Tag Archives: mechanics

#436126 Quantum Computing Gets a Boost From AI ...

Illustration: Greg Mably

Anyone of a certain age who has even a passing interest in computers will remember the remarkable breakthrough that IBM made in 1997 when its Deep Blue chess-playing computer defeated Garry Kasparov, then the world chess champion. Computer scientists passed another such milestone in March 2016, when DeepMind (a subsidiary of Alphabet, Google’s parent company) announced that its AlphaGo program had defeated world-champion player Lee Sedol in the game of Go, a board game that had vexed AI researchers for decades. Recently, DeepMind’s algorithms have also bested human players in the computer games StarCraft IIand Quake Arena III.

Some believe that the cognitive capacities of machines will overtake those of human beings in many spheres within a few decades. Others are more cautious and point out that our inability to understand the source of our own cognitive powers presents a daunting hurdle. How can we make thinking machines if we don’t fully understand our own thought processes?

Citizen science, which enlists masses of people to tackle research problems, holds promise here, in no small part because it can be used effectively to explore the boundary between human and artificial intelligence.

Some citizen-science projects ask the public to collect data from their surroundings (as eButterfly does for butterflies) or to monitor delicate ecosystems (as Eye on the Reef does for Australia’s Great Barrier Reef). Other projects rely on online platforms on which people help to categorize obscure phenomena in the night sky (Zooniverse) or add to the understanding of the structure of proteins (Foldit). Typically, people can contribute to such projects without any prior knowledge of the subject. Their fundamental cognitive skills, like the ability to quickly recognize patterns, are sufficient.

In order to design and develop video games that can allow citizen scientists to tackle scientific problems in a variety of fields, professor and group leader Jacob Sherson founded ScienceAtHome (SAH), at Aarhus University, in Denmark. The group began by considering topics in quantum physics, but today SAH hosts games covering other areas of physics, math, psychology, cognitive science, and behavioral economics. We at SAH search for innovative solutions to real research challenges while providing insight into how people think, both alone and when working in groups.

It is computationally intractable to completely map out a higher-dimensional landscape: It is called the curse of high dimensionality, and it plagues many optimization problems.

We believe that the design of new AI algorithms would benefit greatly from a better understanding of how people solve problems. This surmise has led us to establish the Center for Hybrid Intelligence within SAH, which tries to combine human and artificial intelligence, taking advantage of the particular strengths of each. The center’s focus is on the gamification of scientific research problems and the development of interfaces that allow people to understand and work together with AI.

Our first game, Quantum Moves, was inspired by our group’s research into quantum computers. Such computers can in principle solve certain problems that would take a classical computer billions of years. Quantum computers could challenge current cryptographic protocols, aid in the design of new materials, and give insight into natural processes that require an exact solution of the equations of quantum mechanics—something normal computers are inherently bad at doing.

One candidate system for building such a computer would capture individual atoms by “freezing” them, as it were, in the interference pattern produced when a laser beam is reflected back on itself. The captured atoms can thus be organized like eggs in a carton, forming a periodic crystal of atoms and light. Using these atoms to perform quantum calculations requires that we use tightly focused laser beams, called optical tweezers, to transport the atoms from site to site in the light crystal. This is a tricky business because individual atoms do not behave like particles; instead, they resemble a wavelike liquid governed by the laws of quantum mechanics.

In Quantum Moves, a player manipulates a touch screen or mouse to move a simulated laser tweezer and pick up a trapped atom, represented by a liquidlike substance in a bowl. Then the player must bring the atom back to the tweezer’s initial position while trying to minimize the sloshing of the liquid. Such sloshing would increase the energy of the atom and ultimately introduce errors into the operations of the quantum computer. Therefore, at the end of a move, the liquid should be at a complete standstill.

To understand how people and computers might approach such a task differently, you need to know something about how computerized optimization algorithms work. The countless ways of moving a glass of water without spilling may be regarded as constituting a “solution landscape.” One solution is represented by a single point in that landscape, and the height of that point represents the quality of the solution—how smoothly and quickly the glass of water was moved. This landscape might resemble a mountain range, where the top of each mountain represents a local optimum and where the challenge is to find the highest peak in the range—the global optimum.

Illustration: Greg Mably

Researchers must compromise between searching the landscape for taller mountains (“exploration”) and climbing to the top of the nearest mountain (“exploitation”). Making such a trade-off may seem easy when exploring an actual physical landscape: Merely hike around a bit to get at least the general lay of the land before surveying in greater detail what seems to be the tallest peak. But because each possible way of changing the solution defines a new dimension, a realistic problem can have thousands of dimensions. It is computationally intractable to completely map out such a higher-dimensional landscape. We call this the curse of high dimensionality, and it plagues many optimization problems.

Although algorithms are wonderfully efficient at crawling to the top of a given mountain, finding good ways of searching through the broader landscape poses quite a challenge, one that is at the forefront of AI research into such control problems. The conventional approach is to come up with clever ways of reducing the search space, either through insights generated by researchers or with machine-learning algorithms trained on large data sets.

At SAH, we attacked certain quantum-optimization problems by turning them into a game. Our goal was not to show that people can beat computers in this arena but rather to understand the process of generating insights into such problems. We addressed two core questions: whether allowing players to explore the infinite space of possibilities will help them find good solutions and whether we can learn something by studying their behavior.

Today, more than 250,000 people have played Quantum Moves, and to our surprise, they did in fact search the space of possible moves differently from the algorithm we had put to the task. Specifically, we found that although players could not solve the optimization problem on their own, they were good at searching the broad landscape. The computer algorithms could then take those rough ideas and refine them.

Herbert A. Simon said that “solving a problem simply means representing it so as to make the solution transparent.” Apparently, that’s what our games can do with their novel user interfaces.

Perhaps even more interesting was our discovery that players had two distinct ways of solving the problem, each with a clear physical interpretation. One set of players started by placing the tweezer close to the atom while keeping a barrier between the atom trap and the tweezer. In classical physics, a barrier is an impenetrable obstacle, but because the atom liquid is a quantum-mechanical object, it can tunnel through the barrier into the tweezer, after which the player simply moved the tweezer to the target area. Another set of players moved the tweezer directly into the atom trap, picked up the atom liquid, and brought it back. We called these two strategies the “tunneling” and “shoveling” strategies, respectively.

Such clear strategies are extremely valuable because they are very difficult to obtain directly from an optimization algorithm. Involving humans in the optimization loop can thus help us gain insight into the underlying physical phenomena that are at play, knowledge that may then be transferred to other types of problems.

Quantum Moves raised several obvious issues. First, because generating an exceptional solution required further computer-based optimization, players were unable to get immediate feedback to help them improve their scores, and this often left them feeling frustrated. Second, we had tested this approach on only one scientific challenge with a clear classical analogue, that of the sloshing liquid. We wanted to know whether such gamification could be applied more generally, to a variety of scientific challenges that do not offer such immediately applicable visual analogies.

We address these two concerns in Quantum Moves 2. Here, the player first generates a number of candidate solutions by playing the original game. Then the player chooses which solutions to optimize using a built-in algorithm. As the algorithm improves a player’s solution, it modifies the solution path—the movement of the tweezer—to represent the optimized solution. Guided by this feedback, players can then improve their strategy, come up with a new solution, and iteratively feed it back into this process. This gameplay provides high-level heuristics and adds human intuition to the algorithm. The person and the machine work in tandem—a step toward true hybrid intelligence.

In parallel with the development of Quantum Moves 2, we also studied how people collaboratively solve complex problems. To that end, we opened our atomic physics laboratory to the general public—virtually. We let people from around the world dictate the experiments we would run to see if they would find ways to improve the results we were getting. What results? That’s a little tricky to explain, so we need to pause for a moment and provide a little background on the relevant physics.

One of the essential steps in building the quantum computer along the lines described above is to create the coldest state of matter in the universe, known as a Bose-Einstein condensate. Here millions of atoms oscillate in synchrony to form a wavelike substance, one of the largest purely quantum phenomena known. To create this ultracool state of matter, researchers typically use a combination of laser light and magnetic fields. There is no familiar physical analogy between such a strange state of matter and the phenomena of everyday life.

The result we were seeking in our lab was to create as much of this enigmatic substance as was possible given the equipment available. The sequence of steps to accomplish that was unknown. We hoped that gamification could help to solve this problem, even though it had no classical analogy to present to game players.

Images: ScienceAtHome

Fun and Games: The
Quantum Moves game evolved over time, from a relatively crude early version [top] to its current form [second from top] and then a major revision,
Quantum Moves 2 [third from top].
Skill Lab: Science Detective games [bottom] test players’ cognitive skills.

In October 2016, we released a game that, for two weeks, guided how we created Bose-Einstein condensates in our laboratory. By manipulating simple curves in the game interface, players generated experimental sequences for us to use in producing these condensates—and they did so without needing to know anything about the underlying physics. A player would generate such a solution, and a few minutes later we would run the sequence in our laboratory. The number of ultracold atoms in the resulting Bose-Einstein condensate was measured and fed back to the player as a score. Players could then decide either to try to improve their previous solution or to copy and modify other players’ solutions. About 600 people from all over the world participated, submitting 7,577 solutions in total. Many of them yielded bigger condensates than we had previously produced in the lab.

So this exercise succeeded in achieving our primary goal, but it also allowed us to learn something about human behavior. We learned, for example, that players behave differently based on where they sit on the leaderboard. High-performing players make small changes to their successful solutions (exploitation), while poorly performing players are willing to make more dramatic changes (exploration). As a collective, the players nicely balance exploration and exploitation. How they do so provides valuable inspiration to researchers trying to understand human problem solving in social science as well as to those designing new AI algorithms.

How could mere amateurs outperform experienced experimental physicists? The players certainly weren’t better at physics than the experts—but they could do better because of the way in which the problem was posed. By turning the research challenge into a game, we gave players the chance to explore solutions that had previously required complex programming to study. Indeed, even expert experimentalists improved their solutions dramatically by using this interface.

Insight into why that’s possible can probably be found in the words of the late economics Nobel laureate Herbert A. Simon: “Solving a problem simply means representing it so as to make the solution transparent [PDF].” Apparently, that’s what our games can do with their novel user interfaces. We believe that such interfaces might be a key to using human creativity to solve other complex research problems.

Eventually, we’d like to get a better understanding of why this kind of gamification works as well as it does. A first step would be to collect more data on what the players do while they are playing. But even with massive amounts of data, detecting the subtle patterns underlying human intuition is an overwhelming challenge. To advance, we need a deeper insight into the cognition of the individual players.

As a step forward toward this goal, ScienceAtHome created Skill Lab: Science Detective, a suite of minigames exploring visuospatial reasoning, response inhibition, reaction times, and other basic cognitive skills. Then we compare players’ performance in the games with how well these same people did on established psychological tests of those abilities. The point is to allow players to assess their own cognitive strengths and weaknesses while donating their data for further public research.

In the fall of 2018 we launched a prototype of this large-scale profiling in collaboration with the Danish Broadcasting Corp. Since then more than 20,000 people have participated, and in part because of the publicity granted by the public-service channel, participation has been very evenly distributed across ages and by gender. Such broad appeal is rare in social science, where the test population is typically drawn from a very narrow demographic, such as college students.

Never before has such a large academic experiment in human cognition been conducted. We expect to gain new insights into many things, among them how combinations of cognitive abilities sharpen or decline with age, what characteristics may be used to prescreen for mental illnesses, and how to optimize the building of teams in our work lives.

And so what started as a fun exercise in the weird world of quantum mechanics has now become an exercise in understanding the nuances of what makes us human. While we still seek to understand atoms, we can now aspire to understand people’s minds as well.

This article appears in the November 2019 print issue as “A Man-Machine Mind Meld for Quantum Computing.”

About the Authors
Ottó Elíasson, Carrie Weidner, Janet Rafner, and Shaeema Zaman Ahmed work with the ScienceAtHome project at Aarhus University in Denmark. Continue reading

Posted in Human Robots

#435722 Stochastic Robots Use Randomness to ...

The idea behind swarm robots is to replace discrete, expensive, breakable uni-tasking components with a whole bunch of much simpler, cheaper, and replaceable robots that can work together to do the same sorts of tasks. Unfortunately, all of those swarm robots end up needing their own computing and communications and stuff if you want to get them to do what you want them to do.

A different approach to swarm robotics is to use a swarm of much cheaper robots that are far less intelligent. In fact, they may not have to be intelligent at all, if you can rely on their physical characteristics to drive them instead. These swarms are “stochastic,” meaning that their motions are randomly determined, but if you’re clever and careful, you can still get them to do specific things.

Georgia Tech has developed some little swarm robots called “smarticles” that can’t really do much at all on their own, but once you put them together into a jumble, their randomness can actually accomplish something.

Honestly, calling these particle robots “smart” might be giving them a bit too much credit, because they’re actually kind of dumb and strictly speaking not capable of all that much on their own. A single smarticle weighs 35 grams, and consists of some little 3D-printed flappy bits attached to servos, plus an Arduino Pro Mini, a battery, and a light or sound sensor. When its little flappy bits are activated, each smarticle can move slightly, but a single one mostly just moves around in a square and then will gradually drift in a mostly random direction over time.

It gets more interesting when you throw a whole bunch of smarticles into a constrained area. A small collection of five or 10 smarticles constrained together form a “supersmarticle,” but besides being in close proximity to one another, the smarticles within the supersmarticle aren’t communicating or anything like that. As far as each smarticle is concerned, they’re independent, but weirdly, a bumble of them can work together without working together.

“These are very rudimentary robots whose behavior is dominated by mechanics and the laws of physics,” said Dan Goldman, a Dunn Family Professor in the School of Physics at the Georgia Institute of Technology.

The researchers noticed that if one small robot stopped moving, perhaps because its battery died, the group of smarticles would begin moving in the direction of that stalled robot. Graduate student Ross Warkentin learned he could control the movement by adding photo sensors to the robots that halt the arm flapping when a strong beam of light hits one of them.

“If you angle the flashlight just right, you can highlight the robot you want to be inactive, and that causes the ring to lurch toward or away from it, even though no robots are programmed to move toward the light,” Goldman said. “That allowed steering of the ensemble in a very rudimentary, stochastic way.”

It turns out that it’s possible to model this behavior, and control a supersmarticle with enough fidelity to steer it through a maze. And while these particular smarticles aren’t all that small, strictly speaking, the idea is to develop techniques that will work when robots are scaled way way down to the point where you can't physically fit useful computing in there at all.

The researchers are also working on some other concepts, like these:

Image: Science Robotics

The Georgia Tech researchers envision stochastic robot swarms that don’t have a perfectly defined shape or delineation but are capable of self-propulsion, relying on the ensemble-level behaviors that lead to collective locomotion. In such a robot, the researchers say, groups of largely generic agents may be able to achieve complex goals, as observed in biological collectives.

Er, yeah. I’m…not sure I really want there to be a bipedal humanoid robot built out of a bunch of tiny robots. Like, that seems creepy somehow, you know? I’m totally okay with slugs, but let’s not get crazy.

“A robot made of robots: Emergent transport and control of a smarticle ensemble, by William Savoie, Thomas A. Berrueta, Zachary Jackson, Ana Pervan, Ross Warkentin, Shengkai Li, Todd D. Murphey, Kurt Wiesenfeld, and Daniel I. Goldman” from the Georgia Institute of Technology, appears in the current issue of Science Robotics. Continue reading

Posted in Human Robots

#435662 Video Friday: This 3D-Printed ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

ICRES 2019 – July 29-30, 2019 – London, U.K.
DARPA SubT Tunnel Circuit – August 15-22, 2019 – Pittsburgh, Pa., USA
IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
Let us know if you have suggestions for next week, and enjoy today’s videos.

We’re used to seeing bristle bots about the size of a toothbrush head (which is not a coincidence), but Georgia Tech has downsized them, with some interesting benefits.

Researchers have created a new type of tiny 3D-printed robot that moves by harnessing vibration from piezoelectric actuators, ultrasound sources or even tiny speakers. Swarms of these “micro-bristle-bots” might work together to sense environmental changes, move materials – or perhaps one day repair injuries inside the human body.

The prototype robots respond to different vibration frequencies depending on their configurations, allowing researchers to control individual bots by adjusting the vibration. Approximately two millimeters long – about the size of the world’s smallest ant – the bots can cover four times their own length in a second despite the physical limitations of their small size.

“We are working to make the technology robust, and we have a lot of potential applications in mind,” said Azadeh Ansari, an assistant professor in the School of Electrical and Computer Engineering at the Georgia Institute of Technology. “We are working at the intersection of mechanics, electronics, biology and physics. It’s a very rich area and there’s a lot of room for multidisciplinary concepts.”

[ Georgia Tech ]

Most consumer drones are “multi-copters,” meaning that they have a series of rotors or propellers that allow them to hover like helicopters. But having rotors severely limits their energy efficiency, which means that they can’t easily carry heavy payloads or fly for long periods of time. To get the best of both worlds, drone designers have tried to develop “hybrid” fixed-wing drones that can fly as efficiently as airplanes, while still taking off and landing vertically like multi-copters.

These drones are extremely hard to control because of the complexity of dealing with their flight dynamics, but a team from MIT CSAIL aims to make the customization process easier, with a new system that allows users to design drones of different sizes and shapes that can nimbly switch between hovering and gliding – all by using a single controller.

In future work, the team plans to try to further increase the drone’s maneuverability by improving its design. The model doesn’t yet fully take into account complex aerodynamic effects between the propeller’s airflow and the wings. And lastly, their method trained the copter with “yaw velocity” set at zero, which means that it cannot currently perform sharp turns.

[ Paper ] via [ MIT ]

We’re not quite at the point where we can 3D print entire robots, but UCSD is getting us closer.

The UC San Diego researchers’ insight was twofold. They turned to a commercially available printer for the job, (the Stratasys Objet350 Connex3—a workhorse in many robotics labs). In addition, they realized one of the materials used by the 3D printer is made of carbon particles that can conduct power to sensors when connected to a power source. So roboticists used the black resin to manufacture complex sensors embedded within robotic parts made of clear polymer. They designed and manufactured several prototypes, including a gripper.

When stretched, the sensors failed at approximately the same strain as human skin. But the polymers the 3D printer uses are not designed to conduct electricity, so their performance is not optimal. The 3D printed robots also require a lot of post-processing before they can be functional, including careful washing to clean up impurities and drying.

However, researchers remain optimistic that in the future, materials will improve and make 3D printed robots equipped with embedded sensors much easier to manufacture.

[ UCSD ]

Congrats to Team Homer from the University of Koblenz-Landau, who won the RoboCup@Home world championship in Sydney!

[ Team Homer ]

When you’ve got a robot with both wheels and legs, motion planning is complicated. IIT has developed a new planner for CENTAURO that takes advantage of the different ways that the robot is able to get past obstacles.

[ Centauro ]

Thanks Dimitrios!

If you constrain a problem tightly enough, you can solve it even with a relatively simple robot. Here’s an example of an experimental breakfast robot named “Loraine” that can cook eggs, bacon, and potatoes using what looks to be zero sensing at all, just moving to different positions and actuating its gripper.

There’s likely to be enough human work required in the prep here to make the value that the robot adds questionable at best, but it’s a good example of how you can make a relatively complex task robot-compatible as long as you set it up in just the right way.

[ Connected Robotics ] via [ RobotStart ]

It’s been a while since we’ve seen a ball bot, and I’m not sure that I’ve ever seen one with a manipulator on it.

[ ETH Zurich RSL ]

Soft Robotics’ new mini fingers are able to pick up taco shells without shattering them, which as far as I can tell is 100 percent impossible for humans to do.

[ Soft Robotics ]

Yes, Starship’s wheeled robots can climb curbs, and indeed they have a pretty neat way of doing it.

[ Starship ]

Last year we posted a long interview with Christoph Bartneck about his research into robots and racism, and here’s a nice video summary of the work.

[ Christoph Bartneck ]

Canada’s contribution to the Lunar Gateway will be a smart robotic system which includes a next-generation robotic arm known as Canadarm3, as well as equipment, and specialized tools. Using cutting-edge software and advances in artificial intelligence, this highly-autonomous system will be able to maintain, repair and inspect the Gateway, capture visiting vehicles, relocate Gateway modules, help astronauts during spacewalks, and enable science both in lunar orbit and on the surface of the Moon.

[ CSA ]

An interesting demo of how Misty can integrate sound localization with other services.

[ Misty Robotics ]

The third and last period of H2020 AEROARMS project has brought the final developments in industrial inspection and maintenance tasks, such as the crawler retrieval and deployment (DLR) or the industrial validation in stages like a refinery or a cement factory.

[ Aeroarms ]

The Guardian S remote visual inspection and surveillance robot navigates a disaster training site to demonstrate its advanced maneuverability, long-range wireless communications and extended run times.

[ Sarcos ]

This appears to be a cake frosting robot and I wish I had like 3 more hours of this to share:

Also here is a robot that picks fried chicken using a curiously successful technique:

[ Kazumichi Moriyama ]

This isn’t strictly robots, but professor Hiroshi Ishii, associate director of the MIT Media Lab, gave a fascinating SIGCHI Lifetime Achievement Talk that’s absolutely worth your time.

[ Tangible Media Group ] Continue reading

Posted in Human Robots

#435646 Video Friday: Kiki Is a New Social Robot ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

DARPA SubT Tunnel Circuit – August 15-22, 2019 – Pittsburgh, Pa., USA
IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.

The DARPA Subterranean Challenge tunnel circuit takes place in just a few weeks, and we’ll be there!

[ DARPA SubT ]

Time lapse video of robotic arm on NASA’s Mars 2020 rover handily maneuvers 88-pounds (40 kilograms) worth of sensor-laden turret as it moves from a deployed to stowed configuration.

If you haven’t read our interview with Matt Robinson, now would be a great time, since he’s one of the folks at JPL who designed this arm.

[ Mars 2020 ]

Kiki is a small, white, stationary social robot with an evolving personality who promises to be your friend and costs $800 and is currently on Kickstarter.

The Kickstarter page is filled with the same type of overpromising that we’ve seen with other (now very dead) social robots: Kiki is “conscious,” “understands your feelings,” and “loves you back.” Oof. That said, we’re happy to see more startups trying to succeed in this space, which is certainly one of the toughest in consumer electronics, and hopefully they’ve been learning from the recent string of failures. And we have to say Kiki is a cute robot. Its overall design, especially the body mechanics and expressive face, look neat. And kudos to the team—the company was founded by two ex-Googlers, Mita Yun and Jitu Das—for including the “unedited prototype videos,” which help counterbalance the hype.

Another thing that Kiki has going for it is that everything runs on the robot itself. This simplifies privacy and means that the robot won’t partially die on you if the company behind it goes under, but also limits how clever the robot will be able to be. The Kickstarter campaign is already over a third funded, so…We’ll see.

[ Kickstarter ]

When your UAV isn’t enough UAV, so you put a UAV on your UAV.

[ CanberraUAV ]

ABB’s YuMi is testing ATMs because a human trying to do this task would go broke almost immediately.

[ ABB ]

DJI has a fancy new FPV system that features easy setup, digital HD streaming at up to 120 FPS, and <30ms latency.

If it looks expensive, that’s because it costs $930 with the remote included.

[ DJI ]

Honeybee Robotics has recently developed a regolith excavation and rock cleaning system for NASA JPL’s PUFFER rovers. This system, called POCCET (PUFFER-Oriented Compact Cleaning and Excavation Tool), uses compressed gas to perform all excavation and cleaning tasks. Weighing less than 300 grams with potential for further mass reduction, POCCET can be used not just on the Moon, but on other Solar System bodies such as asteroids, comets, and even Mars.

[ Honeybee Robotics ]

DJI’s 2019 RoboMaster tournament, which takes place this month in Shenzen, looks like it’ll be fun to watch, with a plenty of action and rules that are easy to understand.

[ RoboMaster ]

Robots and baked goods are an automatic Video Friday inclusion.

Wow I want a cupcake right now.

[ Soft Robotics ]

The ICRA 2019 Best Paper Award went to Michelle A. Lee at Stanford, for “Making Sense of Vision and Touch: Self-Supervised Learning of Multimodal Representations for Contact-Rich Tasks.”

The ICRA video is here, and you can find the paper at the link below.

[ Paper ] via [ RoboHub ]

Cobalt Robotics put out a bunch of marketing-y videos this week, but this one reasonably interesting, even if you’re familiar with what they’re doing over there.

[ Cobalt Robotics ]

RightHand Robotics launched RightPick2 with a gala event which looked like fun as long as you were really, really in to robots.

[ RightHand Robotics ]

Thanks Jeff!

This video presents a framework for whole-body control applied to the assistive robotic system EDAN. We show how the proposed method can be used for a task like open, pass through and close a door. Also, we show the efficiency of the whole-body coordination with controlling the end-effector with respect to a fixed reference. Additionally, showing how easy the system can be manually manoeuvred by direct interaction with the end-effector, without the need for an extra input device.

[ DLR ]

You’ll probably need to turn on auto-translated subtitles for most of this, but it’s worth it for the adorable little single-seat robotic car designed to help people get around airports.

[ ZMP ]

In this week’s episode of Robots in Depth, Per speaks with Gonzalo Rey from Moog about their fancy 3D printed integrated hydraulic actuators.

Gonzalo talks about how Moog got started with hydraulic control,taking part in the space program and early robotics development. He shares how Moog’s technology is used in fly-by-wire systems in aircraft and in flow control in deep space probes. They have even reached Mars.

[ Robots in Depth ] Continue reading

Posted in Human Robots

#435591 Video Friday: This Robotic Thread Could ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.

Eight engineering students from ETH Zurich are working on a year-long focus project to develop a multimodal robot called Dipper, which can fly, swim, dive underwater, and manage that difficult air-water transition:

The robot uses one motor to selectively drive either a propeller or a marine screw depending on whether it’s in flight or not. We’re told that getting the robot to autonomously do the water to air transition is still a work in progress, but that within a few weeks things should be much smoother.

[ Dipper ]

Thanks Simon!

Giving a jellyfish a hug without stressing them out is exactly as hard as you think, but Harvard’s robot will make sure that all jellyfish get the emotional (and physical) support that they need.

The gripper’s six “fingers” are composed of thin, flat strips of silicone with a hollow channel inside bonded to a layer of flexible but stiffer polymer nanofibers. The fingers are attached to a rectangular, 3D-printed plastic “palm” and, when their channels are filled with water, curl in the direction of the nanofiber-coated side. Each finger exerts an extremely low amount of pressure — about 0.0455 kPA, or less than one-tenth of the pressure of a human’s eyelid on their eye. By contrast, current state-of-the-art soft marine grippers, which are used to capture delicate but more robust animals than jellyfish, exert about 1 kPA.

The gripper was successfully able to trap each jellyfish against the palm of the device, and the jellyfish were unable to break free from the fingers’ grasp until the gripper was depressurized. The jellyfish showed no signs of stress or other adverse effects after being released, and the fingers were able to open and close roughly 100 times before showing signs of wear and tear.

[ Harvard ]

MIT engineers have developed a magnetically steerable, thread-like robot that can actively glide through narrow, winding pathways, such as the labyrinthine vasculature of the brain. In the future, this robotic thread may be paired with existing endovascular technologies, enabling doctors to remotely guide the robot through a patient’s brain vessels to quickly treat blockages and lesions, such as those that occur in aneurysms and stroke.

[ MIT ]

See NASA’s next Mars rover quite literally coming together inside a clean room at the Jet Propulsion Laboratory. This behind-the-scenes look at what goes into building and preparing a rover for Mars, including extensive tests in simulated space environments, was captured from March to July 2019. The rover is expected to launch to the Red Planet in summer 2020 and touch down in February 2021.

The Mars 2020 rover doesn’t have a name yet, but you can give it one! As long as you’re not too old! Which you probably are!

[ Mars 2020 ]

I desperately wish that we could watch this next video at normal speed, not just slowed down, but it’s quite impressive anyway.

Here’s one more video from the Namiki Lab showing some high speed tracking with a pair of very enthusiastic robotic cameras:

[ Namiki Lab ]

Normally, tedious modeling of mechanics, electronics, and information science is required to understand how insects’ or robots’ moving parts coordinate smoothly to take them places. But in a new study, biomechanics researchers at the Georgia Institute of Technology boiled down the sprints of cockroaches to handy principles and equations they then used to make a test robot amble about better.

[ Georgia Tech ]

More magical obstacle-dodging footage from Skydio’s still secret new drone.

We’ve been hard at work extending the capabilities of our upcoming drone, giving you ways to get the control you want without the stress of crashing. The result is you can fly in ways, and get shots, that would simply be impossible any other way. How about flying through obstacles at full speed, backwards?

[ Skydio ]

This is a cute demo with Misty:

[ Misty Robotics ]

We’ve seen pieces of hardware like this before, but always made out of hard materials—a soft version is certainly something new.

Utilizing vacuum power and soft material actuators, we have developed a soft reconfigurable surface (SRS) with multi-modal control and performance capabilities. The SRS is comprised of a square grid array of linear vacuum-powered soft pneumatic actuators (linear V-SPAs), built into plug-and-play modules which enable the arrangement, consolidation, and control of many DoF.

[ RRL ]

The EksoVest is not really a robot, but it’ll make you a cyborg! With super strength!

“This is NOT intended to give you super strength but instead give you super endurance and reduce fatigue so that you have more energy and less soreness at the end of your shift.”

Drat!

[ EksoVest ]

We have created a solution for parents, grandparents, and their children who are living separated. This is an amazing tool to stay connected from a distance through the intimacy that comes through interactive play with a child. For parents who travel for work, deployed military, and families spread across the country, the Cushybot One is much more than a toy; it is the opportunity for maintaining a deep connection with your young child from a distance.

Hmm.

I think the concept here is great, but it’s going to be a serious challenge to successfully commercialize.

[ Indiegogo ]

What happens when you equip RVR with a parachute and send it off a cliff? Watch this episode of RVR Launchpad to find out – then go Behind the Build to see how we (eventually) accomplished this high-flying feat.

[ Sphero ]

These omnidirectional crawler robots aren’t new, but that doesn’t keep them from being fun to watch.

[ NEDO ] via [ Impress ]

We’ll finish up the week with a couple of past ICRA and IROS keynote talks—one by Gill Pratt on The Reliability Challenges of Autonomous Driving, and the other from Peter Hart, on Making Shakey.

[ IEEE RAS ] Continue reading

Posted in Human Robots