Tag Archives: manipulation

#435731 Video Friday: NASA Is Sending This ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

MARSS 2019 – July 1-5, 2019 – Helsinki, Finland
ICRES 2019 – July 29-30, 2019 – London, UK
DARPA SubT Tunnel Circuit – August 15-22, 2019 – Pittsburgh, PA, USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

The big news today is that NASA is sending a robot to Saturn’s moon Titan. A flying robot. The Dragonfly mission will launch in 2026 and arrive in 2034, but you knew that already, because last January, we posted a detailed article about the concept from the Applied Physics Lab at Johns Hopkins University. And now it’s not a concept anymore, yay!

Again, read all the details plus an interview in 2018 article.

[ NASA ]

A robotic gripping arm that uses engineered bacteria to “taste” for a specific chemical has been developed by engineers at the University of California, Davis, and Carnegie Mellon University. The gripper is a proof-of-concept for biologically-based soft robotics.

The new device uses a biosensing module based on E. coli bacteria engineered to respond to the chemical IPTG by producing a fluorescent protein. The bacterial cells reside in wells with a flexible, porous membrane that allows chemicals to enter but keeps the cells inside. This biosensing module is built into the surface of a flexible gripper on a robotic arm, so the gripper can “taste” the environment through its fingers.

When IPTG crosses the membrane into the chamber, the cells fluoresce and electronic circuits inside the module detect the light. The electrical signal travels to the gripper’s control unit, which can decide whether to pick something up or release it.

[ UC Davis ]

The Toyota Research Institute (TRI) is taking on the hard problems in manipulation research toward making human-assist robots reliable and robust. Dr. Russ Tedrake, TRI Vice President of Robotics Research, explains how we are exploring the challenges and addressing the reliability gap by using a robot loading dishes in a dishwasher as an example task.

[ TRI ]

The Tactile Telerobot is the world’s first haptic telerobotic system that transmits realistic touch feedback to an operator located anywhere in the world. It is the product of joint collaboration between Shadow Robot Company, HaptX, and SynTouch. All Nippon Airways funded the project’s initial research and development.

What’s really unique about this is the HaptX tactile feedback system, which is something we’ve been following for several years now. It’s one of the most magical tech experiences I’ve ever had, and you can read about it here and here.

[ HaptX ]

Thanks Andrew!

I love how snake robots can emulate some of the fanciest moves of real snakes, and then also do bonkers things that real snakes never do.

[ Matsuno Lab ]

Here are a couple interesting videos from the Human-Robot Interaction Lab at Tufts.

A robot is instructed to perform an action and cannot do it due to lack of sensors. But when another robot is placed nearby, it can execute the instruction by tacitly tapping into the other robot’s mind and using that robot’s sensors for its own actions. Yes, it’s automatic, and yes, it’s the BORG!

Two Nao robots are instructed to perform a dance and are able to do it right after instruction. Moreover, they can switch roles immediately, and even a third different PR2 robot can perform the dance right away, demonstrating the ability of our DIARC architecture to learn quickly and share the knowledge with any type of robot running the architecture.

Compared to Nao, PR2 just sounds… depressed.

[ HRI Lab ]

This work explores the problem of robot tool construction – creating tools from parts available in the environment. We advance the state-of-the-art in robotic tool construction by introducing an approach that enables the robot to construct a wider range of tools with greater computational efficiency. Specifically, given an action that the robot wishes to accomplish and a set of building parts available to the robot, our approach reasons about the shape of the parts and potential ways of attaching them, generating a ranking of part combinations that the robot then uses to construct and test the target tool. We validate our approach on the construction of five tools using a physical 7-DOF robot arm.

[ RAIL Lab ] via [ RSS ]

We like Magazino’s approach to warehouse picking- constrain the problem to something you can reliably solve, like shoeboxes.

Magazino has announced a new pricing model for their robots. You pay 55k euros for the robot itself, and then after that, all you pay to keep the robot working is 6 cents per pick, so the robot is only costing you money for the work that it actually does.

[ Magazino ]

Thanks Florin!

Human-Robot Collaborations are happening across factories worldwide, yet very few are using it for smaller businesses, due to high costs or the difficulty of customization. Elephant Robotics, a new player from Shenzhen, the Silicon Valley of Asia, has set its sight on helping smaller businesses gain access to smart robotics. They created a Catbot (a collaborative robotic arm) that will offer high efficiency and flexibility to various industries.

The Catbot is set to help from education projects, photography, massaging, to being a personal barista or co-playing a table game. The customizations are endless. To increase the flexibility of usage, the Catbot is extremely easy to program from a high precision task up to covering hefty ground projects.

[ Elephant Robotics ]

Thanks Johnson!

Dronistics, an EPFL spin-off, has been testing out their enclosed delivery drone in the Dominican Republic through a partnership with WeRobotics.

[ WeRobotics ]

QTrobot is an expressive humanoid robot designed to help children with autism spectrum disorder and children with special educational needs in learning new skills. QTrobot uses simple and exaggerated facial expressions combined by interactive games and stories, to help children improve their emotional skills. QTrobot helps children to learn about and better understand the emotions and teach them strategies to handle their emotions more effectively.

[ LuxAI ]

Here’s a typical day in the life of a Tertill solar-powered autonomous weed-destroying robot.

$300, now shipping from Franklin Robotics.

[ Tertill ]

PAL Robotics is excited to announce a new TIAGo with two arms, TIAGo++! After carefully listening to the robotics community needs, we used TIAGo’s modularity to integrate two 7-DoF arms to our mobile manipulator. TIAGo++ can help you swiftly accomplish your research goals, opening endless possibilities in mobile manipulation.

[ PAL Robotics ]

Thanks Jack!

You’ve definitely already met the Cobalt security robot, but Toyota AI Ventures just threw a pile of money at them and would therefore like you to experience this re-introduction:

[ Cobalt Robotics ] via [ Toyota AI ]

ROSIE is a mobile manipulator kit from HEBI Robotics. And if you don’t like ROSIE, the modular nature of HEBI’s hardware means that you can take her apart and make something more interesting.

[ HEBI Robotics ]

Learn about Kawasaki Robotics’ second addition to their line of duAro dual-arm collaborative robots, duAro2. This model offers an extended vertical reach (550 mm) and an increased payload capacity (3 kg/arm).

[ Kawasaki Robotics ]

Drone Delivery Canada has partnered with Peel Region Paramedics to pilot its proprietary drone delivery platform to enable rapid first responder technology via drone with the goal to reduce response time and potentially save lives.

[ Drone Delivery Canada ]

In this week’s episode of Robots in Depth, Per speaks with Harri Ketamo, from Headai.

Harri Ketamo talks about AI and how he aims to mimic human decision making with algorithms. Harri has done a lot of AI for computer games to create opponents that are entertaining to play against. It is easy to develop a very bad or a very good opponent, but designing an opponent that behaves like a human, is entertaining to play against and that you can beat is quite hard. He talks about how AI in computer games is a very important story telling tool and an important part of making a game entertaining to play.

This work led him into other parts of the AI field. Harri thinks that we sometimes have a problem separating what is real from what is the type of story telling he knows from gaming AI. He calls for critical analysis of AI and says that data has to be used to verify AI decisions and results.

[ Robots in Depth ]

Thanks Per! Continue reading

Posted in Human Robots

#435640 Video Friday: This Wearable Robotic Tail ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

DARPA SubT Tunnel Circuit – August 15-22, 2019 – Pittsburgh, Pa., USA
CLAWAR 2019 – August 26-28, 2019 – Kuala Lumpur, Malaysia
IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.

Lakshmi Nair from Georgia Tech describes some fascinating research towards robots that can create their own tools, as presented at ICRA this year:

Using a novel capability to reason about shape, function, and attachment of unrelated parts, researchers have for the first time successfully trained an intelligent agent to create basic tools by combining objects.

The breakthrough comes from Georgia Tech’s Robot Autonomy and Interactive Learning (RAIL) research lab and is a significant step toward enabling intelligent agents to devise more advanced tools that could prove useful in hazardous – and potentially life-threatening – environments.

[ Lakshmi Nair ]

Victor Barasuol, from the Dynamic Legged Systems Lab at IIT, wrote in to share some new research on their HyQ quadruped that enables sensorless shin collision detection. This helps the robot navigate unstructured environments, and also mitigates all those painful shin strikes, because ouch.

This will be presented later this month at the International Conference on Climbing and Walking Robots (CLAWAR) in Kuala Lumpur, Malaysia.

[ IIT ]

Thanks Victor!

You used to have a tail, you know—as an embryo, about a month in to your development. All mammals used to have tails, and now we just have useless tailbones, which don’t help us with balancing even a little bit. BRING BACK THE TAIL!

The tail, created by Junichi Nabeshima, Kouta Minamizawa, and MHD Yamen Saraiji from Keio University’s Graduate School of Media Design, was presented at SIGGRAPH 2019 Emerging Technologies.

[ Paper ] via [ Gizmodo ]

The noises in this video are fantastic.

[ ESA ]

Apparently the industrial revolution wasn’t a thorough enough beatdown of human knitting, because the robots are at it again.

[ MIT CSAIL ]

Skydio’s drones just keep getting more and more impressive. Now if only they’d make one that I can afford…

[ Skydio ]

The only thing more fun than watching robots is watching people react to robots.

[ SEER ]

There aren’t any robots in this video, but it’s robotics-related research, and very soothing to watch.

[ Stanford ]

#autonomousicecreamtricycle

In case it wasn’t clear, which it wasn’t, this is a Roboy project. And if you didn’t understand that first video, you definitely won’t understand this second one:

Whatever that t-shirt is at the end (Roboy in sunglasses puking rainbows…?) I need one.

[ Roboy ]

By adding electronics and computation technology to a simple cane that has been around since ancient times, a team of researchers at Columbia Engineering have transformed it into a 21st century robotic device that can provide light-touch assistance in walking to the aged and others with impaired mobility.

The light-touch robotic cane, called CANINE, acts as a cane-like mobile assistant. The device improves the individual’s proprioception, or self-awareness in space, during walking, which in turn improves stability and balance.

[ ROAR Lab ]

During the second field experiment for DARPA’s OFFensive Swarm-Enabled Tactics (OFFSET) program, which took place at Fort Benning, Georgia, teams of autonomous air and ground robots tested tactics on a mission to isolate an urban objective. Similar to the way a firefighting crew establishes a boundary around a burning building, they first identified locations of interest and then created a perimeter around the focal point.

[ DARPA ]

I think there’s a bit of new footage here of Ghost Robotics’ Vision 60 quadruped walking around without sensors on unstructured terrain.

[ Ghost Robotics ]

If you’re as tired of passenger drone hype as I am, there’s absolutely no need to watch this video of NEC’s latest hover test.

[ AP ]

As researchers teach robots to perform more and more complex tasks, the need for realistic simulation environments is growing. Existing techniques for closing the reality gap by approximating real-world physics often require extensive real world data and/or thousands of simulation samples. This paper presents TuneNet, a new machine learning-based method to directly tune the parameters of one model to match another using an iterative residual tuning technique. TuneNet estimates the parameter difference between two models using a single observation from the target and minimal simulation, allowing rapid, accurate and sample-efficient parameter estimation.

The system can be trained via supervised learning over an auto-generated simulated dataset. We show that TuneNet can perform system identification, even when the true parameter values lie well outside the distribution seen during training, and demonstrate that simulators tuned with TuneNet outperform existing techniques for predicting rigid body motion. Finally, we show that our method can estimate real-world parameter values, allowing a robot to perform sim-to-real task transfer on a dynamic manipulation task unseen during training. We are also making a baseline implementation of our code available online.

[ Paper ]

Here’s an update on what GITAI has been up to with their telepresence astronaut-replacement robot.

[ GITAI ]

Curiosity captured this 360-degree panorama of a location on Mars called “Teal Ridge” on June 18, 2019. This location is part of a larger region the rover has been exploring called the “clay-bearing unit” on the side of Mount Sharp, which is inside Gale Crater. The scene is presented with a color adjustment that approximates white balancing to resemble how the rocks and sand would appear under daytime lighting conditions on Earth.

[ MSL ]

Some updates (in English) on ROS from ROSCon France. The first is a keynote from Brian Gerkey:

And this second video is from Omri Ben-Bassat, about how to keep your Anki Vector alive using ROS:

All of the ROSCon FR talks are available on Vimeo.

[ ROSCon FR ] Continue reading

Posted in Human Robots

#435621 ANYbotics Introduces Sleek New ANYmal C ...

Quadrupedal robots are making significant advances lately, and just in the past few months we’ve seen Boston Dynamics’ Spot hauling a truck, IIT’s HyQReal pulling a plane, MIT’s MiniCheetah doing backflips, Unitree Robotics’ Laikago towing a van, and Ghost Robotics’ Vision 60 exploring a mine. Robot makers are betting that their four-legged machines will prove useful in a variety of applications in construction, security, delivery, and even at home.

ANYbotics has been working on such applications for years, testing out their ANYmal robot in places where humans typically don’t want to go (like offshore platforms) as well as places where humans really don’t want to go (like sewers), and they have a better idea than most companies what can make quadruped robots successful.

This week, ANYbotics is announcing a completely new quadruped platform, ANYmal C, a major upgrade from the really quite research-y ANYmal B. The new quadruped has been optimized for ruggedness and reliability in industrial environments, with a streamlined body painted a color that lets you know it means business.

ANYmal C’s physical specs are pretty impressive for a production quadruped. It can move at 1 meter per second, manage 20-degree slopes and 45-degree stairs, cross 25-centimeter gaps, and squeeze through passages just 60 centimeters wide. It’s packed with cameras and 3D sensors, including a lidar for 3D mapping and simultaneous localization and mapping (SLAM). All these sensors (along with the vast volume of gait research that’s been done with ANYmal) make this one of the most reliably autonomous quadrupeds out there, with real-time motion planning and obstacle avoidance.

Image: ANYbotics

ANYmal can autonomously attach itself to a cone-shaped docking station to recharge.

ANYmal C is also one of the ruggedest legged robots in existence. The 50-kilogram robot is IP67 rated, meaning that it’s completely impervious to dust and can withstand being submerged in a meter of water for an hour. If it’s submerged for longer than that, you’re absolutely doing something wrong. The robot will run for over 2 hours on battery power, and if that’s not enough endurance, don’t worry, because ANYmal can autonomously impale itself on a weird cone-shaped docking station to recharge.

Photo: ANYbotics

ANYmal C’s sensor payload includes cameras and a lidar for 3D mapping and SLAM.

As far as what ANYmal C is designed to actually do, it’s mostly remote inspection tasks where you need to move around through a relatively complex environment, but where for whatever reason you’d be better off not sending a human. ANYmal C has a sensor payload that gives it lots of visual options, like thermal imaging, and with the ability to handle a 10-kilogram payload, the robot can be adapted to many different environments.

Over the next few months, we’re hoping to see more examples of ANYmal C being deployed to do useful stuff in real-world environments, but for now, we do have a bit more detail from ANYbotics CTO Christian Gehring.

IEEE Spectrum: Can you tell us about the development process for ANYmal C?

Christian Gehring: We tested the previous generation of ANYmal (B) in a broad range of environments over the last few years and gained a lot of insights. Based on our learnings, it became clear that we would have to re-design the robot to meet the requirements of industrial customers in terms of safety, quality, reliability, and lifetime. There were different prototype stages both for the new drives and for single robot assemblies. Apart from electrical tests, we thoroughly tested the thermal control and ingress protection of various subsystems like the depth cameras and actuators.

What can ANYmal C do that the previous version of ANYmal can’t?

ANYmal C was redesigned with a focus on performance increase regarding actuation (new drives), computational power (new hexacore Intel i7 PCs), locomotion and navigation skills, and autonomy (new depth cameras). The new robot additionally features a docking system for autonomous recharging and an inspection payload as an option. The design of ANYmal C is far more integrated than its predecessor, which increases both performance and reliability.

How much of ANYmal C’s development and design was driven by your experience with commercial or industry customers?

Tests (such as the offshore installation with TenneT) and discussions with industry customers were important to get the necessary design input in terms of performance, safety, quality, reliability, and lifetime. Most customers ask for very similar inspection tasks that can be performed with our standard inspection payload and the required software packages. Some are looking for a robot that can also solve some simple manipulation tasks like pushing a button. Overall, most use cases customers have in mind are realistic and achievable, but some are really tough for the robot, like climbing 50° stairs in hot environments of 50°C.

Can you describe how much autonomy you expect ANYmal C to have in industrial or commercial operations?

ANYmal C is primarily developed to perform autonomous routine inspections in industrial environments. This autonomy especially adds value for operations that are difficult to access, as human operation is extremely costly. The robot can naturally also be operated via a remote control and we are working on long-distance remote operation as well.

Do you expect that researchers will be interested in ANYmal C? What research applications could it be useful for?

ANYmal C has been designed to also address the needs of the research community. The robot comes with two powerful hexacore Intel i7 computers and can additionally be equipped with an NVIDIA Jetson Xavier graphics card for learning-based applications. Payload interfaces enable users to easily install and test new sensors. By joining our established ANYmal Research community, researchers get access to simulation tools and software APIs, which boosts their research in various areas like control, machine learning, and navigation.

[ ANYmal C ] Continue reading

Posted in Human Robots

#435619 Video Friday: Watch This Robot Dog ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
RoboBusiness 2019 – October 1-3, 2019 – Santa Clara, CA, USA
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.

Team PLUTO (University of Pennsylvania, Ghost Robotics, and Exyn Technologies) put together this video giving us a robot’s-eye-view (or whatever they happen to be using for eyes) of the DARPA Subterranean Challenge tunnel circuits.

[ PLUTO ]

Zhifeng Huang has been improving his jet-stepping humanoid robot, which features new hardware and the ability to take larger and more complex steps.

This video reported the last progress of an ongoing project utilizing ducted-fan propulsion system to improve humanoid robot’s ability in stepping over large ditches. The landing point of the robot’s swing foot can be not only forward but also side direction. With keeping quasi-static balance, the robot was able to step over a ditch with 450mm in width (up to 97% of the robot’s leg’s length) in 3D stepping.

[ Paper ]

Thanks Zhifeng!

These underacuated hands from Matei Ciocarlie’s lab at Columbia are magically able to reconfigure themselves to grasp different object types with just one or two motors.

[ Paper ] via [ ROAM Lab ]

This is one reason we should pursue not “autonomous cars” but “fully autonomous cars” that never require humans to take over. We can’t be trusted.

During our early days as the Google self-driving car project, we invited some employees to test our vehicles on their commutes and weekend trips. What we were testing at the time was similar to the highway driver assist features that are now available on cars today, where the car takes over the boring parts of the driving, but if something outside its ability occurs, the driver has to take over immediately.

What we saw was that our testers put too much trust in that technology. They were doing things like texting, applying makeup, and even falling asleep that made it clear they would not be ready to take over driving if the vehicle asked them to. This is why we believe that nothing short of full autonomy will do.

[ Waymo ]

Buddy is a DIY and fetchingly minimalist social robot (of sorts) that will be coming to Kickstarter this month.

We have created a new arduino kit. His name is Buddy. He is a DIY social robot to serve as a replacement for Jibo, Cozmo, or any of the other bots that are no longer available. Fully 3D printed and supported he adds much more to our series of Arduino STEM robotics kits.

Buddy is able to look around and map his surroundings and react to changes within them. He can be surprised and he will always have a unique reaction to changes. The kit can be built very easily in less than an hour. It is even robust enough to take the abuse that kids can give it in a classroom.

[ Littlebots ]

The android Mindar, based on the Buddhist deity of mercy, preaches sermons at Kodaiji temple in Kyoto, and its human colleagues predict that with artificial intelligence it could one day acquire unlimited wisdom. Developed at a cost of almost $1 million (¥106 million) in a joint project between the Zen temple and robotics professor Hiroshi Ishiguro, the robot teaches about compassion and the dangers of desire, anger and ego.

[ Japan Times ]

I’m not sure whether it’s the sound or what, but this thing scares me for some reason.

[ BIRL ]

This gripper uses magnets as a sort of adjustable spring for dynamic stiffness control, which seems pretty clever.

[ Buffalo ]

What a package of medicine sees while being flown by drone from a hospital to a remote clinic in the Dominican Republic. The drone flew 11 km horizontally and 800 meters vertically, and I can’t even imagine what it would take to make that drive.

[ WeRobotics ]

My first ride in a fully autonomous car was at Stanford in 2009. I vividly remember getting in the back seat of a descendant of Junior, and watching the steering wheel turn by itself as the car executed a perfect parking maneuver. Ten years later, it’s still fun to watch other people have that experience.

[ Waymo ]

Flirtey, the pioneer of the commercial drone delivery industry, has unveiled the much-anticipated first video of its next-generation delivery drone, the Flirtey Eagle. The aircraft designer and manufacturer also unveiled the Flirtey Portal, a sophisticated take off and landing platform that enables scalable store-to-door operations; and an autonomous software platform that enables drones to deliver safely to homes.

[ Flirtey ]

EPFL scientists are developing new approaches for improved control of robotic hands – in particular for amputees – that combines individual finger control and automation for improved grasping and manipulation. This interdisciplinary proof-of-concept between neuroengineering and robotics was successfully tested on three amputees and seven healthy subjects.

[ EPFL ]

This video is a few years old, but we’ll take any excuse to watch the majestic sage-grouse be majestic in all their majesticness.

[ UC Davis ]

I like the idea of a game of soccer (or, football to you weirdos in the rest of the world) where the ball has a mind of its own.

[ Sphero ]

Looks like the whole delivery glider idea is really taking off! Or, you know, not taking off.

Weird that they didn’t show the landing, because it sure looked like it was going to plow into the side of the hill at full speed.

[ Yates ] via [ sUAS News ]

This video is from a 2018 paper, but it’s not like we ever get tired of seeing quadrupeds do stuff, right?

[ MIT ]

Founder and Head of Product, Ian Bernstein, and Head of Engineering, Morgan Bell, have been involved in the Misty project for years and they have learned a thing or two about building robots. Hear how and why Misty evolved into a robot development platform, learn what some of the earliest prototypes did (and why they didn’t work for what we envision), and take a deep dive into the technology decisions that form the Misty II platform.

[ Misty Robotics ]

Lex Fridman interviews Vijay Kumar on the Artifiical Intelligence Podcast.

[ AI Podcast ]

This week’s CMU RI Seminar is from Ross Knepper at Cornell, on Formalizing Teamwork in Human-Robot Interaction.

Robots out in the world today work for people but not with people. Before robots can work closely with ordinary people as part of a human-robot team in a home or office setting, robots need the ability to acquire a new mix of functional and social skills. Working with people requires a shared understanding of the task, capabilities, intentions, and background knowledge. For robots to act jointly as part of a team with people, they must engage in collaborative planning, which involves forming a consensus through an exchange of information about goals, capabilities, and partial plans. Often, much of this information is conveyed through implicit communication. In this talk, I formalize components of teamwork involving collaboration, communication, and representation. I illustrate how these concepts interact in the application of social navigation, which I argue is a first-class example of teamwork. In this setting, participants must avoid collision by legibly conveying intended passing sides via nonverbal cues like path shape. A topological representation using the braid groups enables the robot to reason about a small enumerable set of passing outcomes. I show how implicit communication of topological group plans achieves rapid covergence to a group consensus, and how a robot in the group can deliberately influence the ultimate outcome to maximize joint performance, yielding pedestrian comfort with the robot.

[ CMU RI ]

In this week’s episode of Robots in Depth, Per speaks with Julien Bourgeois about Claytronics, a project from Carnegie Mellon and Intel to develop “programmable matter.”

Julien started out as a computer scientist. He was always interested in robotics privately but then had the opportunity to get into micro robots when his lab was merged into the FEMTO-ST Institute. He later worked with Seth Copen Goldstein at Carnegie Mellon on the Claytronics project.

Julien shows an enlarged mock-up of the small robots that make up programmable matter, catoms, and speaks about how they are designed. Currently he is working on a unit that is one centimeter in diameter and he shows us the very small CPU that goes into that model.

[ Robots in Depth ] Continue reading

Posted in Human Robots

#435436 Undeclared Wars in Cyberspace Are ...

The US is at war. That’s probably not exactly news, as the country has been engaged in one type of conflict or another for most of its history. The last time we officially declared war was after Japan bombed Pearl Harbor in December 1941.

Our biggest undeclared war today is not being fought by drones in the mountains of Afghanistan or even through the less-lethal barrage of threats over the nuclear programs in North Korea and Iran. In this particular war, it is the US that is under attack and on the defensive.

This is cyberwarfare.

The definition of what constitutes a cyber attack is a broad one, according to Greg White, executive director of the Center for Infrastructure Assurance and Security (CIAS) at The University of Texas at San Antonio (UTSA).

At the level of nation-state attacks, cyberwarfare could involve “attacking systems during peacetime—such as our power grid or election systems—or it could be during war time in which case the attacks may be designed to cause destruction, damage, deception, or death,” he told Singularity Hub.

For the US, the Pearl Harbor of cyberwarfare occurred during 2016 with the Russian interference in the presidential election. However, according to White, an Air Force veteran who has been involved in computer and network security since 1986, the history of cyber war can be traced back much further, to at least the first Gulf War of the early 1990s.

“We started experimenting with cyber attacks during the first Gulf War, so this has been going on a long time,” he said. “Espionage was the prime reason before that. After the war, the possibility of expanding the types of targets utilized expanded somewhat. What is really interesting is the use of social media and things like websites for [psychological operation] purposes during a conflict.”

The 2008 conflict between Russia and the Republic of Georgia is often cited as a cyberwarfare case study due to the large scale and overt nature of the cyber attacks. Russian hackers managed to bring down more than 50 news, government, and financial websites through denial-of-service attacks. In addition, about 35 percent of Georgia’s internet networks suffered decreased functionality during the attacks, coinciding with the Russian invasion of South Ossetia.

The cyberwar also offers lessons for today on Russia’s approach to cyberspace as a tool for “holistic psychological manipulation and information warfare,” according to a 2018 report called Understanding Cyberwarfare from the Modern War Institute at West Point.

US Fights Back
News in recent years has highlighted how Russian hackers have attacked various US government entities and critical infrastructure such as energy and manufacturing. In particular, a shadowy group known as Unit 26165 within the country’s military intelligence directorate is believed to be behind the 2016 US election interference campaign.

However, the US hasn’t been standing idly by. Since at least 2012, the US has put reconnaissance probes into the control systems of the Russian electric grid, The New York Times reported. More recently, we learned that the US military has gone on the offensive, putting “crippling malware” inside the Russian power grid as the U.S. Cyber Command flexes its online muscles thanks to new authority granted to it last year.

“Access to the power grid that is obtained now could be used to shut something important down in the future when we are in a war,” White noted. “Espionage is part of the whole program. It is important to remember that cyber has just provided a new domain in which to conduct the types of activities we have been doing in the real world for years.”

The US is also beginning to pour more money into cybersecurity. The 2020 fiscal budget calls for spending $17.4 billion throughout the government on cyber-related activities, with the Department of Defense (DoD) alone earmarked for $9.6 billion.

Despite the growing emphasis on cybersecurity in the US and around the world, the demand for skilled security professionals is well outpacing the supply, with a projected shortfall of nearly three million open or unfilled positions according to the non-profit IT security organization (ISC)².

UTSA is rare among US educational institutions in that security courses and research are being conducted across three different colleges, according to White. About 10 percent of the school’s 30,000-plus students are enrolled in a cyber-related program, he added, and UTSA is one of only 21 schools that has received the Cyber Operations Center of Excellence designation from the National Security Agency.

“This track in the computer science program is specifically designed to prepare students for the type of jobs they might be involved in if they went to work for the DoD,” White said.

However, White is extremely doubtful there will ever be enough cyber security professionals to meet demand. “I’ve been preaching that we’ve got to worry about cybersecurity in the workforce, not just the cybersecurity workforce, not just cybersecurity professionals. Everybody has a responsibility for cybersecurity.”

Artificial Intelligence in Cybersecurity
Indeed, humans are often seen as the weak link in cybersecurity. That point was driven home at a cybersecurity roundtable discussion during this year’s Brainstorm Tech conference in Aspen, Colorado.

Participant Dorian Daley, general counsel at Oracle, said insider threats are at the top of the list when it comes to cybersecurity. “Sadly, I think some of the biggest challenges are people, and I mean that in a number of ways. A lot of the breaches really come from insiders. So the more that you can automate things and you can eliminate human malicious conduct, the better.”

White noted that automation is already the norm in cybersecurity. “Humans can’t react as fast as systems can launch attacks, so we need to rely on automated defenses as well,” he said. “This doesn’t mean that humans are not in the loop, but much of what is done these days is ‘scripted’.”

The use of artificial intelligence, machine learning, and other advanced automation techniques have been part of the cybersecurity conversation for quite some time, according to White, such as pattern analysis to look for specific behaviors that might indicate an attack is underway.

“What we are seeing quite a bit of today falls under the heading of big data and data analytics,” he explained.

But there are signs that AI is going off-script when it comes to cyber attacks. In the hands of threat groups, AI applications could lead to an increase in the number of cyberattacks, wrote Michelle Cantos, a strategic intelligence analyst at cybersecurity firm FireEye.

“Current AI technology used by businesses to analyze consumer behavior and find new customer bases can be appropriated to help attackers find better targets,” she said. “Adversaries can use AI to analyze datasets and generate recommendations for high-value targets they think the adversary should hit.”

In fact, security researchers have already demonstrated how a machine learning system could be used for malicious purposes. The Social Network Automated Phishing with Reconnaissance system, or SNAP_R, generated more than four times as many spear-phishing tweets on Twitter than a human—and was just as successful at targeting victims in order to steal sensitive information.

Cyber war is upon us. And like the current war on terrorism, there are many battlefields from which the enemy can attack and then disappear. While total victory is highly unlikely in the traditional sense, innovations through AI and other technologies can help keep the lights on against the next cyber attack.

Image Credit: pinkeyes / Shutterstock.com Continue reading

Posted in Human Robots