Tag Archives: man

#432646 How Fukushima Changed Japanese Robotics ...

In March 2011, Japan was hit by a catastrophic earthquake that triggered a terrible tsunami. Thousands were killed and billions of dollars of damage was done in one of the worst disasters of modern times. For a few perilous weeks, though, the eyes of the world were focused on the Fukushima Daiichi nuclear power plant. Its safety systems were unable to cope with the tsunami damage, and there were widespread fears of another catastrophic meltdown that could spread radiation over several countries, like the Chernobyl disaster in the 1980s. A heroic effort that included dumping seawater into the reactor core prevented an even bigger catastrophe. As it is, a hundred thousand people are still evacuated from the area, and it will likely take many years and hundreds of billions of dollars before the region is safe.

Because radiation is so dangerous to humans, the natural solution to the Fukushima disaster was to send in robots to monitor levels of radiation and attempt to begin the clean-up process. The techno-optimists in Japan had discovered a challenge, deep in the heart of that reactor core, that even their optimism could not solve. The radiation fried the circuits of the robots that were sent in, even those specifically designed and built to deal with the Fukushima catastrophe. The power plant slowly became a vast robot graveyard. While some robots initially saw success in measuring radiation levels around the plant—and, recently, a robot was able to identify the melted uranium fuel at the heart of the disaster—hopes of them playing a substantial role in the clean-up are starting to diminish.



In Tokyo’s neon Shibuya district, it can sometimes seem like it’s brighter at night than it is during the daytime. In karaoke booths on the twelfth floor—because everything is on the twelfth floor—overlooking the brightly-lit streets, businessmen unwind by blasting out pop hits. It can feel like the most artificial place on Earth; your senses are dazzled by the futuristic techno-optimism. Stock footage of the area has become symbolic of futurism and modernity.

Japan has had a reputation for being a nation of futurists for a long time. We’ve already described how tech giant Softbank, headed by visionary founder Masayoshi Son, is investing billions in a technological future, including plans for the world’s largest solar farm.

When Google sold pioneering robotics company Boston Dynamics in 2017, Softbank added it to their portfolio, alongside the famous Nao and Pepper robots. Some may think that Son is taking a gamble in pursuing a robotics project even Google couldn’t succeed in, but this is a man who lost nearly everything in the dot-com crash of 2000. The fact that even this reversal didn’t dent his optimism and faith in technology is telling. But how long can it last?

The failure of Japan’s robots to deal with the immense challenge of Fukushima has sparked something of a crisis of conscience within the industry. Disaster response is an obvious stepping-stone technology for robots. Initially, producing a humanoid robot will be very costly, and the robot will be less capable than a human; building a robot to wait tables might not be particularly economical yet. Building a robot to do jobs that are too dangerous for humans is far more viable. Yet, at Fukushima, in one of the most advanced nations in the world, many of the robots weren’t up to the task.

Nowhere was this crisis more felt than Honda; the company had developed ASIMO, which stunned the world in 2000 and continues to fascinate as an iconic humanoid robot. Despite all this technological advancement, however, Honda knew that ASIMO was still too unreliable for the real world.

It was Fukushima that triggered a sea-change in Honda’s approach to robotics. Two years after the disaster, there were rumblings that Honda was developing a disaster robot, and in October 2017, the prototype was revealed to the public for the first time. It’s not yet ready for deployment in disaster zones, however. Interestingly, the creators chose not to give it dexterous hands but instead to assume that remotely-operated tools fitted to the robot would be a better solution for the range of circumstances it might encounter.

This shift in focus for humanoid robots away from entertainment and amusement like ASIMO, and towards being practically useful, has been mirrored across the world.

In 2015, also inspired by the Fukushima disaster and the lack of disaster-ready robots, the DARPA Robotics Challenge tested humanoid robots with a range of tasks that might be needed in emergency response, such as driving cars, opening doors, and climbing stairs. The Terminator-like ATLAS robot from Boston Dynamics, alongside Korean robot HUBO, took many of the plaudits, and CHIMP also put in an impressive display by being able to right itself after falling.

Yet the DARPA Robotics Challenge showed us just how far the robots are from truly being as useful as we’d like, or maybe even as we would imagine. Many robots took hours to complete the tasks, which were highly idealized to suit them. Climbing stairs proved a particular challenge. Those who watched were more likely to see a robot that had fallen over, struggling to get up, rather than heroic superbots striding in to save the day. The “striding” proved a particular problem, with the fastest robot HUBO managing this by resorting to wheels in its knees when the legs weren’t necessary.

Fukushima may have brought a sea-change over futuristic Japan, but before robots will really begin to enter our everyday lives, they will need to prove their worth. In the interim, aerial drone robots designed to examine infrastructure damage after disasters may well see earlier deployment and more success.

It’s a considerable challenge.

Building a humanoid robot is expensive; if these multi-million-dollar machines can’t help in a crisis, people may begin to question the worth of investing in them in the first place (unless your aim is just to make viral videos). This could lead to a further crisis of confidence among the Japanese, who are starting to rely on humanoid robotics as a solution to the crisis of the aging population. The Japanese government, as part of its robots strategy, has already invested $44 million in their development.

But if they continue to fail when put to the test, that will raise serious concerns. In Tokyo’s Akihabara district, you can see all kinds of flash robotic toys for sale in the neon-lit superstores, and dancing, acting robots like Robothespian can entertain crowds all over the world. But if we want these machines to be anything more than toys—partners, helpers, even saviors—more work needs to be done.

At the same time, those who participated in the DARPA Robotics Challenge in 2015 won’t be too concerned if people were underwhelmed by the performance of their disaster relief robots. Back in 2004, nearly every participant in the DARPA Grand Challenge crashed, caught fire, or failed on the starting line. To an outside observer, the whole thing would have seemed like an unmitigated disaster, and a pointless investment. What was the task in 2004? Developing a self-driving car. A lot can change in a decade.

Image Credit: MARCUSZ2527 / Shutterstock.com Continue reading

Posted in Human Robots

#432563 This Week’s Awesome Stories From ...

ARTIFICIAL INTELLIGENCE
Pedro Domingos on the Arms Race in Artificial Intelligence
Christoph Scheuermann and Bernhard Zand | Spiegel Online
“AI lowers the cost of knowledge by orders of magnitude. One good, effective machine learning system can do the work of a million people, whether it’s for commercial purposes or for cyberespionage. Imagine a country that produces a thousand times more knowledge than another. This is the challenge we are facing.”

BIOTECHNOLOGY
Gene Therapy Could Free Some People From a Lifetime of Blood Transfusions
Emily Mullin | MIT Technology Review
“A one-time, experimental treatment for an inherited blood disorder has shown dramatic results in a small study. …[Lead author Alexis Thompson] says the effect on patients has been remarkable. ‘They have been tied to this ongoing medical therapy that is burdensome and expensive for their whole lives,’ she says. ‘Gene therapy has allowed people to have aspirations and really pursue them.’ ”

ENVIRONMENT
The Revolutionary Giant Ocean Cleanup Machine Is About to Set Sail
Adele Peters | Fast Company
“By the end of 2018, the nonprofit says it will bring back its first harvest of ocean plastic from the North Pacific Gyre, along with concrete proof that the design works. The organization expects to bring 5,000 kilograms of plastic ashore per month with its first system. With a full fleet of systems deployed, it believes that it can collect half of the plastic trash in the Great Pacific Garbage Patch—around 40,000 metric tons—within five years.”

ROBOTICS
Autonomous Boats Will Be on the Market Sooner Than Self-Driving Cars
Tracey Lindeman | Motherboard
“Some unmanned watercraft…may be at sea commercially before 2020. That’s partly because automating all ships could generate a ridiculous amount of revenue. According to the United Nations, 90 percent of the world’s trade is carried by sea and 10.3 billion tons of products were shipped in 2016.”

DIGITAL CULTURE
Style Is an Algorithm
Kyle Chayka | Racked
“Confronting the Echo Look’s opaque statements on my fashion sense, I realize that all of these algorithmic experiences are matters of taste: the question of what we like and why we like it, and what it means that taste is increasingly dictated by black-box robots like the camera on my shelf.”

COMPUTING
How Apple Will Use AR to Reinvent the Human-Computer Interface
Tim Bajarin | Fast Company
“It’s in Apple’s DNA to continually deliver the ‘next’ major advancement to the personal computing experience. Its innovation in man-machine interfaces started with the Mac and then extended to the iPod, the iPhone, the iPad, and most recently, the Apple Watch. Now, get ready for the next chapter, as Apple tackles augmented reality, in a way that could fundamentally transform the human-computer interface.”

SCIENCE
Advanced Microscope Shows Cells at Work in Incredible Detail
Steve Dent | Engadget
“For the first time, scientists have peered into living cells and created videos showing how they function with unprecedented 3D detail. Using a special microscope and new lighting techniques, a team from Harvard and the Howard Hughes Medical Institute captured zebrafish immune cell interactions with unheard-of 3D detail and resolution.”

Image Credit: dubassy / Shutterstock.com Continue reading

Posted in Human Robots

#432539 10 Amazing Things You Can Learn From ...

Hardly a day goes by without a research study or article published talking sh*t—or more precisely, talking about the gut microbiome. When it comes to cutting-edge innovations in medicine, all signs point to the microbiome. Maybe we should have listened to Hippocrates: “All disease begins in the gut.”

Your microbiome is mostly located in your gut and contains trillions of little guys and gals called microbes. If you want to optimize your health, biohack your body, make progress against chronic disease, or know which foods are right for you—almost all of this information can be found in your microbiome.

My company, Viome, offers technology to measure your microscopic organisms and their behavior at a molecular level. Think of it as the Instagram of your inner world. A snapshot of what’s happening inside your body. New research about the microbiome is changing our understanding of who we are as humans and how the human body functions.

It turns out the microbiome may be mission control for your body and mind. Your healthy microbiome is part best friend, part power converter, part engine, and part pharmacist. At Viome, we’re working to analyze these microbial functions and recommend a list of personalized food and supplements to keep these internal complex machines in a finely tuned balance.

We now have more information than ever before about what your microbiome is doing, and it’s going to help you and the rest of the world do a whole lot better. The new insights emerging from microbiome research are changing our perception of what keeps us healthy and what makes us sick. This new understanding of the microbiome activities may put an end to conflicting food advice and make fad diets a thing of the past.

What are these new insights showing us? The information is nothing short of mind-blowing. The value of your poop just got an upgrade.

Here are some of the amazing things we’ve learned from our work at Viome.

1. Was Popeye wrong? Why “health food” isn’t necessarily healthy.
Each week there is a new fad diet released, discussed, and followed. The newest “research” shows that this is now the superfood to eat for everyone. But, too often, the fad diet is just a regurgitation of what worked for one person and shouldn’t be followed by everyone else.

For example, we’ve been told to eat our greens and that greens and nuts are “anti-inflammatory,” but this is actually not always true. Spinach, bran, rhubarb, beets, nuts, and nut butters all contain oxalate. We now know that oxalate-containing food can be harmful, unless you have the microbes present that can metabolize it into a non-harmful substance.

30% of Viome customers do not have the microbes to metabolize oxalates properly. In other words, “healthy foods” like spinach are actually not healthy for these people.

Looks like not everyone should follow Popeye’s food plan.

2. Aren’t foods containing “antioxidants” always good for everyone?
Just like oxalates, polyphenols in foods are usually considered very healthy, but unless you have microbes that utilize specific polyphenols, you may not get full benefit from them. One example is a substance found in these foods called ellagic acid. We can detect if your microbiome is metabolizing ellagic acid and converting it into urolithin A. It is only the urolithin A that has anti-inflammatory and antioxidant effects. Without the microbes to do this conversion you will not benefit from the ellagic acid in foods.

Examples: Walnuts, raspberries, pomegranate, blackberries, pecans, and cranberries all contain ellagic acid.

We have analyzed tens of thousands of people, and only about 50% of the people actually benefit from eating more foods containing ellagic acid.

3. You’re probably eating too much protein (and it may be causing inflammation).
When you think high-protein diet, you think paleo, keto, and high-performance diets.

Protein is considered good for you. It helps build muscle and provide energy—but if you eat too much, it can cause inflammation and decrease longevity.

We can analyze the activity of your microbiome to determine if you are eating too much protein that feeds protein-fermenting bacteria like Alistipes putredinis and Tannerella forsythia, and if these organisms are producing harmful substances such as ammonia, hydrogen sulfide, p-cresol, or putrescine. These substances can damage your gut lining and lead to things like leaky gut.

4. Something’s fishy. Are “healthy foods” causing heart disease?
Choline in certain foods can get converted by bacteria into a substance called trimethylamine (TMA) that is associated with heart disease when it gets absorbed into your body and converted to TMAO. However, TMA conversion doesn’t happen in individuals without these types of bacteria in their microbiome.

We can see the TMA production pathways and many of the gammaproteobacteria that do this conversion.

What foods contain choline? Liver, salmon, chickpeas, split peas, eggs, navy beans, peanuts, and many others.

Before you decide to go full-on pescatarian or paleo, you may want to check if your microbiome is producing TMA with that salmon or steak.

5. Hold up, Iron Man. We can see inflammation from too much iron.
Minerals like iron in your food can, in certain inflammatory microbial environments, promote growth of pathogens like Esherichia, Shigella, and Salmonella.

Maybe it wasn’t just that raw chicken that gave you food poisoning, but your toxic microbiome that made you sick.

On the other hand, when you don’t have enough iron, you could become anemic leading to weakness and shortness of breath.

So, just like Iron Man, it’s about finding your balance so that you can fly.

6. Are you anxious or stressed? Your poop will tell you.
Our gut and brain are connected via the vagus nerve. A large majority of neurotransmitters are either produced or consumed by our microbiome. In fact, some 90% of all serotonin (a feel-good neurotransmitter) is produced by your gut microbiome and not by your brain.

When you have a toxic microbiome that’s producing a large amount of toxins like hydrogen sulfide, the lining of your gut starts to deteriorate into what’s known as leaky gut. Think of leaky gut as your gut not having healthy borders or boundaries. And when this happens, all kinds of disease can emerge. When the barrier of the gut breaks down, it starts a chain reaction causing low-grade chronic inflammation—which has been identified as a potential source of depression and higher levels of anxiety, in addition to many other chronic diseases.

We’re not saying you shouldn’t meditate, but if you want to get the most out of your meditation and really reduce your stress levels, make sure you are eating the right food that promotes a healthy microbiome.

7. Your microbiome is better than Red Bull.
If you want more energy, get your microbiome back into balance.

No you don’t need three pots of coffee to keep you going, you just need a balanced microbiome.

Your microbiome is responsible for calorie extraction, or creating energy, through pathways such as the Tricarboxylic acid cycle. Our bodies depend on the energy that our microbiome produces.

How much energy we get from our food is dependent on how efficient our microbiome is at converting the food into energy. High-performing microbiomes are excellent at converting food into energy. This is great when you are an athlete and need the extra energy, but if you don’t use up the energy it may be the source of some of those unwanted pounds.

If the microbes can’t or won’t metabolize the glucose (sugar) that you eat, it will be stored as fat. If the microbes are extracting too many calories from your food or producing lipopolysaccharides (LPS) and causing metabolic endotoxemia leading to activation of toll-like receptors and insulin resistance you may end up storing what you eat as fat.

Think of your microbiome as Doc Brown’s car from the future—it can take pretty much anything and turn it into fuel if it’s strong and resilient enough.

8. We can see your joint pain in your poop.
Got joint pain? Your microbiome can tell you why.

Lipopolysaccharide (LPS) is a key pro-inflammatory molecule made by some of your microbes. If your microbes are making too much LPS, it can wreak havoc on your immune system by putting it into overdrive. When your immune system goes on the warpath there is often collateral damage to your joints and other body parts.

Perhaps balancing your microbiome is a better solution than reaching for the glucosamine. Think of your microbiome as the top general of your immune army. It puts your immune system through basic training and determines when it goes to war.

Ideally, your immune system wins the quick battle and gets some rest, but sometimes if your microbiome keeps it on constant high alert it becomes a long, drawn-out war resulting in chronic inflammation and chronic diseases.

Are you really “getting older” or is your microbiome just making you “feel” older because it keeps giving warnings to your immune system ultimately leading to chronic pain?

Before you throw in the towel on your favorite activities, check your microbiome. And, if you have anything with “itis” in it, it’s possible that when you balance your microbiome the inflammation from your “itis” will be reduced.

9. Your gut is doing the talking for your mouth.
When you have low stomach acid, your mouth bacteria makes it down to your GI tract.

Stomach acid is there to protect you from the bacteria in your mouth and the parasites and fungi that are in your food. If you don’t have enough of it, the bacteria in your mouth will invade your gut. This invasion is associated with and a risk factor for autoimmune disease and inflammation in the gut.

We are learning that low stomach acid is perhaps one of the major causes of chronic disease. This stomach acid is essential to kill mouth bacteria and help us digest our food.

What kinds of things cause low stomach acid? Stress and antacids like Nexium, Zantac, and Prilosec.

10. Carbs can be protein precursors.
Rejoice! Perhaps carbs aren’t as bad as we thought (as long as your microbiome is up to the task). We can see if some of the starches you eat can be made into amino acids by the microbiome.

Our microbiome makes 20% of our branched-chain amino acids (BCAAs) for us, and it will adapt to make these vital BCAAs for us in almost any way it can.

Essentially, your microbiome is hooking up carbons and hydrogens into different formulations of BCAAs, depending on what you feed it. The microbiome is excellent at adapting and pivoting based on the food you feed it and the environment that it’s in.

So, good news: Carbs are protein precursors, as long as you have the right microbiome.

Stop Talking Sh*t Now
Your microbiome is a world class entrepreneur that can take low-grade sources of food and turn them into valuable and useable energy.

You have a best friend and confidant within you that is working wonders to make sure you have energy and that all of your needs are met.

And, just like a best friend, if you take great care of your microbiome, it will take great care of you.

Given the research emerging daily about the microbiome and its importance on your quality of life, prioritizing the health of your microbiome is essential.

When you have a healthy microbiome, you’ll have a healthy life.

It’s now clear that some of the greatest insights for your health will come from your poop.

It’s time to stop talking sh*t and get your sh*t together. Your life may depend on it.

Viome can help you identify what your microbiome is actually doing. The combination of Viome’s metatranscriptomic technology and cutting-edge artificial intelligence is paving a brand new path forward for microbiome health.

Image Credit: WhiteDragon / Shutterstock.com Continue reading

Posted in Human Robots

#432163 Humanoid robot supports emergency ...

Researchers at IIT-Istituto Italiano di Tecnologia tested a new version of the WALK-MAN humanoid robot for supporting emergency response teams in fires. The robot is able to locate the fire and walk toward it, and then activate an extinguisher. During the operation, it collects images and transmits them back to emergency teams, who can evaluate the situation and guide the robot remotely. The new WALK-MAN design has a lighter upper body and new hands in order to reduce construction cost and improve performance. Continue reading

Posted in Human Robots

#432021 Unleashing Some of the Most Ambitious ...

At Singularity University, we are unleashing a generation of women who are smashing through barriers and starting some of the most ambitious technology companies on the planet.

Singularity University was founded in 2008 to empower leaders to use exponential technologies to solve our world’s biggest challenges. Our flagship program, the Global Solutions Program, has historically brought 80 entrepreneurs from around the world to Silicon Valley for 10 weeks to learn about exponential technologies and create moonshot startups that improve the lives of a billion people within a decade.

After nearly 10 years of running this program, we can say that about 70 percent of our successful startups have been founded or co-founded by female entrepreneurs (see below for inspiring examples of their work). This is in sharp contrast to the typical 10–20 percent of venture-backed tech companies that have a female founder, as reported by TechCrunch.

How are we so dramatically changing the game? While 100 percent of the credit goes to these courageous women, as both an alumna of the Global Solutions Program and our current vice chair of Global Grand Challenges, I want to share my reflections on what has worked.

At the most basic level, it is essential to deeply believe in the inherent worth, intellectual genius, and profound entrepreneurial caliber of women. While this may seem obvious, this is not the way our world currently thinks—we live in a world that sees women’s ideas, contributions, work, and existence as inherently less valuable than men’s.

For example, a 2017 Harvard Business Review article noted that even when women engage in the same behaviors and work as men, their work is considered less valuable simply because a woman did the job. An additional 2017 Harvard Business Review article showed that venture capitalists are significantly less likely to invest in female entrepreneurs and are more likely to ask men questions about the potential success of their companies while grilling women about the potential downfalls of their companies.

This doubt and lack of recognition of the genius and caliber of women is also why women are still paid less than men for completing identical work. Further, it’s why women’s work often gets buried in “number two” support roles of men in leadership roles and why women are expected to take on second shifts at home managing tedious household chores in addition to their careers. I would also argue these views as well as the rampant sexual harassment, assault, and violence against women that exists today stems from stubborn, historical, patriarchal views of women as living for the benefit of men, rather than for their own sovereignty and inherent value.

As with any other business, Singularity University has not been immune to these biases but is resolutely focused on helping women achieve intellectual genius and global entrepreneurial caliber by harnessing powerful exponential technologies.

We create an environment where women can physically and intellectually thrive free of harassment to reach their full potential, and we are building a broader ecosystem of alumni and partners around the world who not only support our female entrepreneurs throughout their entrepreneurial journeys, but who are also sparking and leading systemic change in their own countries and communities.

Respecting the Intellectual Genius and Entrepreneurial Caliber of Women
The entrepreneurial legends of our time—Steve Jobs, Elon Musk, Mark Zuckerberg, Bill Gates, Jeff Bezos, Larry Page, Sergey Brin—are men who have all built their empires using exponential technologies. Exponential technologies helped these men succeed faster and with greater impact due to Moore’s Law and the Law of Accelerating Returns which states that any digital technology (such as computing, software, artificial intelligence, robotics, quantum computing, biotechnology, nanotechnology, etc.) will become more sophisticated while dramatically falling in price, enabling rapid scaling.

Knowing this, an entrepreneur can plot her way to an ambitious global solution over time, releasing new applications just as the technology and market are ready. Furthermore, these rapidly advancing technologies often converge to create new tools and opportunities for innovators to come up with novel solutions to challenges that were previously impossible to solve in the past.

For various reasons, women have not pursued exponential technologies as aggressively as men (or were prevented or discouraged from doing so).

While more women are founding firms at a higher rate than ever in wealthy countries like the United States, the majority are small businesses in linear industries that have been around for hundreds of years, such as social assistance, health, education, administrative, or consulting services. In lower-income countries, international aid agencies and nonprofits often encourage women to pursue careers in traditional handicrafts, micro-enterprise, and micro-finance. While these jobs have historically helped women escape poverty and gain financial independence, they have done little to help women realize the enormous power, influence, wealth, and ability to transform the world for the better that comes from building companies, nonprofits, and solutions grounded in exponential technologies.

We need women to be working with exponential technologies today in order to be powerful leaders in the future.

Participants who enroll in our Global Solutions Program spend the first few weeks of the program learning about exponential technologies from the world’s experts and the final weeks launching new companies or nonprofits in their area of interest. We require that women (as well as men) utilize exponential technologies as a condition of the program.

In this sense, at Singularity University women start their endeavors with all of us believing and behaving in a way that assumes they can achieve global impact at the level of our world’s most legendary entrepreneurs.

Creating an Environment Where Woman Can Thrive
While challenging women to embrace exponential technologies is essential, it is also important to create an environment where women can thrive. In particular, this means ensuring women feel at home on our campus by ensuring gender diversity, aggressively addressing sexual harassment, and flipping the traditional culture from one that penalizes women, to one that values and supports them.

While women were initially only a small minority of our Global Solutions Program, in 2014, we achieved around 50% female attendance—a statistic that has since held over the years.

This is not due to a quota—every year we turn away extremely qualified women from our program (and are working on reformulating the program to allow more people to participate in the future.) While part of our recruiting success is due to the efforts of our marketing team, we also benefited from the efforts of some of our early female founders, staff, faculty, and alumnae including Susan Fonseca, Emeline Paat-Dahlstrom, Kathryn Myronuk, Lajuanda Asemota, Chiara Giovenzana, and Barbara Silva Tronseca.

As early champions of Singularity University these women not only launched diversity initiatives and personally reached out to women, but were crucial role models holding leadership roles in our community. In addition, Fonseca and Silva also both created multiple organizations and initiatives outside of (or in conjunction with) the university that produced additional pipelines of female candidates. In particular, Fonseca founded Women@TheFrontier as well as other organizations focusing on women, technology and innovation, and Silva founded BestInnovation (a woman’s accelerator in Latin America), as well as led Singularity University’s Chilean Chapter and founded the first SingularityU Summit in Latin America.

These women’s efforts in globally scaling Singularity University have been critical in ensuring woman around the world now see Singularity University as a place where they can lead and shape the future.

Also, thanks to Google (Alphabet) and many of our alumni and partners, we were able to provide full scholarships to any woman (or man) to attend our program regardless of their economic status. Google committed significant funding for full scholarships while our partners around the world also hosted numerous Global Impact Competitions, where entrepreneurs pitched their solutions to their local communities with the winners earning a full scholarship funded by our partners to attend the Global Solution Program as their prize.

Google and our partners’ support helped individuals attend our program and created a wider buzz around exponential technology and social change around the world in local communities. It led to the founding of 110 SU chapters in 55 countries.

Another vital aspect of our work in supporting women has been trying to create a harassment-free environment. Throughout the Silicon Valley, more than 60% of women convey that while they are trying to build their companies or get their work done, they are also dealing with physical and sexual harassment while being demeaned and excluded in other ways in the workplace. We have taken actions to educate and train our staff on how to deal with situations should they occur. All staff receives training on harassment when they join Singularity University, and all Global Solutions Program participants attend mandatory trainings on sexual harassment when they first arrive on campus. We also have male and female wellness counselors available that can offer support to both individuals and teams of entrepreneurs throughout the entire program.

While at a minimum our campus must be physically safe for women, we also strive to create a culture that values women and supports them in the additional challenges and expectations they face. For example, one of our 2016 female participants, Van Duesterberg, was pregnant during the program and said that instead of having people doubt her commitment to her startup or make her prove she could handle having a child and running a start-up at the same time, people went out of their way to help her.

“I was the epitome of a person not supposed to be doing a startup,” she said. “I was pregnant and would need to take care of my child. But Singularity University was supportive and encouraging. They made me feel super-included and that it was possible to do both. I continue to come back to campus even though the program is over because the network welcomes me and supports me rather than shuts me out because of my physical limitations. Rather than making me feel I had to prove myself, everyone just understood me and supported me, whether it was bringing me healthy food or recommending funders.”

Another strength that we have in supporting women is that after the Global Solutions Program, entrepreneurs have access to a much larger ecosystem.

Many entrepreneurs partake in SU Ventures, which can provide further support to startups as they develop, and we now have a larger community of over 200,000 people in almost every country. These members have often attended other Singularity University programs, events and are committed to our vision of the future. These women and men consist of business executives, Fortune 500 companies, investors, nonprofit and government leaders, technologists, members of the media, and other movers and shakers in the world. They have made introductions for our founders, collaborated with them on business ventures, invested in them and showcased their work at high profile events around the world.

Building for the Future
While our Global Solutions Program is making great strides in supporting female entrepreneurs, there is always more work to do. We are now focused on achieving the same degree of female participation across all of our programs and actively working to recruit and feature more female faculty and speakers on stage. As our community grows and scales around the world, we are also intent at how to best uphold our values and policies around sexual harassment across diverse locations and cultures. And like all businesses everywhere, we are focused on recruiting more women to serve at senior leadership levels within SU. As we make our way forward, we hope that you will join us in boldly leading this change and recognizing the genius and power of female entrepreneurs.

Meet Some of Our Female Moonshots
While we have many remarkable female entrepreneurs in the Singularity University community, the list below features a few of the women who have founded or co-founded companies at the Global Solutions Program that have launched new industries and are on their way to changing the way our world works for millions if not billions of people.

Jessica Scorpio co-founded Getaround in 2009. Getaround was one of the first car-sharing service platforms allowing anyone to rent out their car using a smartphone app. GetAround was a revolutionary idea in 2009, not only because smartphones and apps were still in their infancy, but because it was unthinkable that a technology startup could disrupt the major entrenched car, transport, and logistics companies. Scorpio’s early insights and pioneering entrepreneurial work brought to life new ways that humans relate to car sharing and the future self-driving car industry. Scorpio and Getaround have won numerous awards, and Getaround now serves over 200,000 members.

Paola Santana co-founded Matternet in 2011, which pioneered the commercial drone transport industry. In 2011, only military, hobbyists or the film industry used drones. Matternet demonstrated that drones could be used for commercial transport in short point-to-point deliveries for high-value goods laying the groundwork for drone transport around the world as well as some of the early thinking behind the future flying car industry. Santana was also instrumental in shaping regulations for the use of commercial drones around the world, making the industry possible.

Sara Naseri co-founded Qurasense in 2014, a life sciences start-up that analyzes women’s health through menstrual blood allowing women to track their health every month. Naseri is shifting our understanding of women’s menstrual blood as a waste product and something “not to be talked about,” to a rich, non-invasive, abundant source of information about women’s health.

Abi Ramanan co-founded ImpactVision in 2015, a software company that rapidly analyzes the quality and characteristics of food through hyperspectral images. Her long-term vision is to digitize food supply chains to reduce waste and fraud, given that one-third of all food is currently wasted before it reaches our plates. Ramanan is also helping the world understand that hyperspectral technology can be used in many industries to help us “see the unseen” and augment our ability to sense and understand what is happening around us in a much more sophisticated way.

Anita Schjøll Brede and Maria Ritola co-founded Iris AI in 2015, an artificial intelligence company that is building an AI research assistant that drastically improves the efficiency of R&D research and breaks down silos between different industries. Their long-term vision is for Iris AI to become smart enough that she will become a scientist herself. Fast Company named Iris AI one of the 10 most innovative artificial intelligence companies for 2017.

Hla Hla Win co-founded 360ed in 2016, a startup that conducts teacher training and student education through virtual reality and augmented reality in Myanmar. They have already connected teachers from 128 private schools in Myanmar with schools teaching 21st-century skills in Silicon Valley and around the world. Their moonshot is to build a platform where any teacher in the world can share best practices in teachers’ training. As they succeed, millions of children in some of the poorest parts of the world will have access to a 21st-century education.

Min FitzGerald and Van Duesterberg cofounded Nutrigene in 2017, a startup that ships freshly formulated, tailor-made supplement elixirs directly to consumers. Their long-term vision is to help people optimize their health using actionable data insights, so people can take a guided, tailored approaching to thriving into longevity.

Anna Skaya co-founded Basepaws in 2016, which created the first genetic test for cats and is building a community of citizen scientist pet owners. They are creating personalized pet products such as supplements, therapeutics, treats, and toys while also developing a database of genetic data for future research that will help both humans and pets over the long term.

Olivia Ramos co-founded Deep Blocks in 2016, a startup using artificial intelligence to integrate and streamline the processes of architecture, pre-construction, and real estate. As digital technologies, artificial intelligence, and robotics advance, it no longer makes sense for these industries to exist separately. Ramos recognized the tremendous value and efficiency that it is now possible to unlock with exponential technologies and creating an integrated industry in the future.

Please also visit our website to learn more about other female entrepreneurs, staff and faculty who are pioneering the future through exponential technologies. Continue reading

Posted in Human Robots