Tag Archives: many

#431399 How Is Technology Evolving Over Time?

What was humanity’s first invention? Some say it was the wheel, while others say it was fire. But perhaps it was our invention of communication. Without this, no tool can be conceptualized, built, replicated, and improved upon by others over time.
Over the years, how we communicate has evolved immensely. Today, many of our inventions are focused on creating faster ways of communicating with each other, and in the process, we’re creating more data than humans can comprehend. Now, a new tool, artificial intelligence, is emerging at the nexus of all this.
How will AI aid and even accelerate technological progress?
Watch this episode of Tech-x-planations and learn more about the evolution of technology and the incredible potential of AI.

Image Credit: leungchopan / Shuttterstock.com Continue reading

Posted in Human Robots

#431392 What AI Can Now Do Is Remarkable—But ...

Major websites all over the world use a system called CAPTCHA to verify that someone is indeed a human and not a bot when entering data or signing into an account. CAPTCHA stands for the “Completely Automated Public Turing test to tell Computers and Humans Apart.” The squiggly letters and numbers, often posted against photographs or textured backgrounds, have been a good way to foil hackers. They are annoying but effective.
The days of CAPTCHA as a viable line of defense may, however, be numbered.
Researchers at Vicarious, a Californian artificial intelligence firm funded by Amazon founder Jeff Bezos and Facebook’s Mark Zuckerberg, have just published a paper documenting how they were able to defeat CAPTCHA using new artificial intelligence techniques. Whereas today’s most advanced artificial intelligence (AI) technologies use neural networks that require massive amounts of data to learn from, sometimes millions of examples, the researchers said their system needed just five training steps to crack Google’s reCAPTCHA technology. With this, they achieved a 67 percent success rate per character—reasonably close to the human accuracy rate of 87 percent. In answering PayPal and Yahoo CAPTCHAs, the system achieved an accuracy rate of greater than 50 percent.
The CAPTCHA breakthrough came hard on the heels of another major milestone from Google’s DeepMind team, the people who built the world’s best Go-playing system. DeepMind built a new artificial-intelligence system called AlphaGo Zero that taught itself to play the game at a world-beating level with minimal training data, mainly using trial and error—in a fashion similar to how humans learn.
Both playing Go and deciphering CAPTCHAs are clear examples of what we call narrow AI, which is different from artificial general intelligence (AGI)—the stuff of science fiction. Remember R2-D2 of Star Wars, Ava from Ex Machina, and Samantha from Her? They could do many things and learned everything they needed on their own.
Narrow AI technologies are systems that can only perform one specific type of task. For example, if you asked AlphaGo Zero to learn to play Monopoly, it could not, even though that is a far less sophisticated game than Go. If you asked the CAPTCHA cracker to learn to understand a spoken phrase, it would not even know where to start.
To date, though, even narrow AI has been difficult to build and perfect. To perform very elementary tasks such as determining whether an image is of a cat or a dog, the system requires the development of a model that details exactly what is being analyzed and massive amounts of data with labeled examples of both. The examples are used to train the AI systems, which are modeled on the neural networks in the brain, in which the connections between layers of neurons are adjusted based on what is observed. To put it simply, you tell an AI system exactly what to learn, and the more data you give it, the more accurate it becomes.
The methods that Vicarious and Google used were different; they allowed the systems to learn on their own, albeit in a narrow field. By making their own assumptions about what the training model should be and trying different permutations until they got the right results, they were able to teach themselves how to read the letters in a CAPTCHA or to play a game.
This blurs the line between narrow AI and AGI and has broader implications in robotics and virtually any other field in which machine learning in complex environments may be relevant.
Beyond visual recognition, the Vicarious breakthrough and AlphaGo Zero success are encouraging scientists to think about how AIs can learn to do things from scratch. And this brings us one step closer to coexisting with classes of AIs and robots that can learn to perform new tasks that are slight variants on their previous tasks—and ultimately the AGI of science fiction.
So R2-D2 may be here sooner than we expected.
This article was originally published by The Washington Post. Read the original article here.
Image Credit: Zapp2Photo / Shutterstock.com Continue reading

Posted in Human Robots

#431389 Tech Is Becoming Emotionally ...

Many people get frustrated with technology when it malfunctions or is counterintuitive. The last thing people might expect is for that same technology to pick up on their emotions and engage with them differently as a result.
All of that is now changing. Computers are increasingly able to figure out what we’re feeling—and it’s big business.
A recent report predicts that the global affective computing market will grow from $12.2 billion in 2016 to $53.98 billion by 2021. The report by research and consultancy firm MarketsandMarkets observed that enabling technologies have already been adopted in a wide range of industries and noted a rising demand for facial feature extraction software.
Affective computing is also referred to as emotion AI or artificial emotional intelligence. Although many people are still unfamiliar with the category, researchers in academia have already discovered a multitude of uses for it.
At the University of Tokyo, Professor Toshihiko Yamasaki decided to develop a machine learning system that evaluates the quality of TED Talk videos. Of course, a TED Talk is only considered to be good if it resonates with a human audience. On the surface, this would seem too qualitatively abstract for computer analysis. But Yamasaki wanted his system to watch videos of presentations and predict user impressions. Could a machine learning system accurately evaluate the emotional persuasiveness of a speaker?
Yamasaki and his colleagues came up with a method that analyzed correlations and “multimodal features including linguistic as well as acoustic features” in a dataset of 1,646 TED Talk videos. The experiment was successful. The method obtained “a statistically significant macro-average accuracy of 93.3 percent, outperforming several competitive baseline methods.”
A machine was able to predict whether or not a person would emotionally connect with other people. In their report, the authors noted that these findings could be used for recommendation purposes and also as feedback to the presenters, in order to improve the quality of their public presentation. However, the usefulness of affective computing goes far beyond the way people present content. It may also transform the way they learn it.
Researchers from North Carolina State University explored the connection between students’ affective states and their ability to learn. Their software was able to accurately predict the effectiveness of online tutoring sessions by analyzing the facial expressions of participating students. The software tracked fine-grained facial movements such as eyebrow raising, eyelid tightening, and mouth dimpling to determine engagement, frustration, and learning. The authors concluded that “analysis of facial expressions has great potential for educational data mining.”
This type of technology is increasingly being used within the private sector. Affectiva is a Boston-based company that makes emotion recognition software. When asked to comment on this emerging technology, Gabi Zijderveld, chief marketing officer at Affectiva, explained in an interview for this article, “Our software measures facial expressions of emotion. So basically all you need is our software running and then access to a camera so you can basically record a face and analyze it. We can do that in real time or we can do this by looking at a video and then analyzing data and sending it back to folks.”
The technology has particular relevance for the advertising industry.
Zijderveld said, “We have products that allow you to measure how consumers or viewers respond to digital content…you could have a number of people looking at an ad, you measure their emotional response so you aggregate the data and it gives you insight into how well your content is performing. And then you can adapt and adjust accordingly.”
Zijderveld explained that this is the first market where the company got traction. However, they have since packaged up their core technology in software development kits or SDKs. This allows other companies to integrate emotion detection into whatever they are building.
By licensing its technology to others, Affectiva is now rapidly expanding into a wide variety of markets, including gaming, education, robotics, and healthcare. The core technology is also used in human resources for the purposes of video recruitment. The software analyzes the emotional responses of interviewees, and that data is factored into hiring decisions.
Richard Yonck is founder and president of Intelligent Future Consulting and the author of a book about our relationship with technology. “One area I discuss in Heart of the Machine is the idea of an emotional economy that will arise as an ecosystem of emotionally aware businesses, systems, and services are developed. This will rapidly expand into a multi-billion-dollar industry, leading to an infrastructure that will be both emotionally responsive and potentially exploitive at personal, commercial, and political levels,” said Yonck, in an interview for this article.
According to Yonck, these emotionally-aware systems will “better anticipate needs, improve efficiency, and reduce stress and misunderstandings.”
Affectiva is uniquely positioned to profit from this “emotional economy.” The company has already created the world’s largest emotion database. “We’ve analyzed a little bit over 4.7 million faces in 75 countries,” said Zijderveld. “This is data first and foremost, it’s data gathered with consent. So everyone has opted in to have their faces analyzed.”
The vastness of that database is essential for deep learning approaches. The software would be inaccurate if the data was inadequate. According to Zijderveld, “If you don’t have massive amounts of data of people of all ages, genders, and ethnicities, then your algorithms are going to be pretty biased.”
This massive database has already revealed cultural insights into how people express emotion. Zijderveld explained, “Obviously everyone knows that women are more expressive than men. But our data confirms that, but not only that, it can also show that women smile longer. They tend to smile more often. There’s also regional differences.”
Yonck believes that affective computing will inspire unimaginable forms of innovation and that change will happen at a fast pace.
He explained, “As businesses, software, systems, and services develop, they’ll support and make possible all sorts of other emotionally aware technologies that couldn’t previously exist. This leads to a spiral of increasingly sophisticated products, just as happened in the early days of computing.”
Those who are curious about affective technology will soon be able to interact with it.
Hubble Connected unveiled the Hubble Hugo at multiple trade shows this year. Hugo is billed as “the world’s first smart camera,” with emotion AI video analytics powered by Affectiva. The product can identify individuals, figure out how they’re feeling, receive voice commands, video monitor your home, and act as a photographer and videographer of events. Media can then be transmitted to the cloud. The company’s website describes Hugo as “a fun pal to have in the house.”
Although he sees the potential for improved efficiencies and expanding markets, Richard Yonck cautions that AI technology is not without its pitfalls.
“It’s critical that we understand we are headed into very unknown territory as we develop these systems, creating problems unlike any we’ve faced before,” said Yonck. “We should put our focus on ensuring AI develops in a way that represents our human values and ideals.”
Image Credit: Kisan / Shutterstock.com Continue reading

Posted in Human Robots

#431371 Amazon Is Quietly Building the Robots of ...

Science fiction is the siren song of hard science. How many innocent young students have been lured into complex, abstract science, technology, engineering, or mathematics because of a reckless and irresponsible exposure to Arthur C. Clarke at a tender age? Yet Arthur C. Clarke has a very famous quote: “Any sufficiently advanced technology is indistinguishable from magic.”
It’s the prospect of making that… ahem… magic leap that entices so many people into STEM in the first place. A magic leap that would change the world. How about, for example, having humanoid robots? They could match us in dexterity and speed, perceive the world around them as we do, and be programmed to do, well, more or less anything we can do.
Such a technology would change the world forever.
But how will it arrive? While true sci-fi robots won’t get here right away—the pieces are coming together, and the company best developing them at the moment is Amazon. Where others have struggled to succeed, Amazon has been quietly progressing. Notably, Amazon has more than just a dream, it has the most practical of reasons driving it into robotics.
This practicality matters. Technological development rarely proceeds by magic; it’s a process filled with twists, turns, dead-ends, and financial constraints. New technologies often have to answer questions like “What is this good for, are you being realistic?” A good strategy, then, can be to build something more limited than your initial ambition, but useful for a niche market. That way, you can produce a prototype, have a reasonable business plan, and turn a profit within a decade. You might call these “stepping stone” applications that allow for new technologies to be developed in an economically viable way.
You need something you can sell to someone, soon: that’s how you get investment in your idea. It’s this model that iRobot, developers of the Roomba, used: migrating from military prototypes to robotic vacuum cleaners to become the “boring, successful robot company.” Compare this to Willow Garage, a genius factory if ever there was one: they clearly had ambitions towards a general-purpose, multi-functional robot. They built an impressive device—PR2—and programmed the operating system, ROS, that is still the industry and academic standard to this day.
But since they were unable to sell their robot for much less than $250,000, it was never likely to be a profitable business. This is why Willow Garage is no more, and many workers at the company went into telepresence robotics. Telepresence is essentially videoconferencing with a fancy robot attached to move the camera around. It uses some of the same software (for example, navigation and mapping) without requiring you to solve difficult problems of full autonomy for the robot, or manipulating its environment. It’s certainly one of the stepping-stone areas that various companies are investigating.
Another approach is to go to the people with very high research budgets: the military.
This was the Boston Dynamics approach, and their incredible achievements in bipedal locomotion saw them getting snapped up by Google. There was a great deal of excitement and speculation about Google’s “nightmare factory” whenever a new slick video of a futuristic militarized robot surfaced. But Google broadly backed away from Replicant, their robotics program, and Boston Dynamics was sold. This was partly due to PR concerns over the Terminator-esque designs, but partly because they didn’t see the robotics division turning a profit. They hadn’t found their stepping stones.
This is where Amazon comes in. Why Amazon? First off, they just announced that their profits are up by 30 percent, and yet the company is well-known for their constantly-moving Day One philosophy where a great deal of the profits are reinvested back into the business. But lots of companies have ambition.
One thing Amazon has that few other corporations have, as well as big financial resources, is viable stepping stones for developing the technologies needed for this sort of robotics to become a reality. They already employ 100,000 robots: these are of the “pragmatic, boring, useful” kind that we’ve profiled, which move around the shelves in warehouses. These robots are allowing Amazon to develop localization and mapping software for robots that can autonomously navigate in the simple warehouse environment.
But their ambitions don’t end there. The Amazon Robotics Challenge is a multi-million dollar competition, open to university teams, to produce a robot that can pick and package items in warehouses. The problem of grasping and manipulating a range of objects is not a solved one in robotics, so this work is still done by humans—yet it’s absolutely fundamental for any sci-fi dream robot.
Google, for example, attempted to solve this problem by hooking up 14 robot hands to machine learning algorithms and having them grasp thousands of objects. Although results were promising, the 10 to 20 percent failure rate for grasps is too high for warehouse use. This is a perfect stepping stone for Amazon; should they crack the problem, they will likely save millions in logistics.
Another area where humanoid robotics—especially bipedal locomotion, or walking, has been seriously suggested—is in the last mile delivery problem. Amazon has shown willingness to be creative in this department with their notorious drone delivery service. In other words, it’s all very well to have your self-driving car or van deliver packages to people’s doors, but who puts the package on the doorstep? It’s difficult for wheeled robots to navigate the full range of built environments that exist. That’s why bipedal robots like CASSIE, developed by Oregon State, may one day be used to deliver parcels.
Again: no one more than Amazon stands to profit from cracking this technology. The line from robotics research to profit is very clear.
So, perhaps one day Amazon will have robots that can move around and manipulate their environments. But they’re also working on intelligence that will guide those robots and make them truly useful for a variety of tasks. Amazon has an AI, or at least the framework for an AI: it’s called Alexa, and it’s in tens of millions of homes. The Alexa Prize, another multi-million-dollar competition, is attempting to make Alexa more social.
To develop a conversational AI, at least using the current methods of machine learning, you need data on tens of millions of conversations. You need to understand how people will try to interact with the AI. Amazon has access to this in Alexa, and they’re using it. As owners of the leading voice-activated personal assistant, they have an ecosystem of developers creating apps for Alexa. It will be integrated with the smart home and the Internet of Things. It is a very marketable product, a stepping stone for robot intelligence.
What’s more, the company can benefit from its huge sales infrastructure. For Amazon, having an AI in your home is ideal, because it can persuade you to buy more products through its website. Unlike companies like Google, Amazon has an easy way to make a direct profit from IoT devices, which could fuel funding.
For a humanoid robot to be truly useful, though, it will need vision and intelligence. It will have to understand and interpret its environment, and react accordingly. The way humans learn about our environment is by getting out and seeing it. This is something that, for example, an Alexa coupled to smart glasses would be very capable of doing. There are rumors that Alexa’s AI will soon be used in security cameras, which is an ideal stepping stone task to train an AI to process images from its environment, truly perceiving the world and any threats it might contain.
It’s a slight exaggeration to say that Amazon is in the process of building a secret robot army. The gulf between our sci-fi vision of robots that can intelligently serve us, rather than mindlessly assemble cars, is still vast. But in quietly assembling many of the technologies needed for intelligent, multi-purpose robotics—and with the unique stepping stones they have along the way—Amazon might just be poised to leap that gulf. As if by magic.
Image Credit: Denis Starostin / Shutterstock.com Continue reading

Posted in Human Robots

#431362 Does Regulating Artificial Intelligence ...

Some people are afraid that heavily armed artificially intelligent robots might take over the world, enslaving humanity—or perhaps exterminating us. These people, including tech-industry billionaire Elon Musk and eminent physicist Stephen Hawking, say artificial intelligence technology needs to be regulated to manage the risks. But Microsoft founder Bill Gates and Facebook’s Mark Zuckerberg disagree, saying the technology is not nearly advanced enough for those worries to be realistic.
As someone who researches how AI works in robotic decision-making, drones and self-driving vehicles, I’ve seen how beneficial it can be. I’ve developed AI software that lets robots working in teams make individual decisions as part of collective efforts to explore and solve problems. Researchers are already subject to existing rules, regulations and laws designed to protect public safety. Imposing further limitations risks reducing the potential for innovation with AI systems.
How is AI regulated now?
While the term “artificial intelligence” may conjure fantastical images of human-like robots, most people have encountered AI before. It helps us find similar products while shopping, offers movie and TV recommendations, and helps us search for websites. It grades student writing, provides personalized tutoring, and even recognizes objects carried through airport scanners.
In each case, the AI makes things easier for humans. For example, the AI software I developed could be used to plan and execute a search of a field for a plant or animal as part of a science experiment. But even as the AI frees people from doing this work, it is still basing its actions on human decisions and goals about where to search and what to look for.
In areas like these and many others, AI has the potential to do far more good than harm—if used properly. But I don’t believe additional regulations are currently needed. There are already laws on the books of nations, states, and towns governing civil and criminal liabilities for harmful actions. Our drones, for example, must obey FAA regulations, while the self-driving car AI must obey regular traffic laws to operate on public roadways.
Existing laws also cover what happens if a robot injures or kills a person, even if the injury is accidental and the robot’s programmer or operator isn’t criminally responsible. While lawmakers and regulators may need to refine responsibility for AI systems’ actions as technology advances, creating regulations beyond those that already exist could prohibit or slow the development of capabilities that would be overwhelmingly beneficial.
Potential risks from artificial intelligence
It may seem reasonable to worry about researchers developing very advanced artificial intelligence systems that can operate entirely outside human control. A common thought experiment deals with a self-driving car forced to make a decision about whether to run over a child who just stepped into the road or veer off into a guardrail, injuring the car’s occupants and perhaps even those in another vehicle.
Musk and Hawking, among others, worry that a hyper-capable AI system, no longer limited to a single set of tasks like controlling a self-driving car, might decide it doesn’t need humans anymore. It might even look at human stewardship of the planet, the interpersonal conflicts, theft, fraud, and frequent wars, and decide that the world would be better without people.
Science fiction author Isaac Asimov tried to address this potential by proposing three laws limiting robot decision-making: Robots cannot injure humans or allow them “to come to harm.” They must also obey humans—unless this would harm humans—and protect themselves, as long as this doesn’t harm humans or ignore an order.
But Asimov himself knew the three laws were not enough. And they don’t reflect the complexity of human values. What constitutes “harm” is an example: Should a robot protect humanity from suffering related to overpopulation, or should it protect individuals’ freedoms to make personal reproductive decisions?
We humans have already wrestled with these questions in our own, non-artificial intelligences. Researchers have proposed restrictions on human freedoms, including reducing reproduction, to control people’s behavior, population growth, and environmental damage. In general, society has decided against using those methods, even if their goals seem reasonable. Similarly, rather than regulating what AI systems can and can’t do, in my view it would be better to teach them human ethics and values—like parents do with human children.
Artificial intelligence benefits
People already benefit from AI every day—but this is just the beginning. AI-controlled robots could assist law enforcement in responding to human gunmen. Current police efforts must focus on preventing officers from being injured, but robots could step into harm’s way, potentially changing the outcomes of cases like the recent shooting of an armed college student at Georgia Tech and an unarmed high school student in Austin.
Intelligent robots can help humans in other ways, too. They can perform repetitive tasks, like processing sensor data, where human boredom may cause mistakes. They can limit human exposure to dangerous materials and dangerous situations, such as when decontaminating a nuclear reactor, working in areas humans can’t go. In general, AI robots can provide humans with more time to pursue whatever they define as happiness by freeing them from having to do other work.
Achieving most of these benefits will require a lot more research and development. Regulations that make it more expensive to develop AIs or prevent certain uses may delay or forestall those efforts. This is particularly true for small businesses and individuals—key drivers of new technologies—who are not as well equipped to deal with regulation compliance as larger companies. In fact, the biggest beneficiary of AI regulation may be large companies that are used to dealing with it, because startups will have a harder time competing in a regulated environment.
The need for innovation
Humanity faced a similar set of issues in the early days of the internet. But the United States actively avoided regulating the internet to avoid stunting its early growth. Musk’s PayPal and numerous other businesses helped build the modern online world while subject only to regular human-scale rules, like those preventing theft and fraud.
Artificial intelligence systems have the potential to change how humans do just about everything. Scientists, engineers, programmers, and entrepreneurs need time to develop the technologies—and deliver their benefits. Their work should be free from concern that some AIs might be banned, and from the delays and costs associated with new AI-specific regulations.
This article was originally published on The Conversation. Read the original article.
Image Credit: Tatiana Shepeleva / Shutterstock.com Continue reading

Posted in Human Robots