Tag Archives: making

#431362 Does Regulating Artificial Intelligence ...

Some people are afraid that heavily armed artificially intelligent robots might take over the world, enslaving humanity—or perhaps exterminating us. These people, including tech-industry billionaire Elon Musk and eminent physicist Stephen Hawking, say artificial intelligence technology needs to be regulated to manage the risks. But Microsoft founder Bill Gates and Facebook’s Mark Zuckerberg disagree, saying the technology is not nearly advanced enough for those worries to be realistic.
As someone who researches how AI works in robotic decision-making, drones and self-driving vehicles, I’ve seen how beneficial it can be. I’ve developed AI software that lets robots working in teams make individual decisions as part of collective efforts to explore and solve problems. Researchers are already subject to existing rules, regulations and laws designed to protect public safety. Imposing further limitations risks reducing the potential for innovation with AI systems.
How is AI regulated now?
While the term “artificial intelligence” may conjure fantastical images of human-like robots, most people have encountered AI before. It helps us find similar products while shopping, offers movie and TV recommendations, and helps us search for websites. It grades student writing, provides personalized tutoring, and even recognizes objects carried through airport scanners.
In each case, the AI makes things easier for humans. For example, the AI software I developed could be used to plan and execute a search of a field for a plant or animal as part of a science experiment. But even as the AI frees people from doing this work, it is still basing its actions on human decisions and goals about where to search and what to look for.
In areas like these and many others, AI has the potential to do far more good than harm—if used properly. But I don’t believe additional regulations are currently needed. There are already laws on the books of nations, states, and towns governing civil and criminal liabilities for harmful actions. Our drones, for example, must obey FAA regulations, while the self-driving car AI must obey regular traffic laws to operate on public roadways.
Existing laws also cover what happens if a robot injures or kills a person, even if the injury is accidental and the robot’s programmer or operator isn’t criminally responsible. While lawmakers and regulators may need to refine responsibility for AI systems’ actions as technology advances, creating regulations beyond those that already exist could prohibit or slow the development of capabilities that would be overwhelmingly beneficial.
Potential risks from artificial intelligence
It may seem reasonable to worry about researchers developing very advanced artificial intelligence systems that can operate entirely outside human control. A common thought experiment deals with a self-driving car forced to make a decision about whether to run over a child who just stepped into the road or veer off into a guardrail, injuring the car’s occupants and perhaps even those in another vehicle.
Musk and Hawking, among others, worry that a hyper-capable AI system, no longer limited to a single set of tasks like controlling a self-driving car, might decide it doesn’t need humans anymore. It might even look at human stewardship of the planet, the interpersonal conflicts, theft, fraud, and frequent wars, and decide that the world would be better without people.
Science fiction author Isaac Asimov tried to address this potential by proposing three laws limiting robot decision-making: Robots cannot injure humans or allow them “to come to harm.” They must also obey humans—unless this would harm humans—and protect themselves, as long as this doesn’t harm humans or ignore an order.
But Asimov himself knew the three laws were not enough. And they don’t reflect the complexity of human values. What constitutes “harm” is an example: Should a robot protect humanity from suffering related to overpopulation, or should it protect individuals’ freedoms to make personal reproductive decisions?
We humans have already wrestled with these questions in our own, non-artificial intelligences. Researchers have proposed restrictions on human freedoms, including reducing reproduction, to control people’s behavior, population growth, and environmental damage. In general, society has decided against using those methods, even if their goals seem reasonable. Similarly, rather than regulating what AI systems can and can’t do, in my view it would be better to teach them human ethics and values—like parents do with human children.
Artificial intelligence benefits
People already benefit from AI every day—but this is just the beginning. AI-controlled robots could assist law enforcement in responding to human gunmen. Current police efforts must focus on preventing officers from being injured, but robots could step into harm’s way, potentially changing the outcomes of cases like the recent shooting of an armed college student at Georgia Tech and an unarmed high school student in Austin.
Intelligent robots can help humans in other ways, too. They can perform repetitive tasks, like processing sensor data, where human boredom may cause mistakes. They can limit human exposure to dangerous materials and dangerous situations, such as when decontaminating a nuclear reactor, working in areas humans can’t go. In general, AI robots can provide humans with more time to pursue whatever they define as happiness by freeing them from having to do other work.
Achieving most of these benefits will require a lot more research and development. Regulations that make it more expensive to develop AIs or prevent certain uses may delay or forestall those efforts. This is particularly true for small businesses and individuals—key drivers of new technologies—who are not as well equipped to deal with regulation compliance as larger companies. In fact, the biggest beneficiary of AI regulation may be large companies that are used to dealing with it, because startups will have a harder time competing in a regulated environment.
The need for innovation
Humanity faced a similar set of issues in the early days of the internet. But the United States actively avoided regulating the internet to avoid stunting its early growth. Musk’s PayPal and numerous other businesses helped build the modern online world while subject only to regular human-scale rules, like those preventing theft and fraud.
Artificial intelligence systems have the potential to change how humans do just about everything. Scientists, engineers, programmers, and entrepreneurs need time to develop the technologies—and deliver their benefits. Their work should be free from concern that some AIs might be banned, and from the delays and costs associated with new AI-specific regulations.
This article was originally published on The Conversation. Read the original article.
Image Credit: Tatiana Shepeleva / Shutterstock.com Continue reading

Posted in Human Robots

#431350 The Internet of Things Needs to Be ...

In an interview at Singularity University’s Global Summit in San Francisco, Andreas Gal explained how his company is applying artificial intelligence to the Internet of Things (IoT). Gal is the former CTO of Mozilla and is currently CEO of Silk Labs.
“For us, the value of IoT is not really in making things connected,” Gal said. “It’s really about bringing intelligence to these devices, and that’s what we are focused on. We are bringing the latest advances in AI technology directly into these devices.”
Watch the interview to learn how infusing machine learning into IoT devices can take them beyond simple connection to add much greater value.

Image Credit: Anita Ponne / Shutterstock.com Continue reading

Posted in Human Robots

#431343 How Technology Is Driving Us Toward Peak ...

At some point in the future—and in some ways we are already seeing this—the amount of physical stuff moving around the world will peak and begin to decline. By “stuff,” I am referring to liquid fuels, coal, containers on ships, food, raw materials, products, etc.
New technologies are moving us toward “production-at-the-point-of-consumption” of energy, food, and products with reduced reliance on a global supply chain.
The trade of physical stuff has been central to globalization as we’ve known it. So, this declining movement of stuff may signal we are approaching “peak globalization.”
To be clear, even as the movement of stuff may slow, if not decline, the movement of people, information, data, and ideas around the world is growing exponentially and is likely to continue doing so for the foreseeable future.
Peak globalization may provide a pathway to preserving the best of globalization and global interconnectedness, enhancing economic and environmental sustainability, and empowering individuals and communities to strengthen democracy.
At the same time, some of the most troublesome aspects of globalization may be eased, including massive financial transfers to energy producers and loss of jobs to manufacturing platforms like China. This shift could bring relief to the “losers” of globalization and ease populist, nationalist political pressures that are roiling the developed countries.
That is quite a claim, I realize. But let me explain the vision.
New Technologies and Businesses: Digital, Democratized, Decentralized
The key factors moving us toward peak globalization and making it economically viable are new technologies and innovative businesses and business models allowing for “production-at-the-point-of-consumption” of energy, food, and products.
Exponential technologies are enabling these trends by sharply reducing the “cost of entry” for creating businesses. Driven by Moore’s Law, powerful technologies have become available to almost anyone, anywhere.
Beginning with the microchip, which has had a 100-billion-fold improvement in 40 years—10,000 times faster and 10 million times cheaper—the marginal cost of producing almost everything that can be digitized has fallen toward zero.
A hard copy of a book, for example, will always entail the cost of materials, printing, shipping, etc., even if the marginal cost falls as more copies are produced. But the marginal cost of a second digital copy, such as an e-book, streaming video, or song, is nearly zero as it is simply a digital file sent over the Internet, the world’s largest copy machine.* Books are one product, but there are literally hundreds of thousands of dollars in once-physical, separate products jammed into our devices at little to no cost.
A smartphone alone provides half the human population access to artificial intelligence—from SIRI, search, and translation to cloud computing—geolocation, free global video calls, digital photography and free uploads to social network sites, free access to global knowledge, a million apps for a huge variety of purposes, and many other capabilities that were unavailable to most people only a few years ago.
As powerful as dematerialization and demonetization are for private individuals, they’re having a stronger effect on businesses. A small team can access expensive, advanced tools that before were only available to the biggest organizations. Foundational digital platforms, such as the internet and GPS, and the platforms built on top of them by the likes of Google, Apple, Amazon, and others provide the connectivity and services democratizing business tools and driving the next generation of new startups.

“As these trends gain steam in coming decades, they’ll bleed into and fundamentally transform global supply chains.”

An AI startup, for example, doesn’t need its own server farm to train its software and provide service to customers. The team can rent computing power from Amazon Web Services. This platform model enables small teams to do big things on the cheap. And it isn’t just in software. Similar trends are happening in hardware too. Makers can 3D print or mill industrial grade prototypes of physical stuff in a garage or local maker space and send or sell designs to anyone with a laptop and 3D printer via online platforms.
These are early examples of trends that are likely to gain steam in coming decades, and as they do, they’ll bleed into and fundamentally transform global supply chains.
The old model is a series of large, connected bits of centralized infrastructure. It makes sense to mine, farm, or manufacture in bulk when the conditions, resources, machines, and expertise to do so exist in particular places and are specialized and expensive. The new model, however, enables smaller-scale production that is local and decentralized.
To see this more clearly, let’s take a look at the technological trends at work in the three biggest contributors to the global trade of physical stuff—products, energy, and food.
Products
3D printing (additive manufacturing) allows for distributed manufacturing near the point of consumption, eliminating or reducing supply chains and factory production lines.
This is possible because product designs are no longer made manifest in assembly line parts like molds or specialized mechanical tools. Rather, designs are digital and can be called up at will to guide printers. Every time a 3D printer prints, it can print a different item, so no assembly line needs to be set up for every different product. 3D printers can also print an entire finished product in one piece or reduce the number of parts of larger products, such as engines. This further lessens the need for assembly.
Because each item can be customized and printed on demand, there is no cost benefit from scaling production. No inventories. No shipping items across oceans. No carbon emissions transporting not only the final product but also all the parts in that product shipped from suppliers to manufacturer. Moreover, 3D printing builds items layer by layer with almost no waste, unlike “subtractive manufacturing” in which an item is carved out of a piece of metal, and much or even most of the material can be waste.
Finally, 3D printing is also highly scalable, from inexpensive 3D printers (several hundred dollars) for home and school use to increasingly capable and expensive printers for industrial production. There are also 3D printers being developed for printing buildings, including houses and office buildings, and other infrastructure.
The technology for finished products is only now getting underway, and there are still challenges to overcome, such as speed, quality, and range of materials. But as methods and materials advance, it will likely creep into more manufactured goods.
Ultimately, 3D printing will be a general purpose technology that involves many different types of printers and materials—such as plastics, metals, and even human cells—to produce a huge range of items, from human tissue and potentially human organs to household items and a range of industrial items for planes, trains, and automobiles.
Energy
Renewable energy production is located at or relatively near the source of consumption.
Although electricity generated by solar, wind, geothermal, and other renewable sources can of course be transmitted over longer distances, it is mostly generated and consumed locally or regionally. It is not transported around the world in tankers, ships, and pipelines like petroleum, coal, and natural gas.
Moreover, the fuel itself is free—forever. There is no global price on sun or wind. The people relying on solar and wind power need not worry about price volatility and potential disruption of fuel supplies as a result of political, market, or natural causes.
Renewables have their problems, of course, including intermittency and storage, and currently they work best if complementary to other sources, especially natural gas power plants that, unlike coal plants, can be turned on or off and modulated like a gas stove, and are half the carbon emissions of coal.
Within the next decades or so, it is likely the intermittency and storage problems will be solved or greatly mitigated. In addition, unlike coal and natural gas power plants, solar is scalable, from solar panels on individual homes or even cars and other devices, to large-scale solar farms. Solar can be connected with microgrids and even allow for autonomous electricity generation by homes, commercial buildings, and communities.
It may be several decades before fossil fuel power plants can be phased out, but the development cost of renewables has been falling exponentially and, in places, is beginning to compete with coal and gas. Solar especially is expected to continue to increase in efficiency and decline in cost.
Given these trends in cost and efficiency, renewables should become obviously cheaper over time—if the fuel is free for solar and has to be continually purchased for coal and gas, at some point the former is cheaper than the latter. Renewables are already cheaper if externalities such as carbon emissions and environmental degradation involved in obtaining and transporting the fuel are included.
Food
Food can be increasingly produced near the point of consumption with vertical farms and eventually with printed food and even printed or cultured meat.
These sources bring production of food very near the consumer, so transportation costs, which can be a significant portion of the cost of food to consumers, are greatly reduced. The use of land and water are reduced by 95% or more, and energy use is cut by nearly 50%. In addition, fertilizers and pesticides are not required and crops can be grown 365 days a year whatever the weather and in more climates and latitudes than is possible today.
While it may not be practical to grow grains, corn, and other such crops in vertical farms, many vegetables and fruits can flourish in such facilities. In addition, cultured or printed meat is being developed—the big challenge is scaling up and reducing cost—that is based on cells from real animals without slaughtering the animals themselves.
There are currently some 70 billion animals being raised for food around the world [PDF] and livestock alone counts for about 15% of global emissions. Moreover, livestock places huge demands on land, water, and energy. Like vertical farms, cultured or printed meat could be produced with no more land use than a brewery and with far less water and energy.
A More Democratic Economy Goes Bottom Up
This is a very brief introduction to the technologies that can bring “production-at-the-point-of-consumption” of products, energy, and food to cities and regions.
What does this future look like? Here’s a simplified example.
Imagine a universal manufacturing facility with hundreds of 3D printers printing tens of thousands of different products on demand for the local community—rather than assembly lines in China making tens of thousands of the same product that have to be shipped all over the world since no local market can absorb all of the same product.
Nearby, a vertical farm and cultured meat facility produce much of tomorrow night’s dinner. These facilities would be powered by local or regional wind and solar. Depending on need and quality, some infrastructure and machinery, like solar panels and 3D printers, would live in these facilities and some in homes and businesses.
The facilities could be owned by a large global corporation—but still locally produce goods—or they could be franchised or even owned and operated independently by the local population. Upkeep and management at each would provide jobs for communities nearby. Eventually, not only would global trade of parts and products diminish, but even required supplies of raw materials and feed stock would decline since there would be less waste in production, and many materials would be recycled once acquired.

“Peak globalization could be a viable pathway to an economic foundation that puts people first while building a more economically and environmentally sustainable future.”

This model suggests a shift toward a “bottom up” economy that is more democratic, locally controlled, and likely to generate more local jobs.
The global trends in democratization of technology make the vision technologically plausible. Much of this technology already exists and is improving and scaling while exponentially decreasing in cost to become available to almost anyone, anywhere.
This includes not only access to key technologies, but also to education through digital platforms available globally. Online courses are available for free, ranging from advanced physics, math, and engineering to skills training in 3D printing, solar installations, and building vertical farms. Social media platforms can enable local and global collaboration and sharing of knowledge and best practices.
These new communities of producers can be the foundation for new forms of democratic governance as they recognize and “capitalize” on the reality that control of the means of production can translate to political power. More jobs and local control could weaken populist, anti-globalization political forces as people recognize they could benefit from the positive aspects of globalization and international cooperation and connectedness while diminishing the impact of globalization’s downsides.
There are powerful vested interests that stand to lose in such a global structural shift. But this vision builds on trends that are already underway and are gaining momentum. Peak globalization could be a viable pathway to an economic foundation that puts people first while building a more economically and environmentally sustainable future.
This article was originally posted on Open Democracy (CC BY-NC 4.0). The version above was edited with the author for length and includes additions. Read the original article on Open Democracy.
* See Jeremy Rifkin, The Zero Marginal Cost Society, (New York: Palgrave Macmillan, 2014), Part II, pp. 69-154.
Image Credit: Sergey Nivens / Shutterstock.com Continue reading

Posted in Human Robots

#431315 Better Than Smart Speakers? Japan Is ...

While American internet giants are developing speakers, Japanese companies are working on robots and holograms. They all share a common goal: to create the future platform for the Internet of Things (IoT) and smart homes.
Names like Bocco, EMIEW3, Xperia Assistant, and Gatebox may not ring a bell to most outside of Japan, but Sony, Hitachi, Sharp, and Softbank most certainly do. The companies, along with Japanese start-ups, have developed robots, robot concepts, and even holograms like the ones hiding behind the short list of names.
While there are distinct differences between the various systems, they share the potential to act as a remote control for IoT devices and smart homes. It is a very different direction than that taken by companies like Google, Amazon, and Apple, who have so far focused on building IoT speaker systems.
Bocco robot. Image Credit: Yukai Engineering
“Technology companies are pursuing the platform—or smartphone if you will—for IoT. My impression is that Japanese companies—and Japanese consumers—prefer that such a platform should not just be an object, but a companion,” says Kosuke Tatsumi, designer at Yukai Engineering, a startup that has developed the Bocco robot system.
At Hitachi, a spokesperson said that the company’s human symbiotic service robot, EMIEW3, robot is currently in the field, doing proof-of-value tests at customer sites to investigate needs and potential solutions. This could include working as an interactive control system for the Internet of Things:
“EMIEW3 is able to communicate with humans, thus receive instructions, and as it is connected to a robotics IT platform, it is very much capable of interacting with IoT-based systems,” the spokesperson said.
The power of speech is getting feet
Gartner analysis predicts that there will be 8.4 billion internet-connected devices—collectively making up the Internet of Things—by the end of 2017. 5.2 billion of those devices are in the consumer category. By the end of 2020, the number of IoT devices will rise to 12.8 billion—and that is just in the consumer category.
As a child of the 80s, I can vividly remember how fun it was to have separate remote controls for TV, video, and stereo. I can imagine a situation where my internet-connected refrigerator and ditto thermostat, television, and toaster try to work out who I’m talking to and what I want them to do.
Consensus seems to be that speech will be the way to interact with many/most IoT devices. The same goes for a form of virtual assistant functioning as the IoT platform—or remote control. Almost everything else is still an open ballgame, despite an early surge for speaker-based systems, like those from Amazon, Google, and Apple.
Why robots could rule
Famous android creator and robot scientist Dr. Hiroshi Ishiguro sees the interaction between humans and the AI embedded in speakers or robots as central to both approaches. From there, the approaches differ greatly.
Image Credit: Hiroshi Ishiguro Laboratories
“It is about more than the difference of form. Speaking to an Amazon Echo is not a natural kind of interaction for humans. That is part of what we in Japan are creating in many human-like robot systems,” he says. “The human brain is constructed to recognize and interact with humans. This is part of why it makes sense to focus on developing the body for the AI mind as well as the AI mind itself. In a way, you can describe it as the difference between developing an assistant, which could be said to be what many American companies are currently doing, and a companion, which is more the focus here in Japan.”
Another advantage is that robots are more kawaii—a multifaceted Japanese word that can be translated as “cute”—than speakers are. This makes it easy for people to relate to them and forgive them.
“People are more willing to forgive children when they make mistakes, and the same is true with a robot like Bocco, which is designed to look kawaii and childlike,” Kosuke Tatsumi explains.
Japanese robots and holograms with IoT-control capabilities
So, what exactly do these robot and hologram companions look like, what can they do, and who’s making them? Here are seven examples of Japanese companies working to go a step beyond smart speakers with personable robots and holograms.
1. In 2016 Sony’s mobile division demonstrated the Xperia Agent concept robot that recognizes individual users, is voice controlled, and can do things like control your television and receive calls from services like Skype.

2. Sharp launched their Home Assistant at CES 2016. A robot-like, voice-controlled assistant that can to control, among other things, air conditioning units, and televisions. Sharp has also launched a robotic phone called RoBoHon.
3. Gatebox has created a holographic virtual assistant. Evil tongues will say that it is primarily the expression of an otaku (Japanese for nerd) dream of living with a manga heroine. Gatebox is, however, able to control things like lights, TVs, and other systems through API integration. It also provides its owner with weather-related advice like “remember your umbrella, it looks like it will rain later.” Gatebox can be controlled by voice, gesture, or via an app.
4. Hitachi’s EMIEW3 robot is designed to assist people in businesses and public spaces. It is connected to a robot IT-platform via the cloud that acts as a “remote brain.” Hitachi is currently investigating the business use cases for EMIEW3. This could include the role of controlling platform for IoT devices.

5. Softbank’s Pepper robot has been used as a platform to control use of medical IoT devices such as smart thermometers by Avatarion. The company has also developed various in-house systems that enable Pepper to control IoT-devices like a coffee machine. A user simply asks Pepper to brew a cup of coffee, and it starts the coffee machine for you.
6. Yukai Engineering’s Bocco registers when a person (e.g., young child) comes home and acts as a communication center between that person and other members of the household (e.g., parent still at work). The company is working on integrating voice recognition, voice control, and having Bocco control things like the lights and other connected IoT devices.
7. Last year Toyota launched the Kirobo Mini, a companion robot which aims to, among other things, help its owner by suggesting “places to visit, routes for travel, and music to listen to” during the drive.

Today, Japan. Tomorrow…?
One of the key questions is whether this emerging phenomenon is a purely Japanese thing. If the country’s love of robots makes it fundamentally different. Japan is, after all, a country where new units of Softbank’s Pepper robot routinely sell out in minutes and the RoBoHon robot-phone has its own cafe nights in Tokyo.
It is a country where TV introduces you to friendly, helpful robots like Doraemon and Astro Boy. I, on the other hand, first met robots in the shape of Arnold Schwarzenegger’s Terminator and struggled to work out why robots seemed intent on permanently borrowing things like clothes and motorcycles, not to mention why they hated people called Sarah.
However, research suggests that a big part of the reason why Japanese seem to like robots is a combination of exposure and positive experiences that leads to greater acceptance of them. As robots spread to more and more industries—and into our homes—our acceptance of them will grow.
The argument is also backed by a project by Avatarion, which used Softbank’s Nao-robot as a classroom representative for children who were in the hospital.
“What we found was that the other children quickly adapted to interacting with the robot and treating it as the physical representation of the child who was in hospital. They accepted it very quickly,” Thierry Perronnet, General Manager of Avatarion, explains.
His company has also developed solutions where Softbank’s Pepper robot is used as an in-home nurse and controls various medical IoT devices.
If robots end up becoming our preferred method for controlling IoT devices, it is by no means certain that said robots will be coming from Japan.
“I think that the goal for both Japanese and American companies—including the likes of Google, Amazon, Microsoft, and Apple—is to create human-like interaction. For this to happen, technology needs to evolve and adapt to us and how we are used to interacting with others, in other words, have a more human form. Humans’ speed of evolution cannot keep up with technology’s, so it must be the technology that changes,” Dr. Ishiguro says.
Image Credit: Sony Mobile Communications Continue reading

Posted in Human Robots

#431203 Could We Build a Blade Runner-Style ...

The new Blade Runner sequel will return us to a world where sophisticated androids made with organic body parts can match the strength and emotions of their human creators. As someone who builds biologically inspired robots, I’m interested in whether our own technology will ever come close to matching the “replicants” of Blade Runner 2049.
The reality is that we’re a very long way from building robots with human-like abilities. But advances in so-called soft robotics show a promising way forward for technology that could be a new basis for the androids of the future.
From a scientific point of view, the real challenge is replicating the complexity of the human body. Each one of us is made up of millions and millions of cells, and we have no clue how we can build such a complex machine that is indistinguishable from us humans. The most complex machines today, for example the world’s largest airliner, the Airbus A380, are composed of millions of parts. But in order to match the complexity level of humans, we would need to scale this complexity up about a million times.
There are currently three different ways that engineering is making the border between humans and robots more ambiguous. Unfortunately, these approaches are only starting points and are not yet even close to the world of Blade Runner.
There are human-like robots built from scratch by assembling artificial sensors, motors, and computers to resemble the human body and motion. However, extending the current human-like robot would not bring Blade Runner-style androids closer to humans, because every artificial component, such as sensors and motors, are still hopelessly primitive compared to their biological counterparts.
There is also cyborg technology, where the human body is enhanced with machines such as robotic limbs and wearable and implantable devices. This technology is similarly very far away from matching our own body parts.
Finally, there is the technology of genetic manipulation, where an organism’s genetic code is altered to modify that organism’s body. Although we have been able to identify and manipulate individual genes, we still have a limited understanding of how an entire human emerges from genetic code. As such, we don’t know the degree to which we can actually program code to design everything we wish.
Soft robotics: a way forward?
But we might be able to move robotics closer to the world of Blade Runner by pursuing other technologies and, in particular, by turning to nature for inspiration. The field of soft robotics is a good example. In the last decade or so, robotics researchers have been making considerable efforts to make robots soft, deformable, squishable, and flexible.
This technology is inspired by the fact that 90% of the human body is made from soft substances such as skin, hair, and tissues. This is because most of the fundamental functions in our body rely on soft parts that can change shape, from the heart and lungs pumping fluid around our body to the eye lenses generating signals from their movement. Cells even change shape to trigger division, self-healing and, ultimately, the evolution of the body.
The softness of our bodies is the origin of all their functionality needed to stay alive. So being able to build soft machines would at least bring us a step closer to the robotic world of Blade Runner. Some of the recent technological advances include artificial hearts made out of soft functional materials that are pumping fluid through deformation. Similarly, soft, wearable gloves can help make hand grasping stronger. And “epidermal electronics” has enabled us to tattoo electronic circuits onto our biological skins.
Softness is the keyword that brings humans and technologies closer together. Sensors, motors, and computers are all of a sudden integrated into human bodies once they became soft, and the border between us and external devices becomes ambiguous, just like soft contact lenses became part of our eyes.
Nevertheless, the hardest challenge is how to make individual parts of a soft robot body physically adaptable by self-healing, growing, and differentiating. After all, every part of a living organism is also alive in biological systems in order to make our bodies totally adaptable and evolvable, the function of which could make machines totally indistinguishable from ourselves.
It is impossible to predict when the robotic world of Blade Runner might arrive, and if it does, it will probably be very far in the future. But as long as the desire to build machines indistinguishable from humans is there, the current trends of robotic revolution could make it possible to achieve that dream.
This article was originally published on The Conversation. Read the original article.
Image Credit: Dariush M / Shutterstock.com Continue reading

Posted in Human Robots