Tag Archives: might

#435614 3 Easy Ways to Evaluate AI Claims

When every other tech startup claims to use artificial intelligence, it can be tough to figure out if an AI service or product works as advertised. In the midst of the AI “gold rush,” how can you separate the nuggets from the fool’s gold?

There’s no shortage of cautionary tales involving overhyped AI claims. And applying AI technologies to health care, education, and law enforcement mean that getting it wrong can have real consequences for society—not just for investors who bet on the wrong unicorn.

So IEEE Spectrum asked experts to share their tips for how to identify AI hype in press releases, news articles, research papers, and IPO filings.

“It can be tricky, because I think the people who are out there selling the AI hype—selling this AI snake oil—are getting more sophisticated over time,” says Tim Hwang, director of the Harvard-MIT Ethics and Governance of AI Initiative.

The term “AI” is perhaps most frequently used to describe machine learning algorithms (and deep learning algorithms, which require even less human guidance) that analyze huge amounts of data and make predictions based on patterns that humans might miss. These popular forms of AI are mostly suited to specialized tasks, such as automatically recognizing certain objects within photos. For that reason, they are sometimes described as “weak” or “narrow” AI.

Some researchers and thought leaders like to talk about the idea of “artificial general intelligence” or “strong AI” that has human-level capacity and flexibility to handle many diverse intellectual tasks. But for now, this type of AI remains firmly in the realm of science fiction and is far from being realized in the real world.

“AI has no well-defined meaning and many so-called AI companies are simply trying to take advantage of the buzz around that term,” says Arvind Narayanan, a computer scientist at Princeton University. “Companies have even been caught claiming to use AI when, in fact, the task is done by human workers.”

Here are three ways to recognize AI hype.

Look for Buzzwords
One red flag is what Hwang calls the “hype salad.” This means stringing together the term “AI” with many other tech buzzwords such as “blockchain” or “Internet of Things.” That doesn’t automatically disqualify the technology, but spotting a high volume of buzzwords in a post, pitch, or presentation should raise questions about what exactly the company or individual has developed.

Other experts agree that strings of buzzwords can be a red flag. That’s especially true if the buzzwords are never really explained in technical detail, and are simply tossed around as vague, poorly-defined terms, says Marzyeh Ghassemi, a computer scientist and biomedical engineer at the University of Toronto in Canada.

“I think that if it looks like a Google search—picture ‘interpretable blockchain AI deep learning medicine’—it's probably not high-quality work,” Ghassemi says.

Hwang also suggests mentally replacing all mentions of “AI” in an article with the term “magical fairy dust.” It’s a way of seeing whether an individual or organization is treating the technology like magic. If so—that’s another good reason to ask more questions about what exactly the AI technology involves.

And even the visual imagery used to illustrate AI claims can indicate that an individual or organization is overselling the technology.

“I think that a lot of the people who work on machine learning on a day-to-day basis are pretty humble about the technology, because they’re largely confronted with how frequently it just breaks and doesn't work,” Hwang says. “And so I think that if you see a company or someone representing AI as a Terminator head, or a big glowing HAL eye or something like that, I think it’s also worth asking some questions.”

Interrogate the Data

It can be hard to evaluate AI claims without any relevant expertise, says Ghassemi at the University of Toronto. Even experts need to know the technical details of the AI algorithm in question and have some access to the training data that shaped the AI model’s predictions. Still, savvy readers with some basic knowledge of applied statistics can search for red flags.

To start, readers can look for possible bias in training data based on small sample sizes or a skewed population that fails to reflect the broader population, Ghassemi says. After all, an AI model trained only on health data from white men would not necessarily achieve similar results for other populations of patients.

“For me, a red flag is not demonstrating deep knowledge of how your labels are defined.”
—Marzyeh Ghassemi, University of Toronto

How machine learning and deep learning models perform also depends on how well humans labeled the sample datasets use to train these programs. This task can be straightforward when labeling photos of cats versus dogs, but gets more complicated when assigning disease diagnoses to certain patient cases.

Medical experts frequently disagree with each other on diagnoses—which is why many patients seek a second opinion. Not surprisingly, this ambiguity can also affect the diagnostic labels that experts assign in training datasets. “For me, a red flag is not demonstrating deep knowledge of how your labels are defined,” Ghassemi says.

Such training data can also reflect the cultural stereotypes and biases of the humans who labeled the data, says Narayanan at Princeton University. Like Ghassemi, he recommends taking a hard look at exactly what the AI has learned: “A good way to start critically evaluating AI claims is by asking questions about the training data.”

Another red flag is presenting an AI system’s performance through a single accuracy figure without much explanation, Narayanan says. Claiming that an AI model achieves “99 percent” accuracy doesn’t mean much without knowing the baseline for comparison—such as whether other systems have already achieved 99 percent accuracy—or how well that accuracy holds up in situations beyond the training dataset.

Narayanan also emphasized the need to ask questions about an AI model’s false positive rate—the rate of making wrong predictions about the presence of a given condition. Even if the false positive rate of a hypothetical AI service is just one percent, that could have major consequences if that service ends up screening millions of people for cancer.

Readers can also consider whether using AI in a given situation offers any meaningful improvement compared to traditional statistical methods, says Clayton Aldern, a data scientist and journalist who serves as managing director for Caldern LLC. He gave the hypothetical example of a “super-duper-fancy deep learning model” that achieves a prediction accuracy of 89 percent, compared to a “little polynomial regression model” that achieves 86 percent on the same dataset.

“We're talking about a three-percentage-point increase on something that you learned about in Algebra 1,” Aldern says. “So is it worth the hype?”

Don’t Ignore the Drawbacks

The hype surrounding AI isn’t just about the technical merits of services and products driven by machine learning. Overblown claims about the beneficial impacts of AI technology—or vague promises to address ethical issues related to deploying it—should also raise red flags.

“If a company promises to use its tech ethically, it is important to question if its business model aligns with that promise,” Narayanan says. “Even if employees have noble intentions, it is unrealistic to expect the company as a whole to resist financial imperatives.”

One example might be a company with a business model that depends on leveraging customers’ personal data. Such companies “tend to make empty promises when it comes to privacy,” Narayanan says. And, if companies hire workers to produce training data, it’s also worth asking whether the companies treat those workers ethically.

The transparency—or lack thereof—about any AI claim can also be telling. A company or research group can minimize concerns by publishing technical claims in peer-reviewed journals or allowing credible third parties to evaluate their AI without giving away big intellectual property secrets, Narayanan says. Excessive secrecy is a big red flag.

With these strategies, you don’t need to be a computer engineer or data scientist to start thinking critically about AI claims. And, Narayanan says, the world needs many people from different backgrounds for societies to fully consider the real-world implications of AI.

Editor’s Note: The original version of this story misspelled Clayton Aldern’s last name as Alderton. Continue reading

Posted in Human Robots

#435541 This Giant AI Chip Is the Size of an ...

People say size doesn’t matter, but when it comes to AI the makers of the largest computer chip ever beg to differ. There are plenty of question marks about the gargantuan processor, but its unconventional design could herald an innovative new era in silicon design.

Computer chips specialized to run deep learning algorithms are a booming area of research as hardware limitations begin to slow progress, and both established players and startups are vying to build the successor to the GPU, the specialized graphics chip that has become the workhorse of the AI industry.

On Monday Californian startup Cerebras came out of stealth mode to unveil an AI-focused processor that turns conventional wisdom on its head. For decades chip makers have been focused on making their products ever-smaller, but the Wafer Scale Engine (WSE) is the size of an iPad and features 1.2 trillion transistors, 400,000 cores, and 18 gigabytes of on-chip memory.

The Cerebras Wafer-Scale Engine (WSE) is the largest chip ever built. It measures 46,225 square millimeters and includes 1.2 trillion transistors. Optimized for artificial intelligence compute, the WSE is shown here for comparison alongside the largest graphics processing unit. Image Credit: Used with permission from Cerebras Systems.
There is a method to the madness, though. Currently, getting enough cores to run really large-scale deep learning applications means connecting banks of GPUs together. But shuffling data between these chips is a major drain on speed and energy efficiency because the wires connecting them are relatively slow.

Building all 400,000 cores into the same chip should get round that bottleneck, but there are reasons it’s not been done before, and Cerebras has had to come up with some clever hacks to get around those obstacles.

Regular computer chips are manufactured using a process called photolithography to etch transistors onto the surface of a wafer of silicon. The wafers are inches across, so multiple chips are built onto them at once and then split up afterwards. But at 8.5 inches across, the WSE uses the entire wafer for a single chip.

The problem is that while for standard chip-making processes any imperfections in manufacturing will at most lead to a few processors out of several hundred having to be ditched, for Cerebras it would mean scrapping the entire wafer. To get around this the company built in redundant circuits so that even if there are a few defects, the chip can route around them.

The other big issue with a giant chip is the enormous amount of heat the processors can kick off—so the company has had to design a proprietary water-cooling system. That, along with the fact that no one makes connections and packaging for giant chips, means the WSE won’t be sold as a stand-alone component, but as part of a pre-packaged server incorporating the cooling technology.

There are no details on costs or performance so far, but some customers have already been testing prototypes, and according to Cerebras results have been promising. CEO and co-founder Andrew Feldman told Fortune that early tests show they are reducing training time from months to minutes.

We’ll have to wait until the first systems ship to customers in September to see if those claims stand up. But Feldman told ZDNet that the design of their chip should help spur greater innovation in the way engineers design neural networks. Many cornerstones of this process—for instance, tackling data in batches rather than individual data points—are guided more by the hardware limitations of GPUs than by machine learning theory, but their chip will do away with many of those obstacles.

Whether that turns out to be the case or not, the WSE might be the first indication of an innovative new era in silicon design. When Google announced it’s AI-focused Tensor Processing Unit in 2016 it was a wake-up call for chipmakers that we need some out-of-the-box thinking to square the slowing of Moore’s Law with skyrocketing demand for computing power.

It’s not just tech giants’ AI server farms driving innovation. At the other end of the spectrum, the desire to embed intelligence in everyday objects and mobile devices is pushing demand for AI chips that can run on tiny amounts of power and squeeze into the smallest form factors.

These trends have spawned renewed interest in everything from brain-inspired neuromorphic chips to optical processors, but the WSE also shows that there might be mileage in simply taking a sideways look at some of the other design decisions chipmakers have made in the past rather than just pumping ever more transistors onto a chip.

This gigantic chip might be the first exhibit in a weird and wonderful new menagerie of exotic, AI-inspired silicon.

Image Credit: Used with permission from Cerebras Systems. Continue reading

Posted in Human Robots

#435535 This Week’s Awesome Tech Stories From ...

ARTIFICIAL INTELLIGENCE
To Power AI, This Startup Built a Really, Really Big Chip
Tom Simonite | Wired
“The silicon monster is almost 22 centimeters—roughly 9 inches—on each side, making it likely the largest computer chip ever, and a monument to the tech industry’s hopes for artificial intelligence.”

COMPUTING
You Won’t See the Quantum Internet Coming
Ryan F. Mandelbaum | Gizmodo
“The quantum internet is coming sooner than you think—even sooner than quantum computing itself. When things change over, you might not even notice. But when they do, new rules will protect your data against attacks from computers that don’t even exist yet.”

LONGEVITY
What If Aging Weren’t Inevitable, But a Curable Disease
David Adam | MIT Technology Review
“…a growing number of scientists are questioning our basic conception of aging. What if you could challenge your death—or even prevent it altogether? What if the panoply of diseases that strike us in old age are symptoms, not causes? What would change if we classified aging itself as the disease?”

ROBOTICS
Thousands of Autonomous Delivery Robots Are About to Descend on College Campuses
Andrew J. Hawkins | The Verge
“The quintessential college experience of getting pizza delivered to your dorm room is about to get a high-tech upgrade. On Tuesday, Starship Technologies announced its plan to deploy thousands of its autonomous six-wheeled delivery robots on college campuses around the country over the next two years, after raising $40 million in Series A funding.”

TRANSPORTATION
Volocopter Reveals Its First Commercial Autonomous Flying Taxi
Christine Fisher | Endgadget
“It’s a race to the skies in terms of which company actually deploys an on-demand air taxi service based around electric vertical take-off and landing aircraft. For its part, German startup Volocopter is taking another key step with the revelation of its first aircraft designed for actual commercial use, the VoloCity.”

Image Credit: Colin Carter / Unsplash Continue reading

Posted in Human Robots

#435522 Harvard’s Smart Exo-Shorts Talk to the ...

Exosuits don’t generally scream “fashionable” or “svelte.” Take the mind-controlled robotic exoskeleton that allowed a paraplegic man to kick off the World Cup back in 2014. Is it cool? Hell yeah. Is it practical? Not so much.

Yapping about wearability might seem childish when the technology already helps people with impaired mobility move around dexterously. But the lesson of the ill-fated Google Glassholes, which includes an awkward dorky head tilt and an assuming voice command, clearly shows that wearable computer assistants can’t just work technologically—they have to look natural and allow the user to behave like as usual. They have to, in a sense, disappear.

To Dr. Jose Pons at the Legs + Walking Ability Lab in Chicago, exosuits need three main selling points to make it in the real world. One, they have to physically interact with their wearer and seamlessly deliver assistance when needed. Two, they should cognitively interact with the host to guide and control the robot at all times. Finally, they need to feel like a second skin—move with the user without adding too much extra mass or reducing mobility.

This week, a US-Korean collaboration delivered the whole shebang in a Lululemon-style skin-hugging package combined with a retro waist pack. The portable exosuit, weighing only 11 pounds, looks like a pair of spandex shorts but can support the wearer’s hip movement when needed. Unlike their predecessors, the shorts are embedded with sensors that let them know when the wearer is walking versus running by analyzing gait.

Switching between the two movement modes may not seem like much, but what naturally comes to our brains doesn’t translate directly to smart exosuits. “Walking and running have fundamentally different biomechanics, which makes developing devices that assist both gaits challenging,” the team said. Their algorithm, computed in the cloud, allows the wearer to easily switch between both, with the shorts providing appropriate hip support that makes the movement experience seamless.

To Pons, who was not involved in the research but wrote a perspective piece, the study is an exciting step towards future exosuits that will eventually disappear under the skin—that is, implanted neural interfaces to control robotic assistance or activate the user’s own muscles.

“It is realistic to think that we will witness, in the next several years…robust human-robot interfaces to command wearable robotics based on…the neural code of movement in humans,” he said.

A “Smart” Exosuit Hack
There are a few ways you can hack a human body to move with an exosuit. One is using implanted electrodes inside the brain or muscles to decipher movement intent. With heavy practice, a neural implant can help paralyzed people walk again or dexterously move external robotic arms. But because the technique requires surgery, it’s not an immediate sell for people who experience low mobility because of aging or low muscle tone.

The other approach is to look to biophysics. Rather than decoding neural signals that control movement, here the idea is to measure gait and other physical positions in space to decipher intent. As you can probably guess, accurately deciphering user intent isn’t easy, especially when the wearable tries to accommodate multiple gaits. But the gains are many: there’s no surgery involved, and the wearable is low in energy consumption.

Double Trouble
The authors decided to tackle an everyday situation. You’re walking to catch the train to work, realize you’re late, and immediately start sprinting.

That seemingly easy conversion hides a complex switch in biomechanics. When you walk, your legs act like an inverted pendulum that swing towards a dedicated center in a predictable way. When you run, however, the legs move more like a spring-loaded system, and the joints involved in the motion differ from a casual stroll. Engineering an assistive wearable for each is relatively simple; making one for both is exceedingly hard.

Led by Dr. Conor Walsh at Harvard University, the team started with an intuitive idea: assisted walking and running requires specialized “actuation” profiles tailored to both. When the user is moving in a way that doesn’t require assistance, the wearable needs to be out of the way so that it doesn’t restrict mobility. A quick analysis found that assisting hip extension has the largest impact, because it’s important to both gaits and doesn’t add mass to the lower legs.

Building on that insight, the team made a waist belt connected to two thigh wraps, similar to a climbing harness. Two electrical motors embedded inside the device connect the waist belt to other components through a pulley system to help the hip joints move. The whole contraption weighed about 11 lbs and didn’t obstruct natural movement.

Next, the team programmed two separate supporting profiles for walking and running. The goal was to reduce the “metabolic cost” for both movements, so that the wearer expends as little energy as needed. To switch between the two programs, they used a cloud-based classification algorithm to measure changes in energy fluctuation to figure out what mode—running or walking—the user is in.

Smart Booster
Initial trials on treadmills were highly positive. Six male volunteers with similar age and build donned the exosuit and either ran or walked on the treadmill at varying inclines. The algorithm performed perfectly at distinguishing between the two gaits in all conditions, even at steep angles.

An outdoor test with eight volunteers also proved the algorithm nearly perfect. Even on uneven terrain, only two steps out of all test trials were misclassified. In an additional trial on mud or snow, the algorithm performed just as well.

“The system allows the wearer to use their preferred gait for each speed,” the team said.

Software excellence translated to performance. A test found that the exosuit reduced the energy for walking by over nine percent and running by four percent. It may not sound like much, but the range of improvement is meaningful in athletic performance. Putting things into perspective, the team said, the metabolic rate reduction during walking is similar to taking 16 pounds off at the waist.

The Wearable Exosuit Revolution
The study’s lightweight exoshorts are hardly the only players in town. Back in 2017, SRI International’s spin-off, Superflex, engineered an Aura suit to support mobility in the elderly. The Aura used a different mechanism: rather than a pulley system, it incorporated a type of smart material that contracts in a manner similar to human muscles when zapped with electricity.

Embedded with a myriad of sensors for motion, accelerometers and gyroscopes, Aura’s smartness came from mini-computers that measure how fast the wearer is moving and track the user’s posture. The data were integrated and processed locally inside hexagon-shaped computing pods near the thighs and upper back. The pods also acted as the control center for sending electrical zaps to give the wearer a boost when needed.

Around the same time, a collaboration between Harvard’s Wyss Institute and ReWalk Robotics introduced a fabric-based wearable robot to assist a wearer’s legs for balance and movement. Meanwhile, a Swiss team coated normal fabric with electroactive material to weave soft, pliable artificial “muscles” that move with the skin.

Although health support is the current goal, the military is obviously interested in similar technologies to enhance soldiers’ physicality. Superflex’s Aura, for example, was originally inspired by technology born from DARPA’s Warrior Web Program, which aimed to reduce a soldier’s mechanical load.

That said, military gear has had a long history of trickling down to consumer use. Similar to the way camouflage, cargo pants, and GORE-TEX trickled down into the consumer ecosphere, it’s not hard to imagine your local Target eventually stocking intelligent exowear.

Image and Video Credit: Wyss Institute at Harvard University. Continue reading

Posted in Human Robots

#435505 This Week’s Awesome Stories From ...

AUGMENTED REALITY
This Is the Computer You’ll Wear on Your Face in 10 Years
Mark Sullivan | Fast Company
“[Snap’s new Spectacles 3] foreshadow a device that many of us may wear as our primary personal computing device in about 10 years. Based on what I’ve learned by talking AR with technologists in companies big and small, here is what such a device might look like and do.”

ROBOTICS
These Robo-Shorts Are the Precursor to a True Robotic Exoskeleton
Devin Coldewey | TechCrunch
“The whole idea, then, is to leave behind the idea of an exosuit as a big mechanical thing for heavy industry or work, and bring in the idea that one could help an elderly person stand up from a chair, or someone recovering from an accident walk farther without fatigue.”

ENVIRONMENT
Artificial Tree Promises to Suck Up as Much Air Pollution as a Small Forest
Luke Dormehl | Digital Trends
“The company has developed an artificial tree that it claims is capable of sucking up the equivalent amount of air pollution as 368 living trees. That’s not only a saving on growing time, but also on the space needed to accommodate them.”

FUTURE
The Anthropocene Is a Joke
Peter Brannen | The Atlantic
“Unless we fast learn how to endure on this planet, and on a scale far beyond anything we’ve yet proved ourselves capable of, the detritus of civilization will be quickly devoured by the maw of deep time.”

ARTIFICIAL INTELLIGENCE
DeepMind’s Losses and the Future of Artificial Intelligence
Gary Marcus | Wired
“Still, the rising magnitude of DeepMind’s losses is worth considering: $154 million in 2016, $341 million in 2017, $572 million in 2018. In my view, there are three central questions: Is DeepMind on the right track scientifically? Are investments of this magnitude sound from Alphabet’s perspective? And how will the losses affect AI in general?”

Image Credit: Tithi Luadthong / Shutterstock.com Continue reading

Posted in Human Robots