Tag Archives: might
#433950 How the Spatial Web Will Transform Every ...
What is the future of work? Is our future one of ‘technological socialism’ (where technology is taking care of our needs)? Or is our future workplace completely virtualized, whereby we hang out at home in our PJs while walking about our virtual corporate headquarters?
This blog will look at the future of work during the age of Web 3.0… Examining scenarios in which AI, VR, and the spatial web converge to transform every element of our careers, from training to execution to free time.
Three weeks ago, I explored the vast implications of Web 3.0 on news, media, smart advertising, and personalized retail. And to offer a quick recap on what the Spatial Web is and how it works, let’s cover some brief history.
A Quick Recap on Web 3.0
While Web 1.0 consisted of static documents and read-only data (static web pages), Web 2.0 introduced multimedia content, interactive web applications, and participatory social media, all of these mediated by two-dimensional screens.
But over the next two to five years, the convergence of 5G, artificial intelligence, VR/AR, and a trillion-sensor economy will enable us to both map our physical world into virtual space and superimpose a digital data layer onto our physical environments.
Suddenly, all our information will be manipulated, stored, understood, and experienced in spatial ways.
In this third installment of the Web 3.0 series, I’ll be discussing the Spatial Web’s vast implications for:
Professional Training
Delocalized Business and the Virtual Workplace
Smart Permissions and Data Security
Let’s dive in.
Virtual Training, Real-World Results
Virtual and augmented reality have already begun disrupting the professional training market.
Leading the charge, Walmart has already implemented VR across 200 Academy training centers, running over 45 modules and simulating everything from unusual customer requests to a Black Friday shopping rush.
In September 2018, Walmart committed to a 17,000-headset order of the Oculus Go to equip every US Supercenter, neighborhood market, and discount store with VR-based employee training.
In the engineering world, Bell Helicopter is using VR to massively expedite development and testing of its latest aircraft, FCX-001. Partnering with Sector 5 Digital and HTC VIVE, Bell found it could concentrate a typical six-year aircraft design process into the course of six months, turning physical mock-ups into CAD-designed virtual replicas.
But beyond the design process itself, Bell is now one of a slew of companies pioneering VR pilot tests and simulations with real-world accuracy. Seated in a true-to-life virtual cockpit, pilots have now tested countless iterations of the FCX-001 in virtual flight, drawing directly onto the 3D model and enacting aircraft modifications in real-time.
And in an expansion of our virtual senses, several key players are already working on haptic feedback. In the case of VR flight, French company Go Touch VR is now partnering with software developer FlyInside on fingertip-mounted haptic tech for aviation.
Dramatically reducing time and trouble required for VR-testing pilots, they aim to give touch-based confirmation of every switch and dial activated on virtual flights, just as one would experience in a full-sized cockpit mockup. Replicating texture, stiffness, and even the sensation of holding an object, these piloted devices contain a suite of actuators to simulate everything from a light touch to higher-pressured contact, all controlled by gaze and finger movements.
When it comes to other high-risk simulations, virtual and augmented reality have barely scratched the surface.
Firefighters can now combat virtual wildfires with new platforms like FLAIM Trainer or TargetSolutions. And thanks to the expansion of medical AR/VR services like 3D4Medical or Echopixel, surgeons might soon perform operations on annotated organs and magnified incision sites, speeding up reaction times and vastly improving precision.
But perhaps most urgent, Web 3.0 and its VR interface will offer an immediate solution for today’s constant industry turnover and large-scale re-education demands.
VR educational facilities with exact replicas of anything from large industrial equipment to minute circuitry will soon give anyone a second chance at the 21st-century job market.
Want to be an electric, autonomous vehicle mechanic at age 15? Throw on a demonetized VR module and learn by doing, testing your prototype iterations at almost zero cost and with no risk of harming others.
Want to be a plasma physicist and play around with a virtual nuclear fusion reactor? Now you’ll be able to simulate results and test out different tweaks, logging Smart Educational Record credits in the process.
As tomorrow’s career model shifts from a “one-and-done graduate degree” to lifelong education, professional VR-based re-education will allow for a continuous education loop, reducing the barrier to entry for anyone wanting to enter a new industry.
But beyond professional training and virtually enriched, real-world work scenarios, Web 3.0 promises entirely virtual workplaces and blockchain-secured authorization systems.
Rise of the Virtual Workplace and Digital Data Integrity
In addition to enabling an annual $52 billion virtual goods marketplace, the Spatial Web is also giving way to “virtual company headquarters” and completely virtualized companies, where employees can work from home or any place on the planet.
Too good to be true? Check out an incredible publicly listed company called eXp Realty.
Launched on the heels of the 2008 financial crisis, eXp Realty beat the odds, going public this past May and surpassing a $1B market cap on day one of trading.
But how? Opting for a demonetized virtual model, eXp’s founder Glenn Sanford decided to ditch brick and mortar from the get-go, instead building out an online virtual campus for employees, contractors, and thousands of agents.
And after years of hosting team meetings, training seminars, and even agent discussions with potential buyers through 2D digital interfaces, eXp’s virtual headquarters went spatial.
What is eXp’s primary corporate value? FUN! And Glenn Sanford’s employees love their jobs.
In a bid to transition from 2D interfaces to immersive, 3D work experiences, virtual platform VirBELA built out the company’s office space in VR, unlocking indefinite scaling potential and an extraordinary new precedent.
Foregoing any physical locations for a centralized VR campus, eXp Realty has essentially thrown out all overhead and entered a lucrative market with barely any upfront costs.
Delocalize with VR, and you can now hire anyone with internet access (right next door or on the other side of the planet), redesign your corporate office every month, throw in an ocean-view office or impromptu conference room for client meetings, and forget about guzzled-up hours in traffic.
Throw in the Spatial Web’s fundamental blockchain-based data layer, and now cryptographically secured virtual IDs will let you validate colleagues’ identities or any of the virtual avatars we will soon inhabit.
This becomes critically important for spatial information logs—keeping incorruptible records of who’s present at a meeting, which data each person has access to, and AI-translated reports of everything discussed and contracts agreed to.
But as I discussed in a previous Spatial Web blog, not only will Web 3.0 and VR advancements allow us to build out virtual worlds, but we’ll soon be able to digitally map our real-world physical offices or entire commercial high rises too.
As data gets added and linked to any given employee’s office, conference room, or security system, we might then access online-merge-offline environments and information through augmented reality.
Imaging showing up at your building’s concierge and your AR glasses automatically check you into the building, authenticating your identity and pulling up any reminders you’ve linked to that specific location.
You stop by a friend’s office, and his smart security system lets you know he’ll arrive in an hour. Need to book a public conference room that’s already been scheduled by another firm’s marketing team? Offer to pay them a fee and, once accepted, a smart transaction will automatically deliver a payment to their company account.
With blockchain-verified digital identities, spatially logged data, and virtually manifest information, business logistics take a fraction of the time, operations grow seamless, and corporate data will be safer than ever.
Final Thoughts
While converging technologies slash the lifespan of Fortune 500 companies, bring on the rise of vast new industries, and transform the job market, Web 3.0 is changing the way we work, where we work, and who we work with.
Life-like virtual modules are already unlocking countless professional training camps, modifiable in real-time and easily updated.
Virtual programming and blockchain-based authentication are enabling smart data logging, identity protection, and on-demand smart asset trading.
And VR/AR-accessible worlds (and corporate campuses) not only demonetize, dematerialize, and delocalize our everyday workplaces, but enrich our physical worlds with AI-driven, context-specific data.
Welcome to the Spatial Web workplace.
Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.
Image Credit: MONOPOLY919 / Shutterstock.com Continue reading
#433939 The Promise—and Complications—of ...
Every year, for just a few days in a major city, a small team of roboticists get to live the dream: ordering around their own personal robot butlers. In carefully-constructed replicas of a restaurant scene or a domestic setting, these robots perform any number of simple algorithmic tasks. “Get the can of beans from the shelf. Greet the visitors to the museum. Help the humans with their shopping. Serve the customers at the restaurant.”
This is Robocup @ Home, the annual tournament where teams of roboticists put their autonomous service robots to the test for practical domestic applications. The tasks seem simple and mundane, but considering the technology required reveals that they’re really not.
The Robot Butler Contest
Say you want a robot to fetch items in the supermarket. In a crowded, noisy environment, the robot must understand your commands, ask for clarification, and map out and navigate an unfamiliar environment, avoiding obstacles and people as it does so. Then it must recognize the product you requested, perhaps in a cluttered environment, perhaps in an unfamiliar orientation. It has to grasp that product appropriately—recall that there are entire multi-million-dollar competitions just dedicated to developing robots that can grasp a range of objects—and then return it to you.
It’s a job so simple that a child could do it—and so complex that teams of smart roboticists can spend weeks programming and engineering, and still end up struggling to complete simplified versions of this task. Of course, the child has the advantage of millions of years of evolutionary research and development, while the first robots that could even begin these tasks were only developed in the 1970s.
Even bearing this in mind, Robocup @ Home can feel like a place where futurist expectations come crashing into technologist reality. You dream of a smooth-voiced, sardonic JARVIS who’s already made your favorite dinner when you come home late from work; you end up shouting “remember the biscuits” at a baffled, ungainly droid in aisle five.
Caring for the Elderly
Famously, Japan is one of the most robo-enthusiastic nations in the world; they are the nation that stunned us all with ASIMO in 2000, and several studies have been conducted into the phenomenon. It’s no surprise, then, that humanoid robotics should be seriously considered as a solution to the crisis of the aging population. The Japanese government, as part of its robots strategy, has already invested $44 million in their development.
Toyota’s Human Support Robot (HSR-2) is a simple but programmable robot with a single arm; it can be remote-controlled to pick up objects and can monitor patients. HSR-2 has become the default robot for use in Robocup @ Home tournaments, at least in tasks that involve manipulating objects.
Alongside this, Toyota is working on exoskeletons to assist people in walking after strokes. It may surprise you to learn that nurses suffer back injuries more than any other occupation, at roughly three times the rate of construction workers, due to the day-to-day work of lifting patients. Toyota has a Care Assist robot/exoskeleton designed to fix precisely this problem by helping care workers with the heavy lifting.
The Home of the Future
The enthusiasm for domestic robotics is easy to understand and, in fact, many startups already sell robots marketed as domestic helpers in some form or another. In general, though, they skirt the immensely complicated task of building a fully capable humanoid robot—a task that even Google’s skunk-works department gave up on, at least until recently.
It’s plain to see why: far more research and development is needed before these domestic robots could be used reliably and at a reasonable price. Consumers with expectations inflated by years of science fiction saturation might find themselves frustrated as the robots fail to perform basic tasks.
Instead, domestic robotics efforts fall into one of two categories. There are robots specialized to perform a domestic task, like iRobot’s Roomba, which stuck to vacuuming and became the most successful domestic robot of all time by far.
The tasks need not necessarily be simple, either: the impressive but expensive automated kitchen uses the world’s most dexterous hands to cook meals, providing it can recognize the ingredients. Other robots focus on human-robot interaction, like Jibo: they essentially package the abilities of a voice assistant like Siri, Cortana, or Alexa to respond to simple questions and perform online tasks in a friendly, dynamic robot exterior.
In this way, the future of domestic automation starts to look a lot more like smart homes than a robot or domestic servant. General robotics is difficult in the same way that general artificial intelligence is difficult; competing with humans, the great all-rounders, is a challenge. Getting superhuman performance at a more specific task, however, is feasible and won’t cost the earth.
Individual startups without the financial might of a Google or an Amazon can develop specialized robots, like Seven Dreamers’ laundry robot, and hope that one day it will form part of a network of autonomous robots that each have a role to play in the household.
Domestic Bliss?
The Smart Home has been a staple of futurist expectations for a long time, to the extent that movies featuring smart homes out of control are already a cliché. But critics of the smart home idea—and of the internet of things more generally—tend to focus on the idea that, more often than not, software just adds an additional layer of things that can break (NSFW), in exchange for minimal added convenience. A toaster that can short-circuit is bad enough, but a toaster that can refuse to serve you toast because its firmware is updating is something else entirely.
That’s before you even get into the security vulnerabilities, which are all the more important when devices are installed in your home and capable of interacting with them. The idea of a smart watch that lets you keep an eye on your children might sound like something a security-conscious parent would like: a smart watch that can be hacked to track children, listen in on their surroundings, and even fool them into thinking a call is coming from their parents is the stuff of nightmares.
Key to many of these problems is the lack of standardization for security protocols, and even the products themselves. The idea of dozens of startups each developing a highly-specialized piece of robotics to perform a single domestic task sounds great in theory, until you realize the potential hazards and pitfalls of getting dozens of incompatible devices to work together on the same system.
It seems inevitable that there are yet more layers of domestic drudgery that can be automated away, decades after the first generation of time-saving domestic devices like the dishwasher and vacuum cleaner became mainstream. With projected market values into the billions and trillions of dollars, there is no shortage of industry interest in ironing out these kinks. But, for now at least, the answer to the question: “Where’s my robot butler?” is that it is gradually, painstakingly learning how to sort through groceries.
Image Credit: Nonchanon / Shutterstock.com Continue reading
#433911 Thanksgiving Food for Thought: The Tech ...
With the Thanksgiving holiday upon us, it’s a great time to reflect on the future of food. Over the last few years, we have seen a dramatic rise in exponential technologies transforming the food industry from seed to plate. Food is important in many ways—too little or too much of it can kill us, and it is often at the heart of family, culture, our daily routines, and our biggest celebrations. The agriculture and food industries are also two of the world’s biggest employers. Let’s take a look to see what is in store for the future.
Robotic Farms
Over the last few years, we have seen a number of new companies emerge in the robotic farming industry. This includes new types of farming equipment used in arable fields, as well as indoor robotic vertical farms. In November 2017, Hands Free Hectare became the first in the world to remotely grow an arable crop. They used autonomous tractors to sow and spray crops, small rovers to take soil samples, drones to monitor crop growth, and an unmanned combine harvester to collect the crops. Since then, they’ve also grown and harvested a field of winter wheat, and have been adding additional technologies and capabilities to their arsenal of robotic farming equipment.
Indoor vertical farming is also rapidly expanding. As Engadget reported in October 2018, a number of startups are now growing crops like leafy greens, tomatoes, flowers, and herbs. These farms can grow food in urban areas, reducing transport, water, and fertilizer costs, and often don’t need pesticides since they are indoors. IronOx, which is using robots to grow plants with navigation technology used by self-driving cars, can grow 30 times more food per acre of land using 90 percent less water than traditional farmers. Vertical farming company Plenty was recently funded by Softbank’s Vision Fund, Jeff Bezos, and others to build 300 vertical farms in China.
These startups are not only succeeding in wealthy countries. Hello Tractor, an “uberized” tractor, has worked with 250,000 smallholder farms in Africa, creating both food security and tech-infused agriculture jobs. The World Food Progam’s Innovation Accelerator (an impact partner of Singularity University) works with hundreds of startups aimed at creating zero hunger. One project is focused on supporting refugees in developing “food computers” in refugee camps—computerized devices that grow food while also adjusting to the conditions around them. As exponential trends drive down the costs of robotics, sensors, software, and energy, we should see robotic farming scaling around the world and becoming the main way farming takes place.
Cultured Meat
Exponential technologies are not only revolutionizing how we grow vegetables and grains, but also how we generate protein and meat. The new cultured meat industry is rapidly expanding, led by startups such as Memphis Meats, Mosa Meats, JUST Meat, Inc. and Finless Foods, and backed by heavyweight investors including DFJ, Bill Gates, Richard Branson, Cargill, and Tyson Foods.
Cultured meat is grown in a bioreactor using cells from an animal, a scaffold, and a culture. The process is humane and, potentially, scientists can make the meat healthier by adding vitamins, removing fat, or customizing it to an individual’s diet and health concerns. Another benefit is that cultured meats, if grown at scale, would dramatically reduce environmental destruction, pollution, and climate change caused by the livestock and fishing industries. Similar to vertical farms, cultured meat is produced using technology and can be grown anywhere, on-demand and in a decentralized way.
Similar to robotic farming equipment, bioreactors will also follow exponential trends, rapidly falling in cost. In fact, the first cultured meat hamburger (created by Singularity University faculty Member Mark Post of Mosa Meats in 2013) cost $350,000 dollars. In 2018, Fast Company reported the cost was now about $11 per burger, and the Israeli startup Future Meat Technologies predicted they will produce beef at about $2 per pound in 2020, which will be competitive with existing prices. For those who have turkey on their mind, one can read about New Harvest’s work (one of the leading think tanks and research centers for the cultured meat and cellular agriculture industry) in funding efforts to generate a nugget of cultured turkey meat.
One outstanding question is whether cultured meat is safe to eat and how it will interact with the overall food supply chain. In the US, regulators like the Food and Drug Administration (FDA) and the US Department of Agriculture (USDA) are working out their roles in this process, with the FDA overseeing the cellular process and the FDA overseeing production and labeling.
Food Processing
Tech companies are also making great headway in streamlining food processing. Norwegian company Tomra Foods was an early leader in using imaging recognition, sensors, artificial intelligence, and analytics to more efficiently sort food based on shape, composition of fat, protein, and moisture, and other food safety and quality indicators. Their technologies have improved food yield by 5-10 percent, which is significant given they own 25 percent of their market.
These advances are also not limited to large food companies. In 2016 Google reported how a small family farm in Japan built a world-class cucumber sorting device using their open-source machine learning tool TensorFlow. SU startup Impact Vision uses hyper-spectral imaging to analyze food quality, which increases revenues and reduces food waste and product recalls from contamination.
These examples point to a question many have on their mind: will we live in a future where a few large companies use advanced technologies to grow the majority of food on the planet, or will the falling costs of these technologies allow family farms, startups, and smaller players to take part in creating a decentralized system? Currently, the future could flow either way, but it is important for smaller companies to take advantage of the most cutting-edge technology in order to stay competitive.
Food Purchasing and Delivery
In the last year, we have also seen a number of new developments in technology improving access to food. Amazon Go is opening grocery stores in Seattle, San Francisco, and Chicago where customers use an app that allows them to pick up their products and pay without going through cashier lines. Sam’s Club is not far behind, with an app that also allows a customer to purchase goods in-store.
The market for food delivery is also growing. In 2017, Morgan Stanley estimated that the online food delivery market from restaurants could grow to $32 billion by 2021, from $12 billion in 2017. Companies like Zume are pioneering robot-powered pizza making and delivery. In addition to using robotics to create affordable high-end gourmet pizzas in their shop, they also have a pizza delivery truck that can assemble and cook pizzas while driving. Their system combines predictive analytics using past customer data to prepare pizzas for certain neighborhoods before the orders even come in. In early November 2018, the Wall Street Journal estimated that Zume is valued at up to $2.25 billion.
Looking Ahead
While each of these developments is promising on its own, it’s also important to note that since all these technologies are in some way digitized and connected to the internet, the various food tech players can collaborate. In theory, self-driving delivery restaurants could share data on what they are selling to their automated farm equipment, facilitating coordination of future crops. There is a tremendous opportunity to improve efficiency, lower costs, and create an abundance of healthy, sustainable food for all.
On the other hand, these technologies are also deeply disruptive. According to the Food and Agricultural Organization of the United Nations, in 2010 about one billion people, or a third of the world’s workforce, worked in the farming and agricultural industries. We need to ensure these farmers are linked to new job opportunities, as well as facilitate collaboration between existing farming companies and technologists so that the industries can continue to grow and lead rather than be displaced.
Just as importantly, each of us might think about how these changes in the food industry might impact our own ways of life and culture. Thanksgiving celebrates community and sharing of food during a time of scarcity. Technology will help create an abundance of food and less need for communities to depend on one another. What are the ways that you will create community, sharing, and culture in this new world?
Image Credit: nikkytok / Shutterstock.com Continue reading
#433907 How the Spatial Web Will Fix What’s ...
Converging exponential technologies will transform media, advertising and the retail world. The world we see, through our digitally-enhanced eyes, will multiply and explode with intelligence, personalization, and brilliance.
This is the age of Web 3.0.
Last week, I discussed the what and how of Web 3.0 (also known as the Spatial Web), walking through its architecture and the converging technologies that enable it.
To recap, while Web 1.0 consisted of static documents and read-only data, Web 2.0 introduced multimedia content, interactive web applications, and participatory social media, all of these mediated by two-dimensional screens—a flat web of sensorily confined information.
During the next two to five years, the convergence of 5G, AI, a trillion sensors, and VR/AR will enable us to both map our physical world into virtual space and superimpose a digital layer onto our physical environments.
Web 3.0 is about to transform everything—from the way we learn and educate, to the way we trade (smart) assets, to our interactions with real and virtual versions of each other.
And while users grow rightly concerned about data privacy and misuse, the Spatial Web’s use of blockchain in its data and governance layer will secure and validate our online identities, protecting everything from your virtual assets to personal files.
In this second installment of the Web 3.0 series, I’ll be discussing the Spatial Web’s vast implications for a handful of industries:
News & Media Coverage
Smart Advertising
Personalized Retail
Let’s dive in.
Transforming Network News with Web 3.0
News media is big business. In 2016, global news media (including print) generated 168 billion USD in circulation and advertising revenue.
The news we listen to impacts our mindset. Listen to dystopian news on violence, disaster, and evil, and you’ll more likely be searching for a cave to hide in, rather than technology for the launch of your next business.
Today, different news media present starkly different realities of everything from foreign conflict to domestic policy. And outcomes are consequential. What reporters and news corporations decide to show or omit of a given news story plays a tremendous role in shaping the beliefs and resulting values of entire populations and constituencies.
But what if we could have an objective benchmark for today’s news, whereby crowdsourced and sensor-collected evidence allows you to tour the site of journalistic coverage, determining for yourself the most salient aspects of a story?
Enter mesh networks, AI, public ledgers, and virtual reality.
While traditional networks rely on a limited set of wired access points (or wireless hotspots), a wireless mesh network can connect entire cities via hundreds of dispersed nodes that communicate with each other and share a network connection non-hierarchically.
In short, this means that individual mobile users can together establish a local mesh network using nothing but the computing power in their own devices.
Take this a step further, and a local population of strangers could collectively broadcast countless 360-degree feeds across a local mesh network.
Imagine a scenario in which protests break out across the country, each cluster of activists broadcasting an aggregate of 360-degree videos, all fed through photogrammetry AIs that build out a live hologram of the march in real time. Want to see and hear what the NYC-based crowds are advocating for? Throw on some VR goggles and explore the event with full access. Or cue into the southern Texan border to assess for yourself the handling of immigrant entry and border conflicts.
Take a front seat in the Capitol during tomorrow’s Senate hearing, assessing each Senator’s reactions, questions and arguments without a Fox News or CNN filter. Or if you’re short on time, switch on the holographic press conference and host 3D avatars of live-broadcasting politicians in your living room.
We often think of modern media as taking away consumer agency, feeding tailored and often partisan ideology to a complacent audience. But as wireless mesh networks and agnostic sensor data allow for immersive VR-accessible news sites, the average viewer will necessarily become an active participant in her own education of current events.
And with each of us interpreting the news according to our own values, I envision a much less polarized world. A world in which civic engagement, moderately reasoned dialogue, and shared assumptions will allow us to empathize and make compromises.
The future promises an era in which news is verified and balanced; wherein public ledgers, AI, and new web interfaces bring you into the action and respect your intelligence—not manipulate your ignorance.
Web 3.0 Reinventing Advertising
Bringing about the rise of ‘user-owned data’ and self-established permissions, Web 3.0 is poised to completely disrupt digital advertising—a global industry worth over 192 billion USD.
Currently, targeted advertising leverages tomes of personal data and online consumer behavior to subtly engage you with products you might not want, or sell you on falsely advertised services promising inaccurate results.
With a new Web 3.0 data and governance layer, however, distributed ledger technologies will require advertisers to engage in more direct interaction with consumers, validating claims and upping transparency.
And with a data layer that allows users to own and authorize third-party use of their data, blockchain also holds extraordinary promise to slash not only data breaches and identity theft, but covert advertiser bombardment without your authorization.
Accessing crowdsourced reviews and AI-driven fact-checking, users will be able to validate advertising claims more efficiently and accurately than ever before, potentially rating and filtering out advertisers in the process. And in such a streamlined system of verified claims, sellers will face increased pressure to compete more on product and rely less on marketing.
But perhaps most exciting is the convergence of artificial intelligence and augmented reality.
As Spatial Web networks begin to associate digital information with physical objects and locations, products will begin to “sell themselves.” Each with built-in smart properties, products will become hyper-personalized, communicating information directly to users through Web 3.0 interfaces.
Imagine stepping into a department store in pursuit of a new web-connected fridge. As soon as you enter, your AR goggles register your location and immediately grant you access to a populated register of store products.
As you move closer to a kitchen set that catches your eye, a virtual salesperson—whether by holographic video or avatar—pops into your field of view next to the fridge you’ve been examining and begins introducing you to its various functions and features. You quickly decide you’d rather disable the avatar and get textual input instead, and preferences are reset to list appliance properties visually.
After a virtual tour of several other fridges, you decide on the one you want and seamlessly execute a smart contract, carried out by your smart wallet and the fridge. The transaction takes place in seconds, and the fridge’s blockchain-recorded ownership record has been updated.
Better yet, you head over to a friend’s home for dinner after moving into the neighborhood. While catching up in the kitchen, your eyes fixate on the cabinets, which quickly populate your AR glasses with a price-point and selection of colors.
But what if you’d rather not get auto-populated product info in the first place? No problem!
Now empowered with self-sovereign identities, users might be able to turn off advertising preferences entirely, turning on smart recommendations only when they want to buy a given product or need new supplies.
And with user-centric data, consumers might even sell such information to advertisers directly. Now, instead of Facebook or Google profiting off your data, you might earn a passive income by giving advertisers permission to personalize and market their services. Buy more, and your personal data marketplace grows in value. Buy less, and a lower-valued advertising profile causes an ebb in advertiser input.
With user-controlled data, advertisers now work on your terms, putting increased pressure on product iteration and personalizing products for each user.
This brings us to the transformative future of retail.
Personalized Retail–Power of the Spatial Web
In a future of smart and hyper-personalized products, I might walk through a virtual game space or a digitally reconstructed Target, browsing specific categories of clothing I’ve predetermined prior to entry.
As I pick out my selection, my AI assistant hones its algorithm reflecting new fashion preferences, and personal shoppers—also visiting the store in VR—help me pair different pieces as I go.
Once my personal shopper has finished constructing various outfits, I then sit back and watch a fashion show of countless Peter avatars with style and color variations of my selection, each customizable.
After I’ve made my selection, I might choose to purchase physical versions of three outfits and virtual versions of two others for my digital avatar. Payments are made automatically as I leave the store, including a smart wallet transaction made with the personal shopper at a per-outfit rate (for only the pieces I buy).
Already, several big players have broken into the VR market. Just this year, Walmart has announced its foray into the VR space, shipping 17,000 Oculus Go VR headsets to Walmart locations across the US.
And just this past January, Walmart filed two VR shopping-related patents. In a new bid to disrupt a rapidly changing retail market, Walmart now describes a system in which users couple their VR headset with haptic gloves for an immersive in-store experience, whether at 3am in your living room or during a lunch break at the office.
But Walmart is not alone. Big e-commerce players from Amazon to Alibaba are leaping onto the scene with new software buildout to ride the impending headset revolution.
Beyond virtual reality, players like IKEA have even begun using mobile-based augmented reality to map digitally replicated furniture in your physical living room, true to dimension. And this is just the beginning….
As AR headset hardware undergoes breakneck advancements in the next two to five years, we might soon be able to project watches onto our wrists, swapping out colors, styles, brand, and price points.
Or let’s say I need a new coffee table in my office. Pulling up multiple models in AR, I can position each option using advanced hand-tracking technology and customize height and width according to my needs. Once the smart payment is triggered, the manufacturer prints my newly-customized piece, droning it to my doorstep. As soon as I need to assemble the pieces, overlaid digital prompts walk me through each step, and any user confusions are communicated to a company database.
Perhaps one of the ripest industries for Spatial Web disruption, retail presents one of the greatest opportunities for profit across virtual apparel, digital malls, AI fashion startups and beyond.
In our next series iteration, I’ll be looking at the tremendous opportunities created by Web 3.0 for the Future of Work and Entertainment.
Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.
Image Credit: nmedia / Shutterstock.com Continue reading