Tag Archives: mechanical
#437749 Video Friday: NASA Launches Its Most ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):
AWS Cloud Robotics Summit – August 18-19, 2020 – [Virtual Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Virtual Conference]
IROS 2020 – October 25-29, 2020 – Las Vegas, Nevada
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today’s videos.
Yesterday was a big day for what was quite possibly the most expensive robot on Earth up until it wasn’t on Earth anymore.
Perseverance and the Ingenuity helicopter are expected to arrive on Mars early next year.
[ JPL ]
ICYMI, our most popular post this week featured Northeastern University roboticist John Peter Whitney literally putting his neck on the line for science! He was testing a remotely operated straight razor shaving robotic system powered by fluidic actuators. The cutting-edge (sorry!) device transmits forces from a primary stage, operated by a barber, to a secondary stage, with the razor attached.
[ John Peter Whitney ]
Together with Boston Dynamics, Ford is introducing a pilot program into our Van Dyke Transmission Plant. Say hello to Fluffy the Robot Dog, who creates fast and accurate 3D scans that helps Ford engineers when we’re retooling our plants.
Not shown in the video: “At times, Fluffy sits on its robotic haunches and rides on the back of a small, round Autonomous Mobile Robot, known informally as Scouter. Scouter glides smoothly up and down the aisles of the plant, allowing Fluffy to conserve battery power until it’s time to get to work. Scouter can autonomously navigate facilities while scanning and capturing 3-D point clouds to generate a CAD of the facility. If an area is too tight for Scouter, Fluffy comes to the rescue.”
[ Ford ]
There is a thing that happens at 0:28 in this video that I have questions about.
[ Ghost Robotics ]
Pepper is far more polite about touching than most humans.
[ Paper ]
We don’t usually post pure simulation videos unless they give us something to get really, really excited about. So here’s a pure simulation video.
[ Hybrid Robotics ]
University of Michigan researchers are developing new origami inspired methods for designing, fabricating and actuating micro-robots using heat.These improvements will expand the mechanical capabilities of the tiny bots, allowing them to fold into more complex shapes.
[ DRSL ]
HMI is making beastly electric arms work underwater, even if they’re not stapled to a robotic submarine.
[ HMI ]
Here’s some interesting work in progress from MIT’s Biomimetics Robotics Lab. The limb is acting as a “virtual magnet” using a bimodal force and direction sensor.
Thanks Peter!
[ MIT Biomimetics Lab ]
This is adorable but as a former rabbit custodian I can assure you that approximately 3 seconds after this video ended, all of the wires on that robot were chewed to bits.
[ Lingkang Zhang ]
During the ARCHE 2020 integration week, TNO and the ETH Robot System Lab (RSL) collaborated to integrate their research and development process using the Articulated Locomotion and MAnipulation (ALMA) robot. Next to the integration of software, we tested software to confirm proper implementation and development. We also captured visual and auditory data for future software development. This all resulted in the creation of multiple demo’s to show the capabilities of the teleoperation framework using the ALMA robot.
[ RSL ]
When we talk about practical applications quadrupedal robots with foot wheels, we don’t usually think about them on this scale, although we should.
[ RSL ]
Juan wrote in to share a DIY quadruped that he’s been working on, named CHAMP.
Juan says that the demo robot can be built in less than US $1000 with easily accessible parts. “I hope that my project can provide a more accessible platform for students, researchers, and enthusiasts who are interested to learn more about quadrupedal robot development and its underlying technology.”
[ CHAMP ]
Thanks Juan!
Here’s a New Zealand TV report about a study on robot abuse from Christoph Bartneck at the University of Canterbury.
[ Paper ]
Our Robotics Studio is a hands on class exposing students to practical aspects of the design, fabrication, and programming of physical robotic systems. So what happens when the class goes virtual due to the covid-19 virus? Things get physical — all @ home.
[ Columbia ]
A few videos from the Supernumerary Robotic Devices Workshop, held online earlier this month.
“Handheld Robots: Bridging the Gap between Fully External and Wearable Robots,” presented by Walterio Mayol-Cuevas, University of Bristol.
“Playing the Piano with 11 Fingers: The Neurobehavioural Constraints of Human Robot Augmentation,” presented by Aldo Faisal, Imperial College London.
[ Workshop ] Continue reading →
#437745 Video Friday: Japan’s Giant Gundam ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):
AWS Cloud Robotics Summit – August 18-19, 2020 – [Online Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online Conference]
IROS 2020 – October 25-29, 2020 – Las Vegas, Nev., USA
ICSR 2020 – November 14-16, 2020 – Golden, Co., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.
It’s coming together—literally! Japan’s giant Gundam appears nearly finished and ready for its first steps. In a recent video, Gundam Factory Yokohama, which is constructing the 18-meter-tall, 25-ton walking robot, provided an update on the project. The video shows the Gundam getting its head attached—after being blessed by Shinto priests.
In the video update, they say the project is “steadily progressing” and further details will be announced around the end of September.
[ Gundam Factory Yokohama ]
Creating robots with emotional personalities will transform the usability of robots in the real-world. As previous emotive social robots are mostly based on statically stable robots whose mobility is limited, this work develops an animation to real-world pipeline that enables dynamic bipedal robots that can twist, wiggle, and walk to behave with emotions.
So that’s where Cassie’s eyes go.
[ Berkeley ]
Now that the DARPA SubT Cave Circuit is all virtual, here’s a good reminder of how it’ll work.
[ SubT ]
Since July 20, anyone 11+ years of age must wear a mask in closed public places in France. This measure also is highly recommended in many European, African and Persian Gulf countries. To support businesses and public places, SoftBank Robotics Europe unveils a new feature with Pepper: AI Face Mask Detection.
[ Softbank ]
University of Michigan researchers are developing new origami inspired methods for designing, fabricating and actuating micro-robots using heat.These improvements will expand the mechanical capabilities of the tiny bots, allowing them to fold into more complex shapes.
[ University of Michigan ]
Suzumori Endo Lab, Tokyo Tech has created various types of IPMC robots. Those robots are fabricated by novel 3D fabrication methods.
[ Suzimori Endo Lab ]
The most explode-y of drones manages not to explode this time.
[ SpaceX ]
At Amazon, we’re constantly innovating to support our employees, customers, and communities as effectively as possible. As our fulfillment and delivery teams have been hard at work supplying customers with items during the pandemic, Amazon’s robotics team has been working behind the scenes to re-engineer bots and processes to increase safety in our fulfillment centers.
While some folks are able to do their jobs at home with just a laptop and internet connection, it’s not that simple for other employees at Amazon, including those who spend their days building and testing robots. Some engineers have turned their homes into R&D labs to continue building these new technologies to better serve our customers and employees. Their creativity and resourcefulness to keep our important programs going is inspiring.
[ Amazon ]
Australian Army soldiers from 2nd/14th Light Horse Regiment (Queensland Mounted Infantry) demonstrated the PD-100 Black Hornet Nano unmanned aircraft vehicle during a training exercise at Shoalwater Bay Training Area, Queensland, on 4 May 2018.
This robot has been around for a long time—maybe 10 years or more? It makes you wonder what the next generation will look like, and if they can manage to make it even smaller.
[ FLIR ]
Event-based cameras are bio-inspired vision sensors whose pixels work independently from each other and respond asynchronously to brightness changes, with microsecond resolution. Their advantages make it possible to tackle challenging scenarios in robotics, such as high-speed and high dynamic range scenes. We present a solution to the problem of visual odometry from the data acquired by a stereo event-based camera rig.
[ Paper ] via [ HKUST ]
Emys can help keep kindergarteners sitting still for a long time, which is not small feat!
[ Emys ]
Introducing the RoboMaster EP Core, an advanced educational robot that was built to take learning to the next level and provides an all-in-one solution for STEAM-based classrooms everywhere, offering AI and programming projects for students of all ages and experience levels.
[ DJI ]
This Dutch food company Heemskerk uses ABB robots to automate their order picking. Their new solution reduces the amount of time the fresh produce spends in the supply chain, extending its shelf life, minimizing wastage, and creating a more sustainable solution for the fresh food industry.
[ ABB ]
This week’s episode of Pass the Torque features NASA’s Satellite Servicing Projects Division (NExIS) Robotics Engineer, Zakiya Tomlinson.
[ NASA ]
Massachusetts has been challenging Silicon Valley as the robotics capital of the United States. They’re not winning, yet. But they’re catching up.
[ MassTech ]
San Francisco-based Formant is letting anyone remotely take its Spot robot for a walk. Watch The Robot Report editors, based in Boston, take Spot for a walk around Golden Gate Park.
You can apply for this experience through Formant at the link below.
[ Formant ] via [ TRR ]
Thanks Steve!
An Institute for Advanced Study Seminar on “Theoretical Machine Learning,” featuring Peter Stone from UT Austin.
For autonomous robots to operate in the open, dynamically changing world, they will need to be able to learn a robust set of skills from relatively little experience. This talk begins by introducing Grounded Simulation Learning as a way to bridge the so-called reality gap between simulators and the real world in order to enable transfer learning from simulation to a real robot. It then introduces two new algorithms for imitation learning from observation that enable a robot to mimic demonstrated skills from state-only trajectories, without any knowledge of the actions selected by the demonstrator. Connections to theoretical advances in off-policy reinforcement learning will be highlighted throughout.
[ IAS ] Continue reading →
#437741 CaseCrawler Adds Tiny Robotic Legs to ...
Most of us have a fairly rational expectation that if we put our cellphone down somewhere, it will stay in that place until we pick it up again. Normally, this is exactly what you’d want, but there are exceptions, like when you put your phone down in not quite the right spot on a wireless charging pad without noticing, or when you’re lying on the couch and your phone is juuust out of reach no matter how much you stretch.
Roboticists from the Biorobotics Laboratory at Seoul National University in South Korea have solved both of these problems, and many more besides, by developing a cellphone case with little robotic legs, endowing your phone with the ability to skitter around autonomously. And unlike most of the phone-robot hybrids we’ve seen in the past, this one actually does look like a legit case for your phone.
CaseCrawler is much chunkier than a form-fitting case, but it’s not offensively bigger than one of those chunky battery cases. It’s only 24 millimeters thick (excluding the motor housing), and the total weight is just under 82 grams. Keep in mind that this case is in fact an entire robot, and also not at all optimized for being an actual phone case, so it’s easy to imagine how it could get a lot more svelte—for example, it currently includes a small battery that would be unnecessary if it instead tapped into the phone for power.
The technology inside is pretty amazing, since it involves legs that can retract all the way flat while also supporting a significant amount of weight. The legs work sort of like your legs do, in that there’s a knee joint that can only bend one way. To move the robot forward, a linkage (attached to a motor through a gearbox) pushes the leg back against the ground, as the knee joint keeps the leg straight. On the return stroke, the joint allows the leg to fold, making it compliant so that it doesn’t exert force on the ground. The transmission that sends power from the gearbox to the legs is just 1.5-millimeter thick, but this incredibly thin and lightweight mechanical structure is quite powerful. A non-phone case version of the robot, weighing about 23 g, is able to crawl at 21 centimeters per second while carrying a payload of just over 300 g. That’s more than 13 times its body weight.
The researchers plan on exploring how robots like these could make other objects movable that would otherwise not be. They’d also like to add some autonomy, which (at least for the phone case version) could be as straightforward as leveraging the existing sensors on the phone. And as to when you might be able to buy one of these—we’ll keep you updated, but the good news is that it seems to be fundamentally inexpensive enough that it may actually crawl out of the lab one day.
“CaseCrawler: A Lightweight and Low-Profile Crawling Phone Case Robot,” by Jongeun Lee, Gwang-Pil Jung, Sang-Min Baek, Soo-Hwan Chae, Sojung Yim, Woongbae Kim, and Kyu-Jin Cho from Seoul National University, appears in the October issue of IEEE Robotics and Automation Letters.
< Back to IEEE Journal Watch Continue reading →
#437728 A Battery That’s Tough Enough To ...
Batteries can add considerable mass to any design, and they have to be supported using a sufficiently strong structure, which can add significant mass of its own. Now researchers at the University of Michigan have designed a structural zinc-air battery, one that integrates directly into the machine that it powers and serves as a load-bearing part.
That feature saves weight and thus increases effective storage capacity, adding to the already hefty energy density of the zinc-air chemistry. And the very elements that make the battery physically strong help contain the chemistry’s longstanding tendency to degrade over many hundreds of charge-discharge cycles.
The research is being published today in Science Robotics.
Nicholas Kotov, a professor of chemical engineer, is the leader of the project. He would not say how many watt-hours his prototype stores per gram, but he did note that zinc air—because it draw on ambient air for its electricity-producing reactions—is inherently about three times as energy-dense as lithium-ion cells. And, because using the battery as a structural part means dispensing with an interior battery pack, you could free up perhaps 20 percent of a machine’s interior. Along with other factors the new battery could in principle provide as much as 72 times the energy per unit of volume (not of mass) as today’s lithium-ion workhorses.
Illustration: Alice Kitterman/Science Robotics
“It’s not as if we invented something that was there before us,” Kotov says. ”I look in the mirror and I see my layer of fat—that’s for the storage of energy, but it also serves other purposes,” like keeping you warm in the wintertime. (A similar advance occurred in rocketry when designers learned how to make some liquid propellant tanks load bearing, eliminating the mass penalty of having separate external hull and internal tank walls.)
Others have spoken of putting batteries, including the lithium-ion kind, into load-bearing parts in vehicles. Ford, BMW, and Airbus, for instance, have expressed interest in the idea. The main problem to overcome is the tradeoff in load-bearing batteries between electrochemical performance and mechanical strength.
Image: Kotov Lab/University of Michigan
Key to the battery's physical toughness and to its long life cycle is the nanofiber membrane, made of Kevlar.
The Michigan group get both qualities by using a solid electrolyte (which can’t leak under stress) and by covering the electrodes with a membrane whose nanostructure of fibers is derived from Kevlar. That makes the membrane tough enough to suppress the growth of dendrites—branching fibers of metal that tend to form on an electrode with every charge-discharge cycle and which degrade the battery.
The Kevlar need not be purchased new but can be salvaged from discarded body armor. Other manufacturing steps should be easy, too, Kotov says. He has only just begun to talk to potential commercial partners, but he says there’s no reason why his battery couldn’t hit the market in the next three or four years.
Drones and other autonomous robots might be the most logical first application because their range is so severely chained to their battery capacity. Also, because such robots don’t carry people about, they face less of a hurdle from safety regulators leery of a fundamentally new battery type.
“And it’s not just about the big Amazon robots but also very small ones,” Kotov says. “Energy storage is a very significant issue for small and flexible soft robots.”
Here’s a video showing how Kotov’s lab has used batteries to form the “exoskeleton” of robots that scuttle like worms or scorpions. Continue reading →
#437723 Minuscule RoBeetle Turns Liquid Methanol ...
It’s no secret that one of the most significant constraints on robots is power. Most robots need lots of it, and it has to come from somewhere, with that somewhere usually being a battery because there simply aren’t many other good options. Batteries, however, are famous for having poor energy density, and the smaller your robot is, the more of a problem this becomes. And the issue with batteries goes beyond the battery itself, but also carries over into all the other components that it takes to turn the stored energy into useful work, which again is a particular problem for small-scale robots.
In a paper published this week in Science Robotics, researchers from the University of Southern California, in Los Angeles, demonstrate RoBeetle, an 88-milligram four legged robot that runs entirely on methanol, a power-dense liquid fuel. Without any electronics at all, it uses an exceptionally clever bit of mechanical autonomy to convert methanol vapor directly into forward motion, one millimeter-long step at a time.
It’s not entirely clear from the video how the robot actually works, so let’s go through how it’s put together, and then look at the actuation cycle.
Image: Science Robotics
RoBeetle (A) uses a methanol-based actuation mechanism (B). The robot’s body (C) includes the fuel tank subassembly (D), a tank lid, transmission, and sliding shutter (E), bottom side of the sliding shutter (F), nickel-titanium-platinum composite wire and leaf spring (G), and front legs and hind legs with bioinspired backward-oriented claws (H).
The body of RoBeetle is a boxy fuel tank that you can fill with methanol by poking a syringe through a fuel inlet hole. It’s a quadruped, more or less, with fixed hind legs and two front legs attached to a single transmission that moves them both at once in a sort of rocking forward and up followed by backward and down motion. The transmission is hooked up to a leaf spring that’s tensioned to always pull the legs backward, such that when the robot isn’t being actuated, the spring and transmission keep its front legs more or less vertical and allow the robot to stand. Those horns are primarily there to hold the leaf spring in place, but they’ve got little hooks that can carry stuff, too.
The actuator itself is a nickel-titanium (NiTi) shape-memory alloy (SMA), which is just a wire that gets longer when it heats up and then shrinks back down when it cools. SMAs are fairly common and used for all kinds of things, but what makes this particular SMA a little different is that it’s been messily coated with platinum. The “messily” part is important for a reason that we’ll get to in just a second.
The way that the sliding vent is attached to the transmission is the really clever bit about this robot, because it means that the motion of the wire itself is used to modulate the flow of fuel through a purely mechanical system. Essentially, it’s an actuator and a sensor at the same time.
One end of the SMA wire is attached to the middle of the leaf spring, while the other end runs above the back of the robot where it’s stapled to an anchor block on the robot’s rear end. With the SMA wire hooked up but not actuated (i.e., cold rather than warm), it’s short enough that the leaf spring gets pulled back, rocking the legs forward and up. The last component is embedded in the robot’s back, right along the spine and directly underneath the SMA actuator. It’s a sliding vent attached to the transmission, so that the vent is open when the SMA wire is cold and the leaf spring is pulled back, and closed when the SMA wire is warm and the leaf spring is relaxed. The way that the sliding vent is attached to the transmission is the really clever bit about this robot, because it means that the motion of the wire itself is used to modulate the flow of fuel through a purely mechanical system. Essentially, it’s an actuator and a sensor at the same time.
The actuation cycle that causes the robot to walk begins with a full fuel tank and a cold SMA wire. There’s tension on the leaf spring, pulling the transmission back and rocking the legs forward and upward. The transmission also pulls the sliding vent into the open position, allowing methanol vapor to escape up out of the fuel tank and into the air, where it wafts past the SMA wire that runs directly above the vent.
The platinum facilitates a reaction of the methanol (CH3OH) with oxygen in the air (combustion, although not the dramatic flaming and explosive kind) to generate a couple of water molecules and some carbon dioxide plus a bunch of heat, and this is where the messy platinum coating is important, because messy means lots of surface area for the platinum to interact with as much methanol as possible. In just a second or two the temperature of the SMA wire skyrockets from 50 to 100 ºC and it expands, allowing the leaf spring about 0.1 mm of slack. As the leaf spring relaxes, the transmission moves the legs backwards and downwards, and the robot pulls itself forward about 1.2 mm. At the same time, the transmission is closing off the sliding vent, cutting off the supply of methanol vapor. Without the vapor reacting with the platinum and generating heat, in about a second and a half, the SMA wire cools down. As it does, it shrinks, pulling on the leaf spring and starting the cycle over again. Top speed is 0.76 mm/s (0.05 body-lengths per second).
An interesting environmental effect is that the speed of the robot can be enhanced by a gentle breeze. This is because air moving over the SMA wire cools it down a bit faster while also blowing away any residual methanol from around the vents, shutting down the reaction more completely. RoBeetle can carry more than its own body weight in fuel, and it takes approximately 155 minutes for a full tank of methanol to completely evaporate. It’s worth noting that despite the very high energy density of methanol, this is actually a stupendously inefficient way of powering a robot, with an estimated end-to-end efficiency of just 0.48 percent. Not 48 percent, mind you, but 0.48 percent, while in general, powering SMAs with electricity is much more efficient.
However, you have to look at the entire system that would be necessary to deliver that electricity, and for a robot as small as RoBeetle, the researchers say that it’s basically impossible. The lightest commercially available battery and power supply that would deliver enough juice to heat up an SMA actuator weighs about 800 mg, nearly 10 times the total weight of RoBeetle itself. From that perspective, RoBeetle’s efficiency is actually pretty good.
Image: A. Kitterman/Science Robotics; adapted from R.L.T./MIT
Comparison of various untethered microrobots and bioinspired soft robots that use different power and actuation strategies.
There are some other downsides to RoBeetle we should mention—it can only move forwards, not backwards, and it can’t steer. Its speed isn’t adjustable, and once it starts walking, it’ll walk until it either breaks or runs out of fuel. The researchers have some ideas about the speed, at least, pointing out that increasing the speed of fuel delivery by using pressurized liquid fuels like butane or propane would increase the actuator output frequency. And the frequency, amplitude, and efficiency of the SMAs themselves can be massively increased “by arranging multiple fiber-like thin artificial muscles in hierarchical configurations similar to those observed in sarcomere-based animal muscle,” making RoBeetle even more beetle-like.
As for sensing, RoBeetle’s 230-mg payload is enough to carry passive sensors, but getting those sensors to usefully interact with the robot itself to enable any kind of autonomy remains a challenge. Mechanically intelligence is certainly possible, though, and we can imagine RoBeetle adopting some of the same sorts of systems that have been proposed for the clockwork rover that JPL wants to use for Venus exploration. The researchers also mention how RoBeetle could potentially serve as a model for microbots capable of aerial locomotion, which is something we’d very much like to see.
“An 88-milligram insect-scale autonomous crawling robot driven by a catalytic artificial muscle,” by Xiufeng Yang, Longlong Chang, and Néstor O. Pérez-Arancibia from University of Southern California, in Los Angeles, was published in Science Robotics. Continue reading →