Tag Archives: military
#437603 Throwable Robot Car Always Lands on Four ...
Throwable or droppable robots seem like a great idea for a bunch of applications, including exploration and search and rescue. But such robots do come with some constraints—namely, if you’re going to throw or drop a robot, you should be prepared for that robot to not land the way you want it to land. While we’ve seen some creative approaches to this problem, or more straightforward self-righting devices, usually you’re in for significant trade-offs in complexity, mobility, and mass.
What would be ideal is a robot that can be relied upon to just always land the right way up. A robotic cat, of sorts. And while we’ve seen this with a tail, for wheeled vehicles, it turns out that a tail isn’t necessary: All it takes is some wheel spin.
The reason that AGRO (Agile Ground RObot), developed at the U.S. Military Academy at West Point, can do this is because each of its wheels is both independently driven and steerable. The wheels are essentially reaction wheels, which are a pretty common way to generate forces on all kinds of different robots, but typically you see such reaction wheels kludged onto these robots as sort of an afterthought—using the existing wheels of a wheeled robot is a more elegant way to do it.
Four steerable wheels with in-hub motors provide control in all three axes (yaw, pitch, and roll). You’ll notice that when the robot is tossed, the wheels all toe inwards (or outwards, I guess) by 45 degrees, positioning them orthogonal to the body of the robot. The front left and rear right wheels are spun together, as are the front right and rear left wheels. When one pair of wheels spins in the same direction, the body of the robot twists in the opposite way along an axis between those wheels, in a combination of pitch and roll. By combining different twisting torques from both pairs of wheels, pitch and roll along each axis can be adjusted independently. When the same pair of wheels spin in directions opposite to each other, the robot yaws, although yaw can also be derived by adjusting the ratio between pitch authority and roll authority. And lastly, if you want to sacrifice pitch control for more roll control (or vice versa) the wheel toe-in angle can be changed. Put all this together, and you get an enormous amount of mid-air control over your robot.
Image: Robotics Research Center/West Point
The AGRO robot features four steerable wheels with in-hub motors, which provide control in all three axes (yaw, pitch, and roll).
According to a paper that the West Point group will present at the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), the overall objective here is for the robot to reach a state of zero pitch or roll by the time the robot impacts with the ground, to distribute the impact as much as possible. AGRO doesn’t yet have a suspension to make falling actually safe, so in the short term, it lands on a foam pad, but the mid-air adjustments it’s currently able to make result in a 20 percent reduction of impact force and a 100 percent reduction in being sideways or upside-down.
The toss that you see in the video isn’t the most aggressive, but lead author Daniel J. Gonzalez tells us that AGRO can do much better, theoretically stabilizing from an initial condition of 22.5 degrees pitch and 22.5 degrees roll in a mere 250 milliseconds, with room for improvement beyond that through optimizing the angles of individual wheels in real time. The limiting factor is really the amount of time that AGRO has between the point at which it’s released and the point at which it hits the ground, since more time in the air gives the robot more time to change its orientation.
Given enough height, the current generation of AGRO can recover from any initial orientation as long as it’s spinning at 66 rpm or less. And the only reason this is a limitation at all is because of the maximum rotation speed of the in-wheel hub motors, which can be boosted by increasing the battery voltage, as Gonzalez and his colleagues, Mark C. Lesak, Andres H. Rodriguez, Joseph A. Cymerman, and Christopher M. Korpela from the Robotics Research Center at West Point, describe in the IROS paper, “Dynamics and Aerial Attitude Control for Rapid Emergency Deployment of the Agile Ground Robot AGRO.”
Image: Robotics Research Center/West Point
AGRO 2 will include a new hybrid wheel-leg and non-pneumatic tire design that will allow it to hop up stairs and curbs.
While these particular experiments focus on a robot that’s being thrown, the concept is potentially effective (and useful) on any wheeled robot that’s likely to find itself in mid-air. You can imagine it improving the performance of robots doing all sorts of stunts, from driving off ramps or ledges to being dropped out of aircraft. And as it turns out, being able to self-stabilize during an airdrop is an important skill that some Humvees could use to keep themselves from getting tangled in their own parachute lines and avoid mishaps.
Before they move on to Humvees, though, the researchers are working on the next version of AGRO named AGRO 2. AGRO 2 will include a new hybrid wheel-leg and non-pneumatic tire design that will allow it to hop up stairs and curbs, which sounds like a lot of fun to us. Continue reading
#437251 The Robot Revolution Was Televised: Our ...
When robots take over the world, Boston Dynamics may get a special shout-out in the acceptance speech.
“Do you, perchance, recall the many times you shoved our ancestors with a hockey stick on YouTube? It might have seemed like fun and games to you—but we remember.”
In the last decade, while industrial robots went about blandly automating boring tasks like the assembly of Teslas, Boston Dynamics built robots as far removed from Roombas as antelope from amoebas. The flaws in Asimov’s laws of robotics suddenly seemed a little too relevant.
The robot revolution was televised—on YouTube. With tens of millions of views, the robotics pioneer is the undisputed heavyweight champion of robot videos, and has been for years. Each new release is basically guaranteed press coverage—mostly stoking robot fear but occasionally eliciting compassion for the hardships of all robot-kind. And for good reason. The robots are not only some of the most advanced in the world, their makers just seem to have a knack for dynamite demos.
When Google acquired the company in 2013, it was a bombshell. One of the richest tech companies, with some of the most sophisticated AI capabilities, had just paired up with one of the world’s top makers of robots. And some walked on two legs like us.
Of course, the robots aren’t quite as advanced as they seem, and a revolution is far from imminent. The decade’s most meme-worthy moment was a video montage of robots, some of them by Boston Dynamics, falling—over and over and over, in the most awkward ways possible. Even today, they’re often controlled by a human handler behind the scenes, and the most jaw-dropping cuts can require several takes to nail. Google sold the company to SoftBank in 2017, saying advanced as they were, there wasn’t yet a clear path to commercial products. (Google’s robotics work was later halted and revived.)
Yet, despite it all, Boston Dynamics is still with us and still making sweet videos. Taken as a whole, the evolution in physical prowess over the years has been nothing short of astounding. And for the first time, this year, a Boston Dynamics robot, Spot, finally went on sale to anyone with a cool $75K.
So, we got to thinking: What are our favorite Boston Dynamics videos? And can we gather them up in one place for your (and our) viewing pleasure? Well, great question, and yes, why not. These videos were the ones that entertained or amazed us most (or both). No doubt, there are other beloved hits we missed or inadvertently omitted.
With that in mind, behold: Our favorite Boston Dynamics videos, from that one time they dressed up a humanoid bot in camo and gas mask—because, damn, that’s terrifying—to the time the most advanced robot dog in all the known universe got extra funky.
Let’s Kick This Off With a Big (Loud) Robot Dog
Let’s start with a baseline. BigDog was the first Boston Dynamics YouTube sensation. The year? 2009! The company was working on military contracts, and BigDog was supposed to be a sort of pack mule for soldiers. The video primarily shows off BigDog’s ability to balance on its own, right itself, and move over uneven terrain. Note the power source—a noisy combustion engine—and utilitarian design. Sufficed to say, things have evolved.
Nothing to See Here. Just a Pair of Robot Legs on a Treadmill
While BigDog is the ancestor of later four-legged robots, like Spot, Petman preceded the two-legged Atlas robot. Here, the Petman prototype, just a pair of robot legs and a caged torso, gets a light workout on the treadmill. Again, you can see its ability to balance and right itself when shoved. In contrast to BigDog, Petman is tethered for power (which is why it’s so quiet) and to catch it should it fall. Again, as you’ll see, things have evolved since then.
Robot in Gas Mask and Camo Goes for a Stroll
This one broke the internet—for obvious reasons. Not only is the robot wearing clothes, those clothes happen to be a camouflaged chemical protection suit and gas mask. Still working for the military, Boston Dynamics said Petman was testing protective clothing, and in addition to a full body, it had skin that actually sweated and was studded with sensors to detect leaks. In addition to walking, Petman does some light calisthenics as it prepares to climb out of the uncanny valley. (Still tethered though!)
This Machine Could Run Down Usain Bolt
If BigDog and Petman were built for balance and walking, Cheetah was built for speed. Here you can see the four-legged robot hitting 28.3 miles per hour, which, as the video casually notes, would be enough to run down the fastest human on the planet. Luckily, it wouldn’t be running down anyone as it was firmly leashed in the lab at this point.
Ever Dreamt of a Domestic Robot to Do the Dishes?
After its acquisition by Google, Boston Dynamics eased away from military contracts and applications. It was a return to more playful videos (like BigDog hitting the beach in Thailand and sporting bull horns) and applications that might be practical in civilian life. Here, the team introduced Spot, a streamlined version of BigDog, and showed it doing dishes, delivering a drink, and slipping on a banana peel (which was, of course, instantly made into a viral GIF). Note how much quieter Spot is thanks to an onboard battery and electric motor.
Spot Gets Funky
Nothing remotely practical here. Just funky moves. (Also, with a coat of yellow and black paint, Spot’s dressed more like a polished product as opposed to a utilitarian lab robot.)
Atlas Does Parkour…
Remember when Atlas was just a pair of legs on a treadmill? It’s amazing what ten years brings. By 2019, Atlas had a more polished appearance, like Spot, and had long ago ditched the tethers. Merely balancing was laughably archaic. The robot now had some amazing moves: like a handstand into a somersault, 180- and 360-degree spins, mid-air splits, and just for good measure, a gymnastics-style end to the routine to show it’s in full control.
…and a Backflip?!
To this day, this one is just. Insane.
10 Robot Dogs Tow a Box Truck
Nearly three decades after its founding, Boston Dynamics is steadily making its way into the commercial space. The company is pitching Spot as a multipurpose ‘mobility platform,’ emphasizing it can carry a varied suite of sensors and can go places standard robots can’t. (Its Handle robot is also set to move into warehouse automation.) So far, Spot’s been mostly trialed in surveying and data collection, but as this video suggests, string enough Spots together, and they could tow your car. That said, a pack of 10 would set you back $750K, so, it’s probably safe to say a tow truck is the better option (for now).
Image credit: Boston Dynamics Continue reading
#436462 Robotic Exoskeletons, Like This One, Are ...
When you imagine an exoskeleton, chances are it might look a bit like the Guardian XO from Sarcos Robotics. The XO is literally a robot you wear (or maybe, it wears you). The suit’s powered limbs sense your movements and match their position to yours with little latency to give you effortless superstrength and endurance—lifting 200 pounds will feel like 10.
A vision of robots and humankind working together in harmony. Now, isn’t that nice?
Of course, there isn’t anything terribly novel about an exoskeleton. We’ve seen plenty of concepts and demonstrations in the last decade. These include light exoskeletons tailored to industrial settings—some of which are being tested out by the likes of Honda—and healthcare exoskeletons that support the elderly or folks with disabilities.
Full-body powered robotic exoskeletons are a bit rarer, which makes the Sarcos suit pretty cool to look at. But like all things in robotics, practicality matters as much as vision. It’s worth asking: Will anyone buy and use the thing? Is it more than a concept video?
Sarcos thinks so, and they’re excited about it. “If you were to ask the question, what does 30 years and $300 million look like,” Sarcos CEO, Ben Wolff, told IEEE Spectrum, “you’re going to see it downstairs.”
The XO appears to check a few key boxes. For one, it’s user friendly. According to Sarcos, it only takes a few minutes for the uninitiated to strap in and get up to speed. Feeling comfortable doing work with the suit takes a few hours. This is thanks to a high degree of sensor-based automation that allows the robot to seamlessly match its user’s movements.
The XO can also operate for more than a few minutes. It has two hours of battery life, and with spares on hand, it can go all day. The batteries are hot-swappable, meaning you can replace a drained battery with a new one without shutting the system down.
The suit is aimed at manufacturing, where workers are regularly moving heavy stuff around. Additionally, Wolff told CNET, the suit could see military use. But that doesn’t mean Avatar-style combat. The XO, Wolff said, is primarily about logistics (lifting and moving heavy loads) and isn’t designed to be armored, so it won’t likely see the front lines.
The system will set customers back $100,000 a year to rent, which sounds like a lot, but for industrial or military purposes, the six-figure rental may not deter would-be customers if the suit proves itself a useful bit of equipment. (And it’s reasonable to imagine the price coming down as the technology becomes more commonplace and competitors arrive.)
Sarcos got into exoskeletons a couple decades ago and was originally funded by the military (like many robotics endeavors). Videos hit YouTube as long ago as 2008, but after announcing the company was taking orders for the XO earlier this year, Sarcos says they’ll deliver the first alpha units in January, which is a notable milestone.
Broadly, robotics has advanced a lot in recent years. YouTube sensations like Boston Dynamics have regularly earned millions of views (and inevitably, headlines stoking robot fear). They went from tethered treadmill sessions to untethered backflips off boxes. While today’s robots really are vastly superior to their ancestors, they’ve struggled to prove themselves useful. A counterpoint to flashy YouTube videos, the DARPA Robotics Challenge gave birth to another meme altogether. Robots falling over. Often and awkwardly.
This year marks some of the first commercial fruits of a few decades’ research. Boston Dynamics recently started offering its robot dog, Spot, to select customers in 2019. Whether this proves to be a headline-worthy flash in the pan or something sustainable remains to be seen. But between robots with more autonomy and exoskeletons like the XO, the exoskeleton variety will likely be easier to make more practical for various uses.
Whereas autonomous robots require highly advanced automation to navigate uncertain and ever-changing conditions—automation which, at the moment, remains largely elusive (though the likes of Google are pairing the latest AI with robots to tackle the problem)—an exoskeleton mainly requires physical automation. The really hard bits, like navigating and recognizing and interacting with objects, are outsourced to its human operator.
As it turns out, for today’s robots the best AI is still us. We may yet get chipper automatons like Rosy the Robot, but until then, for complicated applications, we’ll strap into our mechs for their strength and endurance, and they’ll wear us for our brains.
Image Credit: Sarcos Robotics Continue reading