Tag Archives: media
#433892 The Spatial Web Will Map Our 3D ...
The boundaries between digital and physical space are disappearing at a breakneck pace. What was once static and boring is becoming dynamic and magical.
For all of human history, looking at the world through our eyes was the same experience for everyone. Beyond the bounds of an over-active imagination, what you see is the same as what I see.
But all of this is about to change. Over the next two to five years, the world around us is about to light up with layer upon layer of rich, fun, meaningful, engaging, and dynamic data. Data you can see and interact with.
This magical future ahead is called the Spatial Web and will transform every aspect of our lives, from retail and advertising, to work and education, to entertainment and social interaction.
Massive change is underway as a result of a series of converging technologies, from 5G global networks and ubiquitous artificial intelligence, to 30+ billion connected devices (known as the IoT), each of which will generate scores of real-world data every second, everywhere.
The current AI explosion will make everything smart, autonomous, and self-programming. Blockchain and cloud-enabled services will support a secure data layer, putting data back in the hands of users and allowing us to build complex rule-based infrastructure in tomorrow’s virtual worlds.
And with the rise of online-merge-offline (OMO) environments, two-dimensional screens will no longer serve as our exclusive portal to the web. Instead, virtual and augmented reality eyewear will allow us to interface with a digitally-mapped world, richly layered with visual data.
Welcome to the Spatial Web. Over the next few months, I’ll be doing a deep dive into the Spatial Web (a.k.a. Web 3.0), covering what it is, how it works, and its vast implications across industries, from real estate and healthcare to entertainment and the future of work. In this blog, I’ll discuss the what, how, and why of Web 3.0—humanity’s first major foray into our virtual-physical hybrid selves (BTW, this year at Abundance360, we’ll be doing a deep dive into the Spatial Web with the leaders of HTC, Magic Leap, and High-Fidelity).
Let’s dive in.
What is the Spatial Web?
While we humans exist in three dimensions, our web today is flat.
The web was designed for shared information, absorbed through a flat screen. But as proliferating sensors, ubiquitous AI, and interconnected networks blur the lines between our physical and online worlds, we need a spatial web to help us digitally map a three-dimensional world.
To put Web 3.0 in context, let’s take a trip down memory lane. In the late 1980s, the newly-birthed world wide web consisted of static web pages and one-way information—a monumental system of publishing and linking information unlike any unified data system before it. To connect, we had to dial up through unstable modems and struggle through insufferably slow connection speeds.
But emerging from this revolutionary (albeit non-interactive) infodump, Web 2.0 has connected the planet more in one decade than empires did in millennia.
Granting democratized participation through newly interactive sites and applications, today’s web era has turbocharged information-sharing and created ripple effects of scientific discovery, economic growth, and technological progress on an unprecedented scale.
We’ve seen the explosion of social networking sites, wikis, and online collaboration platforms. Consumers have become creators; physically isolated users have been handed a global microphone; and entrepreneurs can now access billions of potential customers.
But if Web 2.0 took the world by storm, the Spatial Web emerging today will leave it in the dust.
While there’s no clear consensus about its definition, the Spatial Web refers to a computing environment that exists in three-dimensional space—a twinning of real and virtual realities—enabled via billions of connected devices and accessed through the interfaces of virtual and augmented reality.
In this way, the Spatial Web will enable us to both build a twin of our physical reality in the virtual realm and bring the digital into our real environments.
It’s the next era of web-like technologies:
Spatial computing technologies, like augmented and virtual reality;
Physical computing technologies, like IoT and robotic sensors;
And decentralized computing: both blockchain—which enables greater security and data authentication—and edge computing, which pushes computing power to where it’s most needed, speeding everything up.
Geared with natural language search, data mining, machine learning, and AI recommendation agents, the Spatial Web is a growing expanse of services and information, navigable with the use of ever-more-sophisticated AI assistants and revolutionary new interfaces.
Where Web 1.0 consisted of static documents and read-only data, Web 2.0 introduced multimedia content, interactive web applications, and social media on two-dimensional screens. But converging technologies are quickly transcending the laptop, and will even disrupt the smartphone in the next decade.
With the rise of wearables, smart glasses, AR / VR interfaces, and the IoT, the Spatial Web will integrate seamlessly into our physical environment, overlaying every conversation, every road, every object, conference room, and classroom with intuitively-presented data and AI-aided interaction.
Think: the Oasis in Ready Player One, where anyone can create digital personas, build and invest in smart assets, do business, complete effortless peer-to-peer transactions, and collect real estate in a virtual world.
Or imagine a virtual replica or “digital twin” of your office, each conference room authenticated on the blockchain, requiring a cryptographic key for entry.
As I’ve discussed with my good friend and “VR guru” Philip Rosedale, I’m absolutely clear that in the not-too-distant future, every physical element of every building in the world is going to be fully digitized, existing as a virtual incarnation or even as N number of these. “Meet me at the top of the Empire State Building?” “Sure, which one?”
This digitization of life means that suddenly every piece of information can become spatial, every environment can be smarter by virtue of AI, and every data point about me and my assets—both virtual and physical—can be reliably stored, secured, enhanced, and monetized.
In essence, the Spatial Web lets us interface with digitally-enhanced versions of our physical environment and build out entirely fictional virtual worlds—capable of running simulations, supporting entire economies, and even birthing new political systems.
But while I’ll get into the weeds of different use cases next week, let’s first concretize.
How Does It Work?
Let’s start with the stack. In the PC days, we had a database accompanied by a program that could ingest that data and present it to us as digestible information on a screen.
Then, in the early days of the web, data migrated to servers. Information was fed through a website, with which you would interface via a browser—whether Mosaic or Mozilla.
And then came the cloud.
Resident at either the edge of the cloud or on your phone, today’s rapidly proliferating apps now allow us to interact with previously read-only data, interfacing through a smartphone. But as Siri and Alexa have brought us verbal interfaces, AI-geared phone cameras can now determine your identity, and sensors are beginning to read our gestures.
And now we’re not only looking at our screens but through them, as the convergence of AI and AR begins to digitally populate our physical worlds.
While Pokémon Go sent millions of mobile game-players on virtual treasure hunts, IKEA is just one of the many companies letting you map virtual furniture within your physical home—simulating everything from cabinets to entire kitchens. No longer the one-sided recipients, we’re beginning to see through sensors, creatively inserting digital content in our everyday environments.
Let’s take a look at how the latest incarnation might work. In this new Web 3.0 stack, my personal AI would act as an intermediary, accessing public or privately-authorized data through the blockchain on my behalf, and then feed it through an interface layer composed of everything from my VR headset, to numerous wearables, to my smart environment (IoT-connected devices or even in-home robots).
But as we attempt to build a smart world with smart infrastructure, smart supply chains and smart everything else, we need a set of basic standards with addresses for people, places, and things. Just like our web today relies on the Internet Protocol (TCP/IP) and other infrastructure, by which your computer is addressed and data packets are transferred, we need infrastructure for the Spatial Web.
And a select group of players is already stepping in to fill this void. Proposing new structural designs for Web 3.0, some are attempting to evolve today’s web model from text-based web pages in 2D to three-dimensional AR and VR web experiences located in both digitally-mapped physical worlds and newly-created virtual ones.
With a spatial programming language analogous to HTML, imagine building a linkable address for any physical or virtual space, granting it a format that then makes it interchangeable and interoperable with all other spaces.
But it doesn’t stop there.
As soon as we populate a virtual room with content, we then need to encode who sees it, who can buy it, who can move it…
And the Spatial Web’s eventual governing system (for posting content on a centralized grid) would allow us to address everything from the room you’re sitting in, to the chair on the other side of the table, to the building across the street.
Just as we have a DNS for the web and the purchasing of web domains, once we give addresses to spaces (akin to granting URLs), we then have the ability to identify and visit addressable locations, physical objects, individuals, or pieces of digital content in cyberspace.
And these not only apply to virtual worlds, but to the real world itself. As new mapping technologies emerge, we can now map rooms, objects, and large-scale environments into virtual space with increasing accuracy.
We might then dictate who gets to move your coffee mug in a virtual conference room, or when a team gets to use the room itself. Rules and permissions would be set in the grid, decentralized governance systems, or in the application layer.
Taken one step further, imagine then monetizing smart spaces and smart assets. If you have booked the virtual conference room, perhaps you’ll let me pay you 0.25 BTC to let me use it instead?
But given the Spatial Web’s enormous technological complexity, what’s allowing it to emerge now?
Why Is It Happening Now?
While countless entrepreneurs have already started harnessing blockchain technologies to build decentralized apps (or dApps), two major developments are allowing today’s birth of Web 3.0:
High-resolution wireless VR/AR headsets are finally catapulting virtual and augmented reality out of a prolonged winter.
The International Data Corporation (IDC) predicts the VR and AR headset market will reach 65.9 million units by 2022. Already in the next 18 months, 2 billion devices will be enabled with AR. And tech giants across the board have long begun investing heavy sums.
In early 2019, HTC is releasing the VIVE Focus, a wireless self-contained VR headset. At the same time, Facebook is charging ahead with its Project Santa Cruz—the Oculus division’s next-generation standalone, wireless VR headset. And Magic Leap has finally rolled out its long-awaited Magic Leap One mixed reality headset.
Mass deployment of 5G will drive 10 to 100-gigabit connection speeds in the next 6 years, matching hardware progress with the needed speed to create virtual worlds.
We’ve already seen tremendous leaps in display technology. But as connectivity speeds converge with accelerating GPUs, we’ll start to experience seamless VR and AR interfaces with ever-expanding virtual worlds.
And with such democratizing speeds, every user will be able to develop in VR.
But accompanying these two catalysts is also an important shift towards the decentralized web and a demand for user-controlled data.
Converging technologies, from immutable ledgers and blockchain to machine learning, are now enabling the more direct, decentralized use of web applications and creation of user content. With no central point of control, middlemen are removed from the equation and anyone can create an address, independently interacting with the network.
Enabled by a permission-less blockchain, any user—regardless of birthplace, gender, ethnicity, wealth, or citizenship—would thus be able to establish digital assets and transfer them seamlessly, granting us a more democratized Internet.
And with data stored on distributed nodes, this also means no single point of failure. One could have multiple backups, accessible only with digital authorization, leaving users immune to any single server failure.
Implications Abound–What’s Next…
With a newly-built stack and an interface built from numerous converging technologies, the Spatial Web will transform every facet of our everyday lives—from the way we organize and access our data, to our social and business interactions, to the way we train employees and educate our children.
We’re about to start spending more time in the virtual world than ever before. Beyond entertainment or gameplay, our livelihoods, work, and even personal decisions are already becoming mediated by a web electrified with AI and newly-emerging interfaces.
In our next blog on the Spatial Web, I’ll do a deep dive into the myriad industry implications of Web 3.0, offering tangible use cases across sectors.
Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘on ramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.
Image Credit: Comeback01 / Shutterstock.com Continue reading
#433807 The How, Why, and Whether of Custom ...
A digital afterlife may soon be within reach, but it might not be for your benefit.
The reams of data we’re creating could soon make it possible to create digital avatars that live on after we die, aimed at comforting our loved ones or sharing our experience with future generations.
That may seem like a disappointing downgrade from the vision promised by the more optimistic futurists, where we upload our consciousness to the cloud and live forever in machines. But it might be a realistic possibility in the not-too-distant future—and the first steps have already been taken.
After her friend died in a car crash, Eugenia Kuyda, co-founder of Russian AI startup Luka, trained a neural network-powered chatbot on their shared message history to mimic him. Journalist and amateur coder James Vlahos took a more involved approach, carrying out extensive interviews with his terminally ill father so that he could create a digital clone of him when he died.
For those of us without the time or expertise to build our own artificial intelligence-powered avatar, startup Eternime is offering to take your social media posts and interactions as well as basic personal information to build a copy of you that could then interact with relatives once you’re gone. The service is so far only running a private beta with a handful of people, but with 40,000 on its waiting list, it’s clear there’s a market.
Comforting—Or Creepy?
The whole idea may seem eerily similar to the Black Mirror episode Be Right Back, in which a woman pays a company to create a digital copy of her deceased husband and eventually a realistic robot replica. And given the show’s focus on the emotional turmoil she goes through, people might question whether the idea is a sensible one.
But it’s hard to say at this stage whether being able to interact with an approximation of a deceased loved one would be a help or a hindrance in the grieving process. The fear is that it could make it harder for people to “let go” or “move on,” but others think it could play a useful therapeutic role, reminding people that just because someone is dead it doesn’t mean they’re gone, and providing a novel way for them to express and come to terms with their feelings.
While at present most envisage these digital resurrections as a way to memorialize loved ones, there are also more ambitious plans to use the technology as a way to preserve expertise and experience. A project at MIT called Augmented Eternity is investigating whether we could use AI to trawl through someone’s digital footprints and extract both their knowledge and elements of their personality.
Project leader Hossein Rahnama says he’s already working with a CEO who wants to leave behind a digital avatar that future executives could consult with after he’s gone. And you wouldn’t necessarily have to wait until you’re dead—experts could create virtual clones of themselves that could dispense advice on demand to far more people. These clones could soon be more than simple chatbots, too. Hollywood has already started spending millions of dollars to create 3D scans of its most bankable stars so that they can keep acting beyond the grave.
It’s easy to see the appeal of the idea; imagine if we could bring back Stephen Hawking or Tim Cook to share their wisdom with us. And what if we could create a digital brain trust combining the experience and wisdom of all the world’s greatest thinkers, accessible on demand?
But there are still huge hurdles ahead before we could create truly accurate representations of people by simply trawling through their digital remains. The first problem is data. Most peoples’ digital footprints only started reaching significant proportions in the last decade or so, and cover a relatively small period of their lives. It could take many years before there’s enough data to create more than just a superficial imitation of someone.
And that’s assuming that the data we produce is truly representative of who we are. Carefully-crafted Instagram profiles and cautiously-worded work emails hardly capture the messy realities of most peoples’ lives.
Perhaps if the idea is simply to create a bank of someone’s knowledge and expertise, accurately capturing the essence of their character would be less important. But these clones would also be static. Real people continually learn and change, but a digital avatar is a snapshot of someone’s character and opinions at the point they died. An inability to adapt as the world around them changes could put a shelf life on the usefulness of these replicas.
Who’s Calling the (Digital) Shots?
It won’t stop people trying, though, and that raises a potentially more important question: Who gets to make the calls about our digital afterlife? The subjects, their families, or the companies that hold their data?
In most countries, the law is currently pretty hazy on this topic. Companies like Google and Facebook have processes to let you choose who should take control of your accounts in the event of your death. But if you’ve forgotten to do that, the fate of your virtual remains comes down to a tangle of federal law, local law, and tech company terms of service.
This lack of regulation could create incentives and opportunities for unscrupulous behavior. The voice of a deceased loved one could be a highly persuasive tool for exploitation, and digital replicas of respected experts could be powerful means of pushing a hidden agenda.
That means there’s a pressing need for clear and unambiguous rules. Researchers at Oxford University recently suggested ethical guidelines that would treat our digital remains the same way museums and archaeologists are required to treat mortal remains—with dignity and in the interest of society.
Whether those kinds of guidelines are ever enshrined in law remains to be seen, but ultimately they may decide whether the digital afterlife turns out to be heaven or hell.
Image Credit: frankie’s / Shutterstock.com Continue reading
#433689 The Rise of Dataism: A Threat to Freedom ...
What would happen if we made all of our data public—everything from wearables monitoring our biometrics, all the way to smartphones monitoring our location, our social media activity, and even our internet search history?
Would such insights into our lives simply provide companies and politicians with greater power to invade our privacy and manipulate us by using our psychological profiles against us?
A burgeoning new philosophy called dataism doesn’t think so.
In fact, this trending ideology believes that liberating the flow of data is the supreme value of the universe, and that it could be the key to unleashing the greatest scientific revolution in the history of humanity.
What Is Dataism?
First mentioned by David Brooks in his 2013 New York Times article “The Philosophy of Data,” dataism is an ethical system that has been most heavily explored and popularized by renowned historian, Yuval Noah Harari.
In his 2016 book Homo Deus, Harari described dataism as a new form of religion that celebrates the growing importance of big data.
Its core belief centers around the idea that the universe gives greater value and support to systems, individuals, and societies that contribute most heavily and efficiently to data processing. In an interview with Wired, Harari stated, “Humans were special and important because up until now they were the most sophisticated data processing system in the universe, but this is no longer the case.”
Now, big data and machine learning are proving themselves more sophisticated, and dataists believe we should hand over as much information and power to these algorithms as possible, allowing the free flow of data to unlock innovation and progress unlike anything we’ve ever seen before.
Pros: Progress and Personal Growth
When you let data run freely, it’s bound to be mixed and matched in new ways that inevitably spark progress. And as we enter the exponential future where every person is constantly connected and sharing their data, the potential for such collaborative epiphanies becomes even greater.
We can already see important increases in quality of life thanks to companies like Google. With Google Maps on your phone, your position is constantly updating on their servers. This information, combined with everyone else on the planet using a phone with Google Maps, allows your phone to inform you of traffic conditions. Based on the speed and location of nearby phones, Google can reroute you to less congested areas or help you avoid accidents. And since you trust that these algorithms have more data than you, you gladly hand over your power to them, following your GPS’s directions rather than your own.
We can do the same sort of thing with our bodies.
Imagine, for instance, a world where each person has biosensors in their bloodstreams—a not unlikely or distant possibility when considering diabetic people already wear insulin pumps that constantly monitor their blood sugar levels. And let’s assume this data was freely shared to the world.
Now imagine a virus like Zika or the Bird Flu breaks out. Thanks to this technology, the odd change in biodata coming from a particular region flags an artificial intelligence that feeds data to the CDC (Center for Disease Control and Prevention). Recognizing that a pandemic could be possible, AIs begin 3D printing vaccines on-demand, predicting the number of people who may be afflicted. When our personal AIs tell us the locations of the spreading epidemic and to take the vaccine it just delivered by drone to our homes, are we likely to follow its instructions? Almost certainly—and if so, it’s likely millions, if not billions, of lives will have been saved.
But to quickly create such vaccines, we’ll also need to liberate research.
Currently, universities and companies seeking to benefit humankind with medical solutions have to pay extensively to organize clinical trials and to find people who match their needs. But if all our biodata was freely aggregated, perhaps they could simply say “monitor all people living with cancer” to an AI, and thanks to the constant stream of data coming in from the world’s population, a machine learning program may easily be able to detect a pattern and create a cure.
As always in research, the more sample data you have, the higher the chance that such patterns will emerge. If data is flowing freely, then anyone in the world can suddenly decide they have a hunch they want to explore, and without having to spend months and months of time and money hunting down the data, they can simply test their hypothesis.
Whether garage tinkerers, at-home scientists, or PhD students—an abundance of free data allows for science to progress unhindered, each person able to operate without being slowed by lack of data. And any progress they make is immediately liberated, becoming free data shared with anyone else that may find a use for it.
Any individual with a curious passion would have the entire world’s data at their fingertips, empowering every one of us to become an expert in any subject that inspires us. Expertise we can then share back into the data stream—a positive feedback loop spearheading progress for the entirety of humanity’s knowledge.
Such exponential gains represent a dataism utopia.
Unfortunately, our current incentives and economy also show us the tragic failures of this model.
As Harari has pointed out, the rise of datism means that “humanism is now facing an existential challenge and the idea of ‘free will’ is under threat.”
Cons: Manipulation and Extortion
In 2017, The Economist declared that data was the most valuable resource on the planet—even more valuable than oil.
Perhaps this is because data is ‘priceless’: it represents understanding, and understanding represents control. And so, in the world of advertising and politics, having data on your consumers and voters gives you an incredible advantage.
This was evidenced by the Cambridge Analytica scandal, in which it’s believed that Donald Trump and the architects of Brexit leveraged users’ Facebook data to create psychological profiles that enabled them to manipulate the masses.
How powerful are these psychological models?
A team who built a model similar to that used by Cambridge Analytica said their model could understand someone as well as a coworker with access to only 10 Facebook likes. With 70 likes they could know them as well as a friend might, 150 likes to match their parents’ understanding, and at 300 likes they could even come to know someone better than their lovers. With more likes, they could even come to know someone better than that person knows themselves.
Proceeding With Caution
In a capitalist democracy, do we want businesses and politicians to know us better than we know ourselves?
In spite of the remarkable benefits that may result for our species by freely giving away our information, do we run the risk of that data being used to exploit and manipulate the masses towards a future without free will, where our daily lives are puppeteered by those who own our data?
It’s extremely possible.
And it’s for this reason that one of the most important conversations we’ll have as a species centers around data ownership: do we just give ownership of the data back to the users, allowing them to choose who to sell or freely give their data to? Or will that simply deter the entrepreneurial drive and cause all of the free services we use today, like Google Search and Facebook, to begin charging inaccessible prices? How much are we willing to pay for our freedom? And how much do we actually care?
If recent history has taught us anything, it’s that humans are willing to give up more privacy than they like to think. Fifteen years ago, it would have been crazy to suggest we’d all allow ourselves to be tracked by our cars, phones, and daily check-ins to our favorite neighborhood locations; but now most of us see it as a worthwhile trade for optimized commutes and dating. As we continue navigating that fine line between exploitation and innovation into a more technological future, what other trade-offs might we be willing to make?
Image Credit: graphicINmotion / Shutterstock.com Continue reading