
Yi Guo, professor of electrical and computer engineering and director of the Robotics and Automation Laboratory, and Damiano Zanotto, assistant professor of mechanical engineering, and director of the Wearable Robotic Systems Laboratory, are collaborating with Ashley Lytle, assistant professor in Stevens’ College of Arts and Letters, and Ashwini K. Rao of Columbia University Medical Center, to combine an assistive mobile robot companion with wearable in-shoe sensors in a system designed to help elderly individuals maintain the balance and motion they need to thrive.
“Balance and motion can be significant issues for this population, and if elderly people fall and experience an injury, they are less likely to stay fit and exercise,” Guo said. “As a consequence, their level of fitness and performance decreases. Our mobile robot companion can help decrease the chances of falling and contribute to a healthy lifestyle by keeping their walking function at a good level.”
The mobile robots are designed to lead walking sessions and using the in-shoe sensors, monitor the user’s gait, indicate issues, and adjust the exercise speed and pace. The initiative is part of a four-year National Science Foundation research project.
“For the first time, we’re integrating our wearable sensing technology with an autonomous mobile robot,” said Zanotto, who worked with elderly people at Columbia University Medical Center for three years before coming to Stevens in 2016. “It’s exciting to be combining these different areas of expertise to leverage the strong points of wearable sensing technology, such as accurately capturing human movement, with the advantages of mobile robotics, such as much larger computational powers.”
The team is developing algorithms that fuse real-time data from smart, unobtrusive, in-shoe sensors and advanced on-board sensors to inform the robot’s navigation protocols and control the way the robot interacts with elderly individuals. It’s a promising way to assist seniors in safely doing walking exercises and maintaining their quality of life.
Bringing the benefits of the lab to life
Guo and Zanotto are working with Lytle, an expert in social and health psychology, to implement a social connectivity capability and make the bi-directional interaction between human and robot even more intuitive, engaging, and meaningful for seniors.
“Especially during COVID, it’s important for elderly people living on their own to connect socially with family and friends,” Zanotto said, “and the robot companion will also offer teleconferencing tools to provide that interaction in an intuitive and transparent way.”
“We want to use the robot for social connectedness, perhaps integrating it with a conversation agent such as Alexa,” Guo added. “The goal is to make it a companion robot that can sense, for example, that you are cooking, or you’re in the living room, and help with things you would do there.”
It’s a powerful example of how abstract concepts can have meaningful real-life benefits.
“As engineers, we tend to work in the lab, trying to optimize our algorithms and devices and technologies,” Zanotto noted, “but at the end of the day, what we do has limited value unless it has impact on real life. It’s fascinating to see how the devices and technologies we’re developing in the lab can be applied to make a difference for real people.”
Maintaining balance in a global pandemic
Although COVID-19 has delayed the planned testing at a senior center in New York City, it has not stopped the team’s progress.
“Although we can’t test on elderly populations yet, our students are still testing in the lab,” Guo said. “This summer and fall, for the first time, the students validated the system’s real-time ability to monitor and assess the dynamic margin of stability during walking—in other words, to evaluate whether the person following the robot is walking normally or has a risk of falling. They’re also designing parameters for the robot to give early warnings and feedback that help the human subjects correct posture and gait issues while walking.”
Those warnings would be literally underfoot, as the in-shoe sensors would pulse like a vibrating cell phone to deliver immediate directional information to the subject.
“We’re not the first to use this vibrotactile stimuli technology, but this application is new,” Zanotto said.
So far, the team has published papers in top robotics publication venues including IEEE Transactions on Neural Systems and Rehabilitation Engineering and the 2020 IEEE International Conference on Robotics and Automation (ICRA). It’s a big step toward realizing the synergies of bringing the technical expertise of engineers to bear on the clinical focus on biometrics—and the real lives of seniors everywhere. Continue reading →
#437789 Video Friday: Robotic Glove Features ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):
RSS 2020 – July 12-16, 2020 – [Virtual Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
IROS 2020 – October 25-29, 2020 – Las Vegas, Nevada
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today’s videos.
Evidently, the folks at Unitree were paying attention to last week’s Video Friday.
[ Unitree ]
RoboSoft 2020 was a virtual conference this year (along with everything else), but they still held a soft robots contest, and here are four short vids—you can watch the rest of them here.
[ RoboSoft 2020 ]
If you were wondering why SoftBank bought Aldebaran Robotics and Boston Dynamics, here’s the answer.
I am now a Hawks fan. GO HAWKS!
[ Softbank Hawks ] via [ RobotStart ]
Scientists at the University of Liverpool have developed a fully autonomous mobile robot to assist them in their research. Using a type of AI, the robot has been designed to work uninterrupted for weeks at a time, allowing it to analyse data and make decisions on what to do next. Using a flexible arm with customised gripper it can be calibrated to interact with most standard lab equipment and machinery as well as navigate safely around human co-workers and obstacles.
[ Nature ]
Oregon State’s Cassie has been on break for a couple of months, but it’s back in the lab and moving alarmingly quickly.
[ DRL ]
The current situation linked to COVID-19 sadly led to the postponing of this year RoboCup 2020 at Bordeaux. As an official sponsor of The RoboCup, SoftBank Robotics wanted to take this opportunity to thank all RoboCupers and The RoboCup Federation for their support these past 13 years. We invite you to take a look at NAO’s adventure at The RoboCup as the official robot of the Standard Platform League. See you in Bordeaux 2021!
[ RoboCup 2021 ]
Miniature SAW robot crawling inside the intestines of a pig. You’re welcome.
[ Zarrouk Lab ]
The video demonstrates fast autonomous flight experiments in cluttered unknown environments, with the support of a robust and perception-aware replanning framework called RAPTOR. The associated paper is submitted to TRO.
[ HKUST ]
Since we haven’t gotten autonomy quite right yet, there’s a lot of telepresence going on for robots that operate in public spaces. Usually, you’ve got one remote human managing multiple robots, so it would be nice to make that interface a little more friendly, right?
[ HCI Lab ]
Arguable whether or not this is a robot, but it’s cool enough to spend a minute watching.
[ Ishikawa Lab ]
Communication is critical to collaboration; however, too much of it can degrade performance. Motivated by the need for effective use of a robot’s communication modalities, in this work, we present a computational framework that decides if, when, and what to communicate during human-robot collaboration.
[ Interactive Robotics ]
Robotiq has released the next generation of the grippers for collaborative robots: the 2F-85 and 2F-140. Both models gain greater robustness, safety, and customizability while retaining the same key benefits that have inspired thousands of manufacturers to choose them since their launch 6 years ago.
[ Robotiq ]
ANYmal C, the autonomous legged robot designed for industrial challenging environments, provides the mobility, autonomy and inspection intelligence to enable safe and efficient inspection operations. In this virtual showcase, discover how ANYmal climbs stairs, recovers from a fall, performs an autonomous mission and avoids obstacles, docks to charge by itself, digitizes analogue sensors and monitors the environment.
[ ANYbotics ]
At Waymo, we are committed to addressing inequality, and we believe listening is a critical first step toward driving positive change. Earlier this year, five Waymonauts sat down to share their thoughts on equity at work, challenging the status quo, and more. This is what they had to say.
[ Waymo ]
Nice of ABB to take in old robots and upgrade them to turn them into new robots again. Robots forever!
[ ABB ]
It’s nice seeing the progress being made by GITAI, one of the teams competing in the ANA Avatar XPRIZE Challenge, and also meet the humans behind the robots.
[ GITAI ] via [ XPRIZE ]
One more talk from the ICRA Legged Robotics Workshop: Jingyu Liu from DeepRobotics and Qiuguo Zhu from Zhejiang University.
[ Deep Robotics ] Continue reading →