Tag Archives: making

#433282 The 4 Waves of AI: Who Will Own the ...

Recently, I picked up Kai-Fu Lee’s newest book, AI Superpowers.

Kai-Fu Lee is one of the most plugged-in AI investors on the planet, managing over $2 billion between six funds and over 300 portfolio companies in the US and China.

Drawing from his pioneering work in AI, executive leadership at Microsoft, Apple, and Google (where he served as founding president of Google China), and his founding of VC fund Sinovation Ventures, Lee shares invaluable insights about:

The four factors driving today’s AI ecosystems;
China’s extraordinary inroads in AI implementation;
Where autonomous systems are headed;
How we’ll need to adapt.

With a foothold in both Beijing and Silicon Valley, Lee looks at the power balance between Chinese and US tech behemoths—each turbocharging new applications of deep learning and sweeping up global markets in the process.

In this post, I’ll be discussing Lee’s “Four Waves of AI,” an excellent framework for discussing where AI is today and where it’s going. I’ll also be featuring some of the hottest Chinese tech companies leading the charge, worth watching right now.

I’m super excited that this Tuesday, I’ve scored the opportunity to sit down with Kai-Fu Lee to discuss his book in detail via a webinar.

With Sino-US competition heating up, who will own the future of technology?

Let’s dive in.

The First Wave: Internet AI
In this first stage of AI deployment, we’re dealing primarily with recommendation engines—algorithmic systems that learn from masses of user data to curate online content personalized to each one of us.

Think Amazon’s spot-on product recommendations, or that “Up Next” YouTube video you just have to watch before getting back to work, or Facebook ads that seem to know what you’ll buy before you do.

Powered by the data flowing through our networks, internet AI leverages the fact that users automatically label data as we browse. Clicking versus not clicking; lingering on a web page longer than we did on another; hovering over a Facebook video to see what happens at the end.

These cascades of labeled data build a detailed picture of our personalities, habits, demands, and desires: the perfect recipe for more tailored content to keep us on a given platform.

Currently, Lee estimates that Chinese and American companies stand head-to-head when it comes to deployment of internet AI. But given China’s data advantage, he predicts that Chinese tech giants will have a slight lead (60-40) over their US counterparts in the next five years.

While you’ve most definitely heard of Alibaba and Baidu, you’ve probably never stumbled upon Toutiao.

Starting out as a copycat of America’s wildly popular Buzzfeed, Toutiao reached a valuation of $20 billion by 2017, dwarfing Buzzfeed’s valuation by more than a factor of 10. But with almost 120 million daily active users, Toutiao doesn’t just stop at creating viral content.

Equipped with natural-language processing and computer vision, Toutiao’s AI engines survey a vast network of different sites and contributors, rewriting headlines to optimize for user engagement, and processing each user’s online behavior—clicks, comments, engagement time—to curate individualized news feeds for millions of consumers.

And as users grow more engaged with Toutiao’s content, the company’s algorithms get better and better at recommending content, optimizing headlines, and delivering a truly personalized feed.

It’s this kind of positive feedback loop that fuels today’s AI giants surfing the wave of internet AI.

The Second Wave: Business AI
While internet AI takes advantage of the fact that netizens are constantly labeling data via clicks and other engagement metrics, business AI jumps on the data that traditional companies have already labeled in the past.

Think banks issuing loans and recording repayment rates; hospitals archiving diagnoses, imaging data, and subsequent health outcomes; or courts noting conviction history, recidivism, and flight.

While we humans make predictions based on obvious root causes (strong features), AI algorithms can process thousands of weakly correlated variables (weak features) that may have much more to do with a given outcome than the usual suspects.

By scouting out hidden correlations that escape our linear cause-and-effect logic, business AI leverages labeled data to train algorithms that outperform even the most veteran of experts.

Apply these data-trained AI engines to banking, insurance, and legal sentencing, and you get minimized default rates, optimized premiums, and plummeting recidivism rates.

While Lee confidently places America in the lead (90-10) for business AI, China’s substantial lag in structured industry data could actually work in its favor going forward.

In industries where Chinese startups can leapfrog over legacy systems, China has a major advantage.

Take Chinese app Smart Finance, for instance.

While Americans embraced credit and debit cards in the 1970s, China was still in the throes of its Cultural Revolution, largely missing the bus on this technology.

Fast forward to 2017, and China’s mobile payment spending outnumbered that of Americans’ by a ratio of 50 to 1. Without the competition of deeply entrenched credit cards, mobile payments were an obvious upgrade to China’s cash-heavy economy, embraced by 70 percent of China’s 753 million smartphone users by the end of 2017.

But by leapfrogging over credit cards and into mobile payments, China largely left behind the notion of credit.

And here’s where Smart Finance comes in.

An AI-powered app for microfinance, Smart Finance depends almost exclusively on its algorithms to make millions of microloans. For each potential borrower, the app simply requests access to a portion of the user’s phone data.

On the basis of variables as subtle as your typing speed and battery percentage, Smart Finance can predict with astounding accuracy your likelihood of repaying a $300 loan.

Such deployments of business AI and internet AI are already revolutionizing our industries and individual lifestyles. But still on the horizon lie two even more monumental waves— perception AI and autonomous AI.

The Third Wave: Perception AI
In this wave, AI gets an upgrade with eyes, ears, and myriad other senses, merging the digital world with our physical environments.

As sensors and smart devices proliferate through our homes and cities, we are on the verge of entering a trillion-sensor economy.

Companies like China’s Xiaomi are putting out millions of IoT-connected devices, and teams of researchers have already begun prototyping smart dust—solar cell- and sensor-geared particulates that can store and communicate troves of data anywhere, anytime.

As Kai-Fu explains, perception AI “will bring the convenience and abundance of the online world into our offline reality.” Sensor-enabled hardware devices will turn everything from hospitals to cars to schools into online-merge-offline (OMO) environments.

Imagine walking into a grocery store, scanning your face to pull up your most common purchases, and then picking up a virtual assistant (VA) shopping cart. Having pre-loaded your data, the cart adjusts your usual grocery list with voice input, reminds you to get your spouse’s favorite wine for an upcoming anniversary, and guides you through a personalized store route.

While we haven’t yet leveraged the full potential of perception AI, China and the US are already making incredible strides. Given China’s hardware advantage, Lee predicts China currently has a 60-40 edge over its American tech counterparts.

Now the go-to city for startups building robots, drones, wearable technology, and IoT infrastructure, Shenzhen has turned into a powerhouse for intelligent hardware, as I discussed last week. Turbocharging output of sensors and electronic parts via thousands of factories, Shenzhen’s skilled engineers can prototype and iterate new products at unprecedented scale and speed.

With the added fuel of Chinese government support and a relaxed Chinese attitude toward data privacy, China’s lead may even reach 80-20 in the next five years.

Jumping on this wave are companies like Xiaomi, which aims to turn bathrooms, kitchens, and living rooms into smart OMO environments. Having invested in 220 companies and incubated 29 startups that produce its products, Xiaomi surpassed 85 million intelligent home devices by the end of 2017, making it the world’s largest network of these connected products.

One KFC restaurant in China has even teamed up with Alipay (Alibaba’s mobile payments platform) to pioneer a ‘pay-with-your-face’ feature. Forget cash, cards, and cell phones, and let OMO do the work.

The Fourth Wave: Autonomous AI
But the most monumental—and unpredictable—wave is the fourth and final: autonomous AI.

Integrating all previous waves, autonomous AI gives machines the ability to sense and respond to the world around them, enabling AI to move and act productively.

While today’s machines can outperform us on repetitive tasks in structured and even unstructured environments (think Boston Dynamics’ humanoid Atlas or oncoming autonomous vehicles), machines with the power to see, hear, touch and optimize data will be a whole new ballgame.

Think: swarms of drones that can selectively spray and harvest entire farms with computer vision and remarkable dexterity, heat-resistant drones that can put out forest fires 100X more efficiently, or Level 5 autonomous vehicles that navigate smart roads and traffic systems all on their own.

While autonomous AI will first involve robots that create direct economic value—automating tasks on a one-to-one replacement basis—these intelligent machines will ultimately revamp entire industries from the ground up.

Kai-Fu Lee currently puts America in a commanding lead of 90-10 in autonomous AI, especially when it comes to self-driving vehicles. But Chinese government efforts are quickly ramping up the competition.

Already in China’s Zhejiang province, highway regulators and government officials have plans to build China’s first intelligent superhighway, outfitted with sensors, road-embedded solar panels and wireless communication between cars, roads and drivers.

Aimed at increasing transit efficiency by up to 30 percent while minimizing fatalities, the project may one day allow autonomous electric vehicles to continuously charge as they drive.

A similar government-fueled project involves Beijing’s new neighbor Xiong’an. Projected to take in over $580 billion in infrastructure spending over the next 20 years, Xiong’an New Area could one day become the world’s first city built around autonomous vehicles.

Baidu is already working with Xiong’an’s local government to build out this AI city with an environmental focus. Possibilities include sensor-geared cement, computer vision-enabled traffic lights, intersections with facial recognition, and parking lots-turned parks.

Lastly, Lee predicts China will almost certainly lead the charge in autonomous drones. Already, Shenzhen is home to premier drone maker DJI—a company I’ll be visiting with 24 top executives later this month as part of my annual China Platinum Trip.

Named “the best company I have ever encountered” by Chris Anderson, DJI owns an estimated 50 percent of the North American drone market, supercharged by Shenzhen’s extraordinary maker movement.

While the long-term Sino-US competitive balance in fourth wave AI remains to be seen, one thing is certain: in a matter of decades, we will witness the rise of AI-embedded cityscapes and autonomous machines that can interact with the real world and help solve today’s most pressing grand challenges.

Join Me
Webinar with Dr. Kai-Fu Lee: Dr. Kai-Fu Lee — one of the world’s most respected experts on AI — and I will discuss his latest book AI Superpowers: China, Silicon Valley, and the New World Order. Artificial Intelligence is reshaping the world as we know it. With U.S.-Sino competition heating up, who will own the future of technology? Register here for the free webinar on September 4th, 2018 from 11:00am–12:30pm PST.

Image Credit: Elena11 / Shutterstock.com Continue reading

Posted in Human Robots

#433274 Why is Facebook keen on robots? ...

Facebook announced several new hires of top academics in the field of artificial intelligence Tuesday, among them a roboticist known for her work at Disney making animated figures move in more human-like ways. Continue reading

Posted in Human Robots

#432893 These 4 Tech Trends Are Driving Us ...

From a first-principles perspective, the task of feeding eight billion people boils down to converting energy from the sun into chemical energy in our bodies.

Traditionally, solar energy is converted by photosynthesis into carbohydrates in plants (i.e., biomass), which are either eaten by the vegans amongst us, or fed to animals, for those with a carnivorous preference.

Today, the process of feeding humanity is extremely inefficient.

If we could radically reinvent what we eat, and how we create that food, what might you imagine that “future of food” would look like?

In this post we’ll cover:

Vertical farms
CRISPR engineered foods
The alt-protein revolution
Farmer 3.0

Let’s dive in.

Vertical Farming
Where we grow our food…

The average American meal travels over 1,500 miles from farm to table. Wine from France, beef from Texas, potatoes from Idaho.

Imagine instead growing all of your food in a 50-story tall vertical farm in downtown LA or off-shore on the Great Lakes where the travel distance is no longer 1,500 miles but 50 miles.

Delocalized farming will minimize travel costs at the same time that it maximizes freshness.

Perhaps more importantly, vertical farming also allows tomorrow’s farmer the ability to control the exact conditions of her plants year round.

Rather than allowing the vagaries of the weather and soil conditions to dictate crop quality and yield, we can now perfectly control the growing cycle.

LED lighting provides the crops with the maximum amount of light, at the perfect frequency, 24 hours a day, 7 days a week.

At the same time, sensors and robots provide the root system the exact pH and micronutrients required, while fine-tuning the temperature of the farm.

Such precision farming can generate yields that are 200% to 400% above normal.

Next let’s explore how we can precision-engineer the genetic properties of the plant itself.

CRISPR and Genetically Engineered Foods
What food do we grow?

A fundamental shift is occurring in our relationship with agriculture. We are going from evolution by natural selection (Darwinism) to evolution by human direction.

CRISPR (the cutting edge gene editing tool) is providing a pathway for plant breeding that is more predictable, faster and less expensive than traditional breeding methods.

Rather than our crops being subject to nature’s random, environmental whim, CRISPR unlocks our capability to modify our crops to match the available environment.

Further, using CRISPR we will be able to optimize the nutrient density of our crops, enhancing their value and volume.

CRISPR may also hold the key to eliminating common allergens from crops. As we identify the allergen gene in peanuts, for instance, we can use CRISPR to silence that gene, making the crops we raise safer for and more accessible to a rapidly growing population.

Yet another application is our ability to make plants resistant to infection or more resistant to drought or cold.

Helping to accelerate the impact of CRISPR, the USDA recently announced that genetically engineered crops will not be regulated—providing an opening for entrepreneurs to capitalize on the opportunities for optimization CRISPR enables.

CRISPR applications in agriculture are an opportunity to help a billion people and become a billionaire in the process.

Protecting crops against volatile environments, combating crop diseases and increasing nutrient values, CRISPR is a promising tool to help feed the world’s rising population.

The Alt-Protein/Lab-Grown Meat Revolution
Something like a third of the Earth’s arable land is used for raising livestock—a massive amount of land—and global demand for meat is predicted to double in the coming decade.

Today, we must grow an entire cow—all bones, skin, and internals included—to produce a steak.

Imagine if we could instead start with a single muscle stem cell and only grow the steak, without needing the rest of the cow? Think of it as cellular agriculture.

Imagine returning millions, perhaps billions, of acres of grazing land back to the wilderness? This is the promise of lab-grown meats.

Lab-grown meat can also be engineered (using technology like CRISPR) to be packed with nutrients and be the healthiest, most delicious protein possible.

We’re watching this technology develop in real time. Several startups across the globe are already working to bring artificial meats to the food industry.

JUST, Inc. (previously Hampton Creek) run by my friend Josh Tetrick, has been on a mission to build a food system where everyone can get and afford delicious, nutritious food. They started by exploring 300,000+ species of plants all around the world to see how they can make food better and now are investing heavily in stem-cell-grown meats.

Backed by Richard Branson and Bill Gates, Memphis Meats is working on ways to produce real meat from animal cells, rather than whole animals. So far, they have produced beef, chicken, and duck using cultured cells from living animals.

As with vertical farming, transitioning production of our majority protein source to a carefully cultivated environment allows for agriculture to optimize inputs (water, soil, energy, land footprint), nutrients and, importantly, taste.

Farmer 3.0
Vertical farming and cellular agriculture are reinventing how we think about our food supply chain and what food we produce.

The next question to answer is who will be producing the food?

Let’s look back at how farming evolved through history.

Farmers 0.0 (Neolithic Revolution, around 9000 BCE): The hunter-gatherer to agriculture transition gains momentum, and humans cultivated the ability to domesticate plants for food production.

Farmers 1.0 (until around the 19th century): Farmers spent all day in the field performing backbreaking labor, and agriculture accounted for most jobs.

Farmers 2.0 (mid-20th century, Green Revolution): From the invention of the first farm tractor in 1812 through today, transformative mechanical biochemical technologies (fertilizer) boosted yields and made the job of farming easier, driving the US farm job rate down to less than two percent today.

Farmers 3.0: In the near future, farmers will leverage exponential technologies (e.g., AI, networks, sensors, robotics, drones), CRISPR and genetic engineering, and new business models to solve the world’s greatest food challenges and efficiently feed the eight-billion-plus people on Earth.

An important driver of the Farmer 3.0 evolution is the delocalization of agriculture driven by vertical and urban farms. Vertical farms and urban agriculture are empowering a new breed of agriculture entrepreneurs.

Let’s take a look at an innovative incubator in Brooklyn, New York called Square Roots.

Ten farm-in-a-shipping-containers in a Brooklyn parking lot represent the first Square Roots campus. Each 8-foot x 8.5-foot x 20-foot shipping container contains an equivalent of 2 acres of produce and can yield more than 50 pounds of produce each week.

For 13 months, one cohort of next-generation food entrepreneurs takes part in a curriculum with foundations in farming, business, community and leadership.

The urban farming incubator raised a $5.4 million seed funding round in August 2017.

Training a new breed of entrepreneurs to apply exponential technology to growing food is essential to the future of farming.

One of our massive transformative purposes at the Abundance Group is to empower entrepreneurs to generate extraordinary wealth while creating a world of abundance. Vertical farms and cellular agriculture are key elements enabling the next generation of food and agriculture entrepreneurs.

Conclusion
Technology is driving food abundance.

We’re already seeing food become demonetized, as the graph below shows.

From 1960 to 2014, the percent of income spent on food in the U.S. fell from 19 percent to under 10 percent of total disposable income—a dramatic decrease over the 40 percent of household income spent on food in 1900.

The dropping percent of per-capita disposable income spent on food. Source: USDA, Economic Research Service, Food Expenditure Series
Ultimately, technology has enabled a massive variety of food at a significantly reduced cost and with fewer resources used for production.

We’re increasingly going to optimize and fortify the food supply chain to achieve more reliable, predictable, and nutritious ways to obtain basic sustenance.

And that means a world with abundant, nutritious, and inexpensive food for every man, woman, and child.

What an extraordinary time to be alive.

Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital.

Abundance-Digital is my ‘onramp’ for exponential entrepreneurs—those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: Nejron Photo / Shutterstock.com Continue reading

Posted in Human Robots

#432884 This Week’s Awesome Stories From ...

ROBOTICS
Boston Dynamics’ SpotMini Robot Dog Goes on Sale in 2019
Stephen Shankland | CNET
“The company has 10 SpotMini prototypes now and will work with manufacturing partners to build 100 this year, said company co-founder and President Marc Raibert at a TechCrunch robotics conference Friday. ‘That’s a prelude to getting into a higher rate of production’ in anticipation of sales next year, he said. Who’ll buy it? Probably not you.”

Also from Boston Dynamics’ this week:

SPACE
Made In Space Wins NASA Contract for Next-Gen ‘Vulcan’ Manufacturing System
Mike Wall | Space.com
“’The Vulcan hybrid manufacturing system allows for flexible augmentation and creation of metallic components on demand with high precision,’ Mike Snyder, Made In Space chief engineer and principal investigator, said in a statement. …When Vulcan is ready to go, Made In Space aims to demonstrate the technology on the ISS, showing Vulcan’s potential usefulness for a variety of exploration missions.”

ARTIFICIAL INTELLIGENCE
Duplex Shows Google Failing at Ethical and Creative AI Design
Natasha Lomas | TechCrunch
“But while the home crowd cheered enthusiastically at how capable Google had seemingly made its prototype robot caller—with Pichai going on to sketch a grand vision of the AI saving people and businesses time—the episode is worryingly suggestive of a company that views ethics as an after-the-fact consideration. One it does not allow to trouble the trajectory of its engineering ingenuity.”

DESIGN
What Artists Can Tech Us About Making Technology More Human
Elizabeth Stinson| Wired
“For the last year, Park, along with the artist Sougwen Chung and dancers Jason Oremus and Garrett Coleman of the dance collective Hammerstep, have been working out of Bell Labs as part of a residency called Experiments in Art and Technology. The year-long residency, a collaboration between Bell Labs and the New Museum’s incubator, New Inc, culminated in ‘Only Human,’ a recently-opened exhibition at Mana where the artists’ pieces will be on display through the end of May.”

GOVERNANCE
The White House Says a New AI Task Force Will Protect Workers and Keep America First
Will Knight | MIT Technology Review
“The meeting and the select committee signal that the administration takes the impact of artificial intellgence seriously. This has not always been apparent. In his campaign speeches, Trump suggested reviving industries that have already been overhauled by automation. The Treasury secretary, Steven Mnuchin, also previously said that the idea of robots and AI taking people’s jobs was ‘not even on my radar screen.’”

Image Credit: Tithi Luadthong / Shutterstock.com Continue reading

Posted in Human Robots

#432880 Google’s Duplex Raises the Question: ...

By now, you’ve probably seen Google’s new Duplex software, which promises to call people on your behalf to book appointments for haircuts and the like. As yet, it only exists in demo form, but already it seems like Google has made a big stride towards capturing a market that plenty of companies have had their eye on for quite some time. This software is impressive, but it raises questions.

Many of you will be familiar with the stilted, robotic conversations you can have with early chatbots that are, essentially, glorified menus. Instead of pressing 1 to confirm or 2 to re-enter, some of these bots would allow for simple commands like “Yes” or “No,” replacing the buttons with limited ability to recognize a few words. Using them was often a far more frustrating experience than attempting to use a menu—there are few things more irritating than a robot saying, “Sorry, your response was not recognized.”

Google Duplex scheduling a hair salon appointment:

Google Duplex calling a restaurant:

Even getting the response recognized is hard enough. After all, there are countless different nuances and accents to baffle voice recognition software, and endless turns of phrase that amount to saying the same thing that can confound natural language processing (NLP), especially if you like your phrasing quirky.

You may think that standard customer-service type conversations all travel the same route, using similar words and phrasing. But when there are over 80,000 ways to order coffee, and making a mistake is frowned upon, even simple tasks require high accuracy over a huge dataset.

Advances in audio processing, neural networks, and NLP, as well as raw computing power, have meant that basic recognition of what someone is trying to say is less of an issue. Soundhound’s virtual assistant prides itself on being able to process complicated requests (perhaps needlessly complicated).

The deeper issue, as with all attempts to develop conversational machines, is one of understanding context. There are so many ways a conversation can go that attempting to construct a conversation two or three layers deep quickly runs into problems. Multiply the thousands of things people might say by the thousands they might say next, and the combinatorics of the challenge runs away from most chatbots, leaving them as either glorified menus, gimmicks, or rather bizarre to talk to.

Yet Google, who surely remembers from Glass the risk of premature debuts for technology, especially the kind that ask you to rethink how you interact with or trust in software, must have faith in Duplex to show it on the world stage. We know that startups like Semantic Machines and x.ai have received serious funding to perform very similar functions, using natural-language conversations to perform computing tasks, schedule meetings, book hotels, or purchase items.

It’s no great leap to imagine Google will soon do the same, bringing us closer to a world of onboard computing, where Lens labels the world around us and their assistant arranges it for us (all the while gathering more and more data it can convert into personalized ads). The early demos showed some clever tricks for keeping the conversation within a fairly narrow realm where the AI should be comfortable and competent, and the blog post that accompanied the release shows just how much effort has gone into the technology.

Yet given the privacy and ethics funk the tech industry finds itself in, and people’s general unease about AI, the main reaction to Duplex’s impressive demo was concern. The voice sounded too natural, bringing to mind Lyrebird and their warnings of deepfakes. You might trust “Do the Right Thing” Google with this technology, but it could usher in an era when automated robo-callers are far more convincing.

A more human-like voice may sound like a perfectly innocuous improvement, but the fact that the assistant interjects naturalistic “umm” and “mm-hm” responses to more perfectly mimic a human rubbed a lot of people the wrong way. This wasn’t just a voice assistant trying to sound less grinding and robotic; it was actively trying to deceive people into thinking they were talking to a human.

Google is running the risk of trying to get to conversational AI by going straight through the uncanny valley.

“Google’s experiments do appear to have been designed to deceive,” said Dr. Thomas King of the Oxford Internet Institute’s Digital Ethics Lab, according to Techcrunch. “Their main hypothesis was ‘can you distinguish this from a real person?’ In this case it’s unclear why their hypothesis was about deception and not the user experience… there should be some kind of mechanism there to let people know what it is they are speaking to.”

From Google’s perspective, being able to say “90 percent of callers can’t tell the difference between this and a human personal assistant” is an excellent marketing ploy, even though statistics about how many interactions are successful might be more relevant.

In fact, Duplex runs contrary to pretty much every major recommendation about ethics for the use of robotics or artificial intelligence, not to mention certain eavesdropping laws. Transparency is key to holding machines (and the people who design them) accountable, especially when it comes to decision-making.

Then there are the more subtle social issues. One prominent effect social media has had is to allow people to silo themselves; in echo chambers of like-minded individuals, it’s hard to see how other opinions exist. Technology exacerbates this by removing the evolutionary cues that go along with face-to-face interaction. Confronted with a pair of human eyes, people are more generous. Confronted with a Twitter avatar or a Facebook interface, people hurl abuse and criticism they’d never dream of using in a public setting.

Now that we can use technology to interact with ever fewer people, will it change us? Is it fair to offload the burden of dealing with a robot onto the poor human at the other end of the line, who might have to deal with dozens of such calls a day? Google has said that if the AI is in trouble, it will put you through to a human, which might help save receptionists from the hell of trying to explain a concept to dozens of dumbfounded AI assistants all day. But there’s always the risk that failures will be blamed on the person and not the machine.

As AI advances, could we end up treating the dwindling number of people in these “customer-facing” roles as the buggiest part of a fully automatic service? Will people start accusing each other of being robots on the phone, as well as on Twitter?

Google has provided plenty of reassurances about how the system will be used. They have said they will ensure that the system is identified, and it’s hardly difficult to resolve this problem; a slight change in the script from their demo would do it. For now, consumers will likely appreciate moves that make it clear whether the “intelligent agents” that make major decisions for us, that we interact with daily, and that hide behind social media avatars or phone numbers are real or artificial.

Image Credit: Besjunior / Shutterstock.com Continue reading

Posted in Human Robots