Tag Archives: mind

#432512 How Will Merging Minds and Machines ...

One of the most exciting and frightening outcomes of technological advancement is the potential to merge our minds with machines. If achieved, this would profoundly boost our cognitive capabilities. More importantly, however, it could be a revolution in human identity, emotion, spirituality, and self-awareness.

Brain-machine interface technology is already being developed by pioneers and researchers around the globe. It’s still early and today’s tech is fairly rudimentary, but it’s a fast-moving field, and some believe it will advance faster than generally expected. Futurist Ray Kurzweil has predicted that by the 2030s we will be able to connect our brains to the internet via nanobots that will “provide full-immersion virtual reality from within the nervous system, provide direct brain-to-brain communication over the internet, and otherwise greatly expand human intelligence.” Even if the advances are less dramatic, however, they’ll have significant implications.

How might this technology affect human consciousness? What about its implications on our sentience, self-awareness, or subjective experience of our illusion of self?

Consciousness can be hard to define, but a holistic definition often encompasses many of our most fundamental capacities, such as wakefulness, self-awareness, meta-cognition, and sense of agency. Beyond that, consciousness represents a spectrum of awareness, as seen across various species of animals. Even humans experience different levels of existential awareness.

From psychedelics to meditation, there are many tools we already use to alter and heighten our conscious experience, both temporarily and permanently. These tools have been said to contribute to a richer life, with the potential to bring experiences of beauty, love, inner peace, and transcendence. Relatively non-invasive, these tools show us what a seemingly minor imbalance of neurochemistry and conscious internal effort can do to the subjective experience of being human.

Taking this into account, what implications might emerging brain-machine interface technologies have on the “self”?

The Tools for Self-Transcendence
At the basic level, we are currently seeing the rise of “consciousness hackers” using techniques like non-invasive brain stimulation through EEG, nutrition, virtual reality, and ecstatic experiences to create environments for heightened consciousness and self-awareness. In Stealing Fire, Steven Kotler and Jamie Wheal explore this trillion-dollar altered-states economy and how innovators and thought leaders are “harnessing rare and controversial states of consciousness to solve critical challenges and outperform the competition.” Beyond enhanced productivity, these altered states expose our inner potential and give us a glimpse of a greater state of being.

Expanding consciousness through brain augmentation and implants could one day be just as accessible. Researchers are working on an array of neurotechnologies as simple and non-invasive as electrode-based EEGs to invasive implants and techniques like optogenetics, where neurons are genetically reprogrammed to respond to pulses of light. We’ve already connected two brains via the internet, allowing the two to communicate, and future-focused startups are researching the possibilities too. With an eye toward advanced brain-machine interfaces, last year Elon Musk unveiled Neuralink, a company whose ultimate goal is to merge the human mind with AI through a “neural lace.”

Many technologists predict we will one day merge with and, more speculatively, upload our minds onto machines. Neuroscientist Kenneth Hayworth writes in Skeptic magazine, “All of today’s neuroscience models are fundamentally computational by nature, supporting the theoretical possibility of mind-uploading.” This might include connecting with other minds using digital networks or even uploading minds onto quantum computers, which can be in multiple states of computation at a given time.

In their book Evolving Ourselves, Juan Enriquez and Steve Gullans describe a world where evolution is no longer driven by natural processes. Instead, it is driven by human choices, through what they call unnatural selection and non-random mutation. With advancements in genetic engineering, we are indeed seeing evolution become an increasingly conscious process with an accelerated pace. This could one day apply to the evolution of our consciousness as well; we would be using our consciousness to expand our consciousness.

What Will It Feel Like?
We may be able to come up with predictions of the impact of these technologies on society, but we can only wonder what they will feel like subjectively.

It’s hard to imagine, for example, what our stream of consciousness will feel like when we can process thoughts and feelings 1,000 times faster, or how artificially intelligent brain implants will impact our capacity to love and hate. What will the illusion of “I” feel like when our consciousness is directly plugged into the internet? Overall, what impact will the process of merging with technology have on the subjective experience of being human?

The Evolution of Consciousness
In The Future Evolution of Consciousness, Thomas Lombardo points out, “We are a journey rather than a destination—a chapter in the evolutionary saga rather than a culmination. Just as probable, there will also be a diversification of species and types of conscious minds. It is also very likely that new psychological capacities, incomprehensible to us, will emerge as well.”

Humans are notorious for fearing the unknown. For any individual who has never experienced an altered state, be it spiritual or psychedelic-induced, it is difficult to comprehend the subjective experience of that state. It is why many refer to their first altered-state experience as “waking up,” wherein they didn’t even realize they were asleep.

Similarly, exponential neurotechnology represents the potential of a higher state of consciousness and a range of experiences that are unimaginable to our current default state.

Our capacity to think and feel is set by the boundaries of our biological brains. To transform and expand these boundaries is to transform and expand the first-hand experience of consciousness. Emerging neurotechnology may end up providing the awakening our species needs.

Image Credit: Peshkova / Shutterstock.com Continue reading

Posted in Human Robots

#432352 Watch This Lifelike Robot Fish Swim ...

Earth’s oceans are having a rough go of it these days. On top of being the repository for millions of tons of plastic waste, global warming is affecting the oceans and upsetting marine ecosystems in potentially irreversible ways.

Coral bleaching, for example, occurs when warming water temperatures or other stress factors cause coral to cast off the algae that live on them. The coral goes from lush and colorful to white and bare, and sometimes dies off altogether. This has a ripple effect on the surrounding ecosystem.

Warmer water temperatures have also prompted many species of fish to move closer to the north or south poles, disrupting fisheries and altering undersea environments.

To keep these issues in check or, better yet, try to address and improve them, it’s crucial for scientists to monitor what’s going on in the water. A paper released last week by a team from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) unveiled a new tool for studying marine life: a biomimetic soft robotic fish, dubbed SoFi, that can swim with, observe, and interact with real fish.

SoFi isn’t the first robotic fish to hit the water, but it is the most advanced robot of its kind. Here’s what sets it apart.

It swims in three dimensions
Up until now, most robotic fish could only swim forward at a given water depth, advancing at a steady speed. SoFi blows older models out of the water. It’s equipped with side fins called dive planes, which move to adjust its angle and allow it to turn, dive downward, or head closer to the surface. Its density and thus its buoyancy can also be adjusted by compressing or decompressing air in an inner compartment.

“To our knowledge, this is the first robotic fish that can swim untethered in three dimensions for extended periods of time,” said CSAIL PhD candidate Robert Katzschmann, lead author of the study. “We are excited about the possibility of being able to use a system like this to get closer to marine life than humans can get on their own.”

The team took SoFi to the Rainbow Reef in Fiji to test out its swimming skills, and the robo fish didn’t disappoint—it was able to swim at depths of over 50 feet for 40 continuous minutes. What keeps it swimming? A lithium polymer battery just like the one that powers our smartphones.

It’s remote-controlled… by Super Nintendo
SoFi has sensors to help it see what’s around it, but it doesn’t have a mind of its own yet. Rather, it’s controlled by a nearby scuba-diving human, who can send it commands related to speed, diving, and turning. The best part? The commands come from an actual repurposed (and waterproofed) Super Nintendo controller. What’s not to love?

Image Credit: MIT CSAIL
Previous robotic fish built by this team had to be tethered to a boat, so the fact that SoFi can swim independently is a pretty big deal. Communication between the fish and the diver was most successful when the two were less than 10 meters apart.

It looks real, sort of
SoFi’s side fins are a bit stiff, and its camera may not pass for natural—but otherwise, it looks a lot like a real fish. This is mostly thanks to the way its tail moves; a motor pumps water between two chambers in the tail, and as one chamber fills, the tail bends towards that side, then towards the other side as water is pumped into the other chamber. The result is a motion that closely mimics the way fish swim. Not only that, the hydraulic system can change the water flow to get different tail movements that let SoFi swim at varying speeds; its average speed is around half a body length (21.7 centimeters) per second.

Besides looking neat, it’s important SoFi look lifelike so it can blend in with marine life and not scare real fish away, so it can get close to them and observe them.

“A robot like this can help explore the reef more closely than current robots, both because it can get closer more safely for the reef and because it can be better accepted by the marine species.” said Cecilia Laschi, a biorobotics professor at the Sant’Anna School of Advanced Studies in Pisa, Italy.

Just keep swimming
It sounds like this fish is nothing short of a regular Nemo. But its creators aren’t quite finished yet.

They’d like SoFi to be able to swim faster, so they’ll work on improving the robo fish’s pump system and streamlining its body and tail design. They also plan to tweak SoFi’s camera to help it follow real fish.

“We view SoFi as a first step toward developing almost an underwater observatory of sorts,” said CSAIL director Daniela Rus. “It has the potential to be a new type of tool for ocean exploration and to open up new avenues for uncovering the mysteries of marine life.”

The CSAIL team plans to make a whole school of SoFis to help biologists learn more about how marine life is reacting to environmental changes.

Image Credit: MIT CSAIL Continue reading

Posted in Human Robots

#432262 How We Can ‘Robot-Proof’ Education ...

Like millions of other individuals in the workforce, you’re probably wondering if you will one day be replaced by a machine. If you’re a student, you’re probably wondering if your chosen profession will even exist by the time you’ve graduated. From driving to legal research, there isn’t much that technology hasn’t already automated (or begun to automate). Many of us will need to adapt to this disruption in the workforce.

But it’s not enough for students and workers to adapt, become lifelong learners, and re-skill themselves. We also need to see innovation and initiative at an institutional and governmental level. According to research by The Economist, almost half of all jobs could be automated by computers within the next two decades, and no government in the world is prepared for it.

While many see the current trend in automation as a terrifying threat, others see it as an opportunity. In Robot-Proof: Higher Education in the Age of Artificial Intelligence, Northeastern University president Joseph Aoun proposes educating students in a way that will allow them to do the things that machines can’t. He calls for a new paradigm that teaches young minds “to invent, to create, and to discover”—filling the relevant needs of our world that robots simply can’t fill. Aoun proposes a much-needed novel framework that will allow us to “robot-proof” education.

Literacies and Core Cognitive Capacities of the Future
Aoun lays a framework for a new discipline, humanics, which discusses the important capacities and literacies for emerging education systems. At its core, the framework emphasizes our uniquely human abilities and strengths.

The three key literacies include data literacy (being able to manage and analyze big data), technological literacy (being able to understand exponential technologies and conduct computational thinking), and human literacy (being able to communicate and evaluate social, ethical, and existential impact).

Beyond the literacies, at the heart of Aoun’s framework are four cognitive capacities that are crucial to develop in our students if they are to be resistant to automation: critical thinking, systems thinking, entrepreneurship, and cultural agility.

“These capacities are mindsets rather than bodies of knowledge—mental architecture rather than mental furniture,” he writes. “Going forward, people will still need to know specific bodies of knowledge to be effective in the workplace, but that alone will not be enough when intelligent machines are doing much of the heavy lifting of information. To succeed, tomorrow’s employees will have to demonstrate a higher order of thought.”

Like many other experts in education, Joseph Aoun emphasizes the importance of critical thinking. This is important not just when it comes to taking a skeptical approach to information, but also being able to logically break down a claim or problem into multiple layers of analysis. We spend so much time teaching students how to answer questions that we often neglect to teach them how to ask questions. Asking questions—and asking good ones—is a foundation of critical thinking. Before you can solve a problem, you must be able to critically analyze and question what is causing it. This is why critical thinking and problem solving are coupled together.

The second capacity, systems thinking, involves being able to think holistically about a problem. The most creative problem-solvers and thinkers are able to take a multidisciplinary perspective and connect the dots between many different fields. According to Aoun, it “involves seeing across areas that machines might be able to comprehend individually but that they cannot analyze in an integrated way, as a whole.” It represents the absolute opposite of how most traditional curricula is structured with emphasis on isolated subjects and content knowledge.

Among the most difficult-to-automate tasks or professions is entrepreneurship.

In fact, some have gone so far as to claim that in the future, everyone will be an entrepreneur. Yet traditionally, initiative has been something students show in spite of or in addition to their schoolwork. For most students, developing a sense of initiative and entrepreneurial skills has often been part of their extracurricular activities. It needs to be at the core of our curricula, not a supplement to it. At its core, teaching entrepreneurship is about teaching our youth to solve complex problems with resilience, to become global leaders, and to solve grand challenges facing our species.

Finally, with an increasingly globalized world, there is a need for more workers with cultural agility, the ability to build amongst different cultural contexts and norms.

One of the major trends today is the rise of the contingent workforce. We are seeing an increasing percentage of full-time employees working on the cloud. Multinational corporations have teams of employees collaborating at different offices across the planet. Collaboration across online networks requires a skillset of its own. As education expert Tony Wagner points out, within these digital contexts, leadership is no longer about commanding with top-down authority, but rather about leading by influence.

An Emphasis on Creativity
The framework also puts an emphasis on experiential or project-based learning, wherein the heart of the student experience is not lectures or exams but solving real-life problems and learning by doing, creating, and executing. Unsurprisingly, humans continue to outdo machines when it comes to innovating and pushing intellectual, imaginative, and creative boundaries, making jobs involving these skills the hardest to automate.

In fact, technological trends are giving rise to what many thought leaders refer to as the imagination economy. This is defined as “an economy where intuitive and creative thinking create economic value, after logical and rational thinking have been outsourced to other economies.” Consequently, we need to develop our students’ creative abilities to ensure their success against machines.

In its simplest form, creativity represents the ability to imagine radical ideas and then go about executing them in reality.

In many ways, we are already living in our creative imaginations. Consider this: every invention or human construct—whether it be the spaceship, an architectural wonder, or a device like an iPhone—once existed as a mere idea, imagined in someone’s mind. The world we have designed and built around us is an extension of our imaginations and is only possible because of our creativity. Creativity has played a powerful role in human progress—now imagine what the outcomes would be if we tapped into every young mind’s creative potential.

The Need for a Radical Overhaul
What is clear from the recommendations of Aoun and many other leading thinkers in this space is that an effective 21st-century education system is radically different from the traditional systems we currently have in place. There is a dramatic contrast between these future-oriented frameworks and the way we’ve structured our traditional, industrial-era and cookie-cutter-style education systems.

It’s time for a change, and incremental changes or subtle improvements are no longer enough. What we need to see are more moonshots and disruption in the education sector. In a world of exponential growth and accelerating change, it is never too soon for a much-needed dramatic overhaul.

Image Credit: Besjunior / Shutterstock.com Continue reading

Posted in Human Robots

#432193 Are ‘You’ Just Inside Your Skin or ...

In November 2017, a gunman entered a church in Sutherland Springs in Texas, where he killed 26 people and wounded 20 others. He escaped in his car, with police and residents in hot pursuit, before losing control of the vehicle and flipping it into a ditch. When the police got to the car, he was dead. The episode is horrifying enough without its unsettling epilogue. In the course of their investigations, the FBI reportedly pressed the gunman’s finger to the fingerprint-recognition feature on his iPhone in an attempt to unlock it. Regardless of who’s affected, it’s disquieting to think of the police using a corpse to break into someone’s digital afterlife.

Most democratic constitutions shield us from unwanted intrusions into our brains and bodies. They also enshrine our entitlement to freedom of thought and mental privacy. That’s why neurochemical drugs that interfere with cognitive functioning can’t be administered against a person’s will unless there’s a clear medical justification. Similarly, according to scholarly opinion, law-enforcement officials can’t compel someone to take a lie-detector test, because that would be an invasion of privacy and a violation of the right to remain silent.

But in the present era of ubiquitous technology, philosophers are beginning to ask whether biological anatomy really captures the entirety of who we are. Given the role they play in our lives, do our devices deserve the same protections as our brains and bodies?

After all, your smartphone is much more than just a phone. It can tell a more intimate story about you than your best friend. No other piece of hardware in history, not even your brain, contains the quality or quantity of information held on your phone: it ‘knows’ whom you speak to, when you speak to them, what you said, where you have been, your purchases, photos, biometric data, even your notes to yourself—and all this dating back years.

In 2014, the United States Supreme Court used this observation to justify the decision that police must obtain a warrant before rummaging through our smartphones. These devices “are now such a pervasive and insistent part of daily life that the proverbial visitor from Mars might conclude they were an important feature of human anatomy,” as Chief Justice John Roberts observed in his written opinion.

The Chief Justice probably wasn’t making a metaphysical point—but the philosophers Andy Clark and David Chalmers were when they argued in “The Extended Mind” (1998) that technology is actually part of us. According to traditional cognitive science, “thinking” is a process of symbol manipulation or neural computation, which gets carried out by the brain. Clark and Chalmers broadly accept this computational theory of mind, but claim that tools can become seamlessly integrated into how we think. Objects such as smartphones or notepads are often just as functionally essential to our cognition as the synapses firing in our heads. They augment and extend our minds by increasing our cognitive power and freeing up internal resources.

If accepted, the extended mind thesis threatens widespread cultural assumptions about the inviolate nature of thought, which sits at the heart of most legal and social norms. As the US Supreme Court declared in 1942: “freedom to think is absolute of its own nature; the most tyrannical government is powerless to control the inward workings of the mind.” This view has its origins in thinkers such as John Locke and René Descartes, who argued that the human soul is locked in a physical body, but that our thoughts exist in an immaterial world, inaccessible to other people. One’s inner life thus needs protecting only when it is externalized, such as through speech. Many researchers in cognitive science still cling to this Cartesian conception—only, now, the private realm of thought coincides with activity in the brain.

But today’s legal institutions are straining against this narrow concept of the mind. They are trying to come to grips with how technology is changing what it means to be human, and to devise new normative boundaries to cope with this reality. Justice Roberts might not have known about the idea of the extended mind, but it supports his wry observation that smartphones have become part of our body. If our minds now encompass our phones, we are essentially cyborgs: part-biology, part-technology. Given how our smartphones have taken over what were once functions of our brains—remembering dates, phone numbers, addresses—perhaps the data they contain should be treated on a par with the information we hold in our heads. So if the law aims to protect mental privacy, its boundaries would need to be pushed outwards to give our cyborg anatomy the same protections as our brains.

This line of reasoning leads to some potentially radical conclusions. Some philosophers have argued that when we die, our digital devices should be handled as remains: if your smartphone is a part of who you are, then perhaps it should be treated more like your corpse than your couch. Similarly, one might argue that trashing someone’s smartphone should be seen as a form of “extended” assault, equivalent to a blow to the head, rather than just destruction of property. If your memories are erased because someone attacks you with a club, a court would have no trouble characterizing the episode as a violent incident. So if someone breaks your smartphone and wipes its contents, perhaps the perpetrator should be punished as they would be if they had caused a head trauma.

The extended mind thesis also challenges the law’s role in protecting both the content and the means of thought—that is, shielding what and how we think from undue influence. Regulation bars non-consensual interference in our neurochemistry (for example, through drugs), because that meddles with the contents of our mind. But if cognition encompasses devices, then arguably they should be subject to the same prohibitions. Perhaps some of the techniques that advertisers use to hijack our attention online, to nudge our decision-making or manipulate search results, should count as intrusions on our cognitive process. Similarly, in areas where the law protects the means of thought, it might need to guarantee access to tools such as smartphones—in the same way that freedom of expression protects people’s right not only to write or speak, but also to use computers and disseminate speech over the internet.

The courts are still some way from arriving at such decisions. Besides the headline-making cases of mass shooters, there are thousands of instances each year in which police authorities try to get access to encrypted devices. Although the Fifth Amendment to the US Constitution protects individuals’ right to remain silent (and therefore not give up a passcode), judges in several states have ruled that police can forcibly use fingerprints to unlock a user’s phone. (With the new facial-recognition feature on the iPhone X, police might only need to get an unwitting user to look at her phone.) These decisions reflect the traditional concept that the rights and freedoms of an individual end at the skin.

But the concept of personal rights and freedoms that guides our legal institutions is outdated. It is built on a model of a free individual who enjoys an untouchable inner life. Now, though, our thoughts can be invaded before they have even been developed—and in a way, perhaps this is nothing new. The Nobel Prize-winning physicist Richard Feynman used to say that he thought with his notebook. Without a pen and pencil, a great deal of complex reflection and analysis would never have been possible. If the extended mind view is right, then even simple technologies such as these would merit recognition and protection as a part of the essential toolkit of the mind.This article was originally published at Aeon and has been republished under Creative Commons.

Image Credit: Sergii Tverdokhlibov / Shutterstock.com Continue reading

Posted in Human Robots

#432190 In the Future, There Will Be No Limit to ...

New planets found in distant corners of the galaxy. Climate models that may improve our understanding of sea level rise. The emergence of new antimalarial drugs. These scientific advances and discoveries have been in the news in recent months.

While representing wildly divergent disciplines, from astronomy to biotechnology, they all have one thing in common: Artificial intelligence played a key role in their scientific discovery.

One of the more recent and famous examples came out of NASA at the end of 2017. The US space agency had announced an eighth planet discovered in the Kepler-90 system. Scientists had trained a neural network—a computer with a “brain” modeled on the human mind—to re-examine data from Kepler, a space-borne telescope with a four-year mission to seek out new life and new civilizations. Or, more precisely, to find habitable planets where life might just exist.

The researchers trained the artificial neural network on a set of 15,000 previously vetted signals until it could identify true planets and false positives 96 percent of the time. It then went to work on weaker signals from nearly 700 star systems with known planets.

The machine detected Kepler 90i—a hot, rocky planet that orbits its sun about every two Earth weeks—through a nearly imperceptible change in brightness captured when a planet passes a star. It also found a sixth Earth-sized planet in the Kepler-80 system.

AI Handles Big Data
The application of AI to science is being driven by three great advances in technology, according to Ross King from the Manchester Institute of Biotechnology at the University of Manchester, leader of a team that developed an artificially intelligent “scientist” called Eve.

Those three advances include much faster computers, big datasets, and improved AI methods, King said. “These advances increasingly give AI superhuman reasoning abilities,” he told Singularity Hub by email.

AI systems can flawlessly remember vast numbers of facts and extract information effortlessly from millions of scientific papers, not to mention exhibit flawless logical reasoning and near-optimal probabilistic reasoning, King says.

AI systems also beat humans when it comes to dealing with huge, diverse amounts of data.

That’s partly what attracted a team of glaciologists to turn to machine learning to untangle the factors involved in how heat from Earth’s interior might influence the ice sheet that blankets Greenland.

Algorithms juggled 22 geologic variables—such as bedrock topography, crustal thickness, magnetic anomalies, rock types, and proximity to features like trenches, ridges, young rifts, and volcanoes—to predict geothermal heat flux under the ice sheet throughout Greenland.

The machine learning model, for example, predicts elevated heat flux upstream of Jakobshavn Glacier, the fastest-moving glacier in the world.

“The major advantage is that we can incorporate so many different types of data,” explains Leigh Stearns, associate professor of geology at Kansas University, whose research takes her to the polar regions to understand how and why Earth’s great ice sheets are changing, questions directly related to future sea level rise.

“All of the other models just rely on one parameter to determine heat flux, but the [machine learning] approach incorporates all of them,” Stearns told Singularity Hub in an email. “Interestingly, we found that there is not just one parameter…that determines the heat flux, but a combination of many factors.”

The research was published last month in Geophysical Research Letters.

Stearns says her team hopes to apply high-powered machine learning to characterize glacier behavior over both short and long-term timescales, thanks to the large amounts of data that she and others have collected over the last 20 years.

Emergence of Robot Scientists
While Stearns sees machine learning as another tool to augment her research, King believes artificial intelligence can play a much bigger role in scientific discoveries in the future.

“I am interested in developing AI systems that autonomously do science—robot scientists,” he said. Such systems, King explained, would automatically originate hypotheses to explain observations, devise experiments to test those hypotheses, physically run the experiments using laboratory robotics, and even interpret the results. The conclusions would then influence the next cycle of hypotheses and experiments.

His AI scientist Eve recently helped researchers discover that triclosan, an ingredient commonly found in toothpaste, could be used as an antimalarial drug against certain strains that have developed a resistance to other common drug therapies. The research was published in the journal Scientific Reports.

Automation using artificial intelligence for drug discovery has become a growing area of research, as the machines can work orders of magnitude faster than any human. AI is also being applied in related areas, such as synthetic biology for the rapid design and manufacture of microorganisms for industrial uses.

King argues that machines are better suited to unravel the complexities of biological systems, with even the most “simple” organisms are host to thousands of genes, proteins, and small molecules that interact in complicated ways.

“Robot scientists and semi-automated AI tools are essential for the future of biology, as there are simply not enough human biologists to do the necessary work,” he said.

Creating Shockwaves in Science
The use of machine learning, neural networks, and other AI methods can often get better results in a fraction of the time it would normally take to crunch data.

For instance, scientists at the National Center for Supercomputing Applications, located at the University of Illinois at Urbana-Champaign, have a deep learning system for the rapid detection and characterization of gravitational waves. Gravitational waves are disturbances in spacetime, emanating from big, high-energy cosmic events, such as the massive explosion of a star known as a supernova. The “Holy Grail” of this type of research is to detect gravitational waves from the Big Bang.

Dubbed Deep Filtering, the method allows real-time processing of data from LIGO, a gravitational wave observatory comprised of two enormous laser interferometers located thousands of miles apart in California and Louisiana. The research was published in Physics Letters B. You can watch a trippy visualization of the results below.

In a more down-to-earth example, scientists published a paper last month in Science Advances on the development of a neural network called ConvNetQuake to detect and locate minor earthquakes from ground motion measurements called seismograms.

ConvNetQuake uncovered 17 times more earthquakes than traditional methods. Scientists say the new method is particularly useful in monitoring small-scale seismic activity, which has become more frequent, possibly due to fracking activities that involve injecting wastewater deep underground. You can learn more about ConvNetQuake in this video:

King says he believes that in the long term there will be no limit to what AI can accomplish in science. He and his team, including Eve, are currently working on developing cancer therapies under a grant from DARPA.

“Robot scientists are getting smarter and smarter; human scientists are not,” he says. “Indeed, there is arguably a case that human scientists are less good. I don’t see any scientist alive today of the stature of a Newton or Einstein—despite the vast number of living scientists. The Physics Nobel [laureate] Frank Wilczek is on record as saying (10 years ago) that in 100 years’ time the best physicist will be a machine. I agree.”

Image Credit: Romaset / Shutterstock.com Continue reading

Posted in Human Robots