Tag Archives: making

#433954 The Next Great Leap Forward? Combining ...

The Internet of Things is a popular vision of objects with internet connections sending information back and forth to make our lives easier and more comfortable. It’s emerging in our homes, through everything from voice-controlled speakers to smart temperature sensors. To improve our fitness, smart watches and Fitbits are telling online apps how much we’re moving around. And across entire cities, interconnected devices are doing everything from increasing the efficiency of transport to flood detection.

In parallel, robots are steadily moving outside the confines of factory lines. They’re starting to appear as guides in shopping malls and cruise ships, for instance. As prices fall and the artificial intelligence (AI) and mechanical technology continues to improve, we will get more and more used to them making independent decisions in our homes, streets and workplaces.

Here lies a major opportunity. Robots become considerably more capable with internet connections. There is a growing view that the next evolution of the Internet of Things will be to incorporate them into the network, opening up thrilling possibilities along the way.

Home Improvements
Even simple robots become useful when connected to the internet—getting updates about their environment from sensors, say, or learning about their users’ whereabouts and the status of appliances in the vicinity. This lets them lend their bodies, eyes, and ears to give an otherwise impersonal smart environment a user-friendly persona. This can be particularly helpful for people at home who are older or have disabilities.

We recently unveiled a futuristic apartment at Heriot-Watt University to work on such possibilities. One of a few such test sites around the EU, our whole focus is around people with special needs—and how robots can help them by interacting with connected devices in a smart home.

Suppose a doorbell rings that has smart video features. A robot could find the person in the home by accessing their location via sensors, then tell them who is at the door and why. Or it could help make video calls to family members or a professional carer—including allowing them to make virtual visits by acting as a telepresence platform.

Equally, it could offer protection. It could inform them the oven has been left on, for example—phones or tablets are less reliable for such tasks because they can be misplaced or not heard.

Similarly, the robot could raise the alarm if its user appears to be in difficulty.Of course, voice-assistant devices like Alexa or Google Home can offer some of the same services. But robots are far better at moving, sensing and interacting with their environment. They can also engage their users by pointing at objects or acting more naturally, using gestures or facial expressions. These “social abilities” create bonds which are crucially important for making users more accepting of the support and making it more effective.

To help incentivize the various EU test sites, our apartment also hosts the likes of the European Robotic League Service Robot Competition—a sort of Champions League for robots geared to special needs in the home. This brought academics from around Europe to our laboratory for the first time in January this year. Their robots were tested in tasks like welcoming visitors to the home, turning the oven off, and fetching objects for their users; and a German team from Koblenz University won with a robot called Lisa.

Robots Offshore
There are comparable opportunities in the business world. Oil and gas companies are looking at the Internet of Things, for example; experimenting with wireless sensors to collect information such as temperature, pressure, and corrosion levels to detect and possibly predict faults in their offshore equipment.

In the future, robots could be alerted to problem areas by sensors to go and check the integrity of pipes and wells, and to make sure they are operating as efficiently and safely as possible. Or they could place sensors in parts of offshore equipment that are hard to reach, or help to calibrate them or replace their batteries.

The likes of the ORCA Hub, a £36m project led by the Edinburgh Centre for Robotics, bringing together leading experts and over 30 industry partners, is developing such systems. The aim is to reduce the costs and the risks of humans working in remote hazardous locations.

ORCA tests a drone robot. ORCA
Working underwater is particularly challenging, since radio waves don’t move well under the sea. Underwater autonomous vehicles and sensors usually communicate using acoustic waves, which are many times slower (1,500 meters a second vs. 300m meters a second for radio waves). Acoustic communication devices are also much more expensive than those used above the water.

This academic project is developing a new generation of low-cost acoustic communication devices, and trying to make underwater sensor networks more efficient. It should help sensors and underwater autonomous vehicles to do more together in future—repair and maintenance work similar to what is already possible above the water, plus other benefits such as helping vehicles to communicate with one another over longer distances and tracking their location.

Beyond oil and gas, there is similar potential in sector after sector. There are equivalents in nuclear power, for instance, and in cleaning and maintaining the likes of bridges and buildings. My colleagues and I are also looking at possibilities in areas such as farming, manufacturing, logistics, and waste.

First, however, the research sectors around the Internet of Things and robotics need to properly share their knowledge and expertise. They are often isolated from one another in different academic fields. There needs to be more effort to create a joint community, such as the dedicated workshops for such collaboration that we organized at the European Robotics Forum and the IoT Week in 2017.

To the same end, industry and universities need to look at setting up joint research projects. It is particularly important to address safety and security issues—hackers taking control of a robot and using it to spy or cause damage, for example. Such issues could make customers wary and ruin a market opportunity.

We also need systems that can work together, rather than in isolated applications. That way, new and more useful services can be quickly and effectively introduced with no disruption to existing ones. If we can solve such problems and unite robotics and the Internet of Things, it genuinely has the potential to change the world.

Mauro Dragone, Assistant Professor, Cognitive Robotics, Multiagent systems, Internet of Things, Heriot-Watt University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: Willyam Bradberry/Shutterstock.com Continue reading

Posted in Human Robots

#433911 Thanksgiving Food for Thought: The Tech ...

With the Thanksgiving holiday upon us, it’s a great time to reflect on the future of food. Over the last few years, we have seen a dramatic rise in exponential technologies transforming the food industry from seed to plate. Food is important in many ways—too little or too much of it can kill us, and it is often at the heart of family, culture, our daily routines, and our biggest celebrations. The agriculture and food industries are also two of the world’s biggest employers. Let’s take a look to see what is in store for the future.

Robotic Farms
Over the last few years, we have seen a number of new companies emerge in the robotic farming industry. This includes new types of farming equipment used in arable fields, as well as indoor robotic vertical farms. In November 2017, Hands Free Hectare became the first in the world to remotely grow an arable crop. They used autonomous tractors to sow and spray crops, small rovers to take soil samples, drones to monitor crop growth, and an unmanned combine harvester to collect the crops. Since then, they’ve also grown and harvested a field of winter wheat, and have been adding additional technologies and capabilities to their arsenal of robotic farming equipment.

Indoor vertical farming is also rapidly expanding. As Engadget reported in October 2018, a number of startups are now growing crops like leafy greens, tomatoes, flowers, and herbs. These farms can grow food in urban areas, reducing transport, water, and fertilizer costs, and often don’t need pesticides since they are indoors. IronOx, which is using robots to grow plants with navigation technology used by self-driving cars, can grow 30 times more food per acre of land using 90 percent less water than traditional farmers. Vertical farming company Plenty was recently funded by Softbank’s Vision Fund, Jeff Bezos, and others to build 300 vertical farms in China.

These startups are not only succeeding in wealthy countries. Hello Tractor, an “uberized” tractor, has worked with 250,000 smallholder farms in Africa, creating both food security and tech-infused agriculture jobs. The World Food Progam’s Innovation Accelerator (an impact partner of Singularity University) works with hundreds of startups aimed at creating zero hunger. One project is focused on supporting refugees in developing “food computers” in refugee camps—computerized devices that grow food while also adjusting to the conditions around them. As exponential trends drive down the costs of robotics, sensors, software, and energy, we should see robotic farming scaling around the world and becoming the main way farming takes place.

Cultured Meat
Exponential technologies are not only revolutionizing how we grow vegetables and grains, but also how we generate protein and meat. The new cultured meat industry is rapidly expanding, led by startups such as Memphis Meats, Mosa Meats, JUST Meat, Inc. and Finless Foods, and backed by heavyweight investors including DFJ, Bill Gates, Richard Branson, Cargill, and Tyson Foods.

Cultured meat is grown in a bioreactor using cells from an animal, a scaffold, and a culture. The process is humane and, potentially, scientists can make the meat healthier by adding vitamins, removing fat, or customizing it to an individual’s diet and health concerns. Another benefit is that cultured meats, if grown at scale, would dramatically reduce environmental destruction, pollution, and climate change caused by the livestock and fishing industries. Similar to vertical farms, cultured meat is produced using technology and can be grown anywhere, on-demand and in a decentralized way.

Similar to robotic farming equipment, bioreactors will also follow exponential trends, rapidly falling in cost. In fact, the first cultured meat hamburger (created by Singularity University faculty Member Mark Post of Mosa Meats in 2013) cost $350,000 dollars. In 2018, Fast Company reported the cost was now about $11 per burger, and the Israeli startup Future Meat Technologies predicted they will produce beef at about $2 per pound in 2020, which will be competitive with existing prices. For those who have turkey on their mind, one can read about New Harvest’s work (one of the leading think tanks and research centers for the cultured meat and cellular agriculture industry) in funding efforts to generate a nugget of cultured turkey meat.

One outstanding question is whether cultured meat is safe to eat and how it will interact with the overall food supply chain. In the US, regulators like the Food and Drug Administration (FDA) and the US Department of Agriculture (USDA) are working out their roles in this process, with the FDA overseeing the cellular process and the FDA overseeing production and labeling.

Food Processing
Tech companies are also making great headway in streamlining food processing. Norwegian company Tomra Foods was an early leader in using imaging recognition, sensors, artificial intelligence, and analytics to more efficiently sort food based on shape, composition of fat, protein, and moisture, and other food safety and quality indicators. Their technologies have improved food yield by 5-10 percent, which is significant given they own 25 percent of their market.

These advances are also not limited to large food companies. In 2016 Google reported how a small family farm in Japan built a world-class cucumber sorting device using their open-source machine learning tool TensorFlow. SU startup Impact Vision uses hyper-spectral imaging to analyze food quality, which increases revenues and reduces food waste and product recalls from contamination.

These examples point to a question many have on their mind: will we live in a future where a few large companies use advanced technologies to grow the majority of food on the planet, or will the falling costs of these technologies allow family farms, startups, and smaller players to take part in creating a decentralized system? Currently, the future could flow either way, but it is important for smaller companies to take advantage of the most cutting-edge technology in order to stay competitive.

Food Purchasing and Delivery
In the last year, we have also seen a number of new developments in technology improving access to food. Amazon Go is opening grocery stores in Seattle, San Francisco, and Chicago where customers use an app that allows them to pick up their products and pay without going through cashier lines. Sam’s Club is not far behind, with an app that also allows a customer to purchase goods in-store.

The market for food delivery is also growing. In 2017, Morgan Stanley estimated that the online food delivery market from restaurants could grow to $32 billion by 2021, from $12 billion in 2017. Companies like Zume are pioneering robot-powered pizza making and delivery. In addition to using robotics to create affordable high-end gourmet pizzas in their shop, they also have a pizza delivery truck that can assemble and cook pizzas while driving. Their system combines predictive analytics using past customer data to prepare pizzas for certain neighborhoods before the orders even come in. In early November 2018, the Wall Street Journal estimated that Zume is valued at up to $2.25 billion.

Looking Ahead
While each of these developments is promising on its own, it’s also important to note that since all these technologies are in some way digitized and connected to the internet, the various food tech players can collaborate. In theory, self-driving delivery restaurants could share data on what they are selling to their automated farm equipment, facilitating coordination of future crops. There is a tremendous opportunity to improve efficiency, lower costs, and create an abundance of healthy, sustainable food for all.

On the other hand, these technologies are also deeply disruptive. According to the Food and Agricultural Organization of the United Nations, in 2010 about one billion people, or a third of the world’s workforce, worked in the farming and agricultural industries. We need to ensure these farmers are linked to new job opportunities, as well as facilitate collaboration between existing farming companies and technologists so that the industries can continue to grow and lead rather than be displaced.

Just as importantly, each of us might think about how these changes in the food industry might impact our own ways of life and culture. Thanksgiving celebrates community and sharing of food during a time of scarcity. Technology will help create an abundance of food and less need for communities to depend on one another. What are the ways that you will create community, sharing, and culture in this new world?

Image Credit: nikkytok / Shutterstock.com Continue reading

Posted in Human Robots

#433872 Breaking Out of the Corporate Bubble ...

For big companies, success is a blessing and a curse. You don’t get big without doing something (or many things) very right. It might start with an invention or service the world didn’t know it needed. Your product takes off, and growth brings a whole new set of logistical challenges. Delivering consistent quality, hiring the right team, establishing a strong culture, tapping into new markets, satisfying shareholders. The list goes on.

Eventually, however, what made you successful also makes you resistant to change.

You’ve built a machine for one purpose, and it’s running smoothly, but what about retooling that machine to make something new? Not so easy. Leaders of big companies know there is no future for their organizations without change. And yet, they struggle to drive it.

In their new book, Leading Transformation: How to Take Charge of Your Company’s Future, Kyle Nel, Nathan Furr, and Thomas Ramsøy aim to deliver a roadmap for corporate transformation.

The book focuses on practical tools that have worked in big companies to break down behavioral and cognitive biases, envision radical futures, and run experiments. These include using science fiction and narrative to see ahead and adopting better measures of success for new endeavors.

A thread throughout is how to envision a new future and move into that future.

We’re limited by the bubbles in which we spend the most time—the corporate bubble, the startup bubble, the nonprofit bubble. The mutually beneficial convergence of complementary bubbles, then, can be a powerful tool for kickstarting transformation. The views and experiences of one partner can challenge the accepted wisdom of the other; resources can flow into newly co-created visions and projects; and connections can be made that wouldn’t otherwise exist.

The authors call such alliances uncommon partners. In the following excerpt from the book, Made In Space, a startup building 3D printers for space, helps Lowe’s explore an in-store 3D printing system, and Lowe’s helps Made In Space expand its vision and focus.

Uncommon Partners
In a dingy conference room at NASA, five prototypical nerds, smelling of Thai food, laid out the path to printing satellites in space and buildings on distant planets. At the end of their four-day marathon, they emerged with an artifact trail that began with early prototypes for the first 3D printer on the International Space Station and ended in the additive-manufacturing future—a future much bigger than 3D printing.

In the additive-manufacturing future, we will view everything as transient, or capable of being repurposed into new things. Rather than throwing away a soda bottle or a bent nail, we will simply reprocess these things into a new hinge for the fence we are building or a light switch plate for the tool shed. Indeed, we might not even go buy bricks for the tool shed, but instead might print them from impurities pulled from the air and the dirt beneath our feet. Such a process would both capture carbon in the air to make the bricks and avoid all the carbon involved in making and then transporting traditional bricks to your house.

If it all sounds a little too science fiction, think again. Lowe’s has already been honored as a Champion of Change by the US government for its prototype system to recycle plastic (e.g., plastic bags and bottles). The future may be closer than you have imagined. But to get there, Lowe’s didn’t work alone. It had to work with uncommon partners to create the future.

Uncommon partners are the types of organizations you might not normally work with, but which can greatly help you create radical new futures. Increasingly, as new technologies emerge and old industries converge, companies are finding that working independently to create all the necessary capabilities to enter new industries or create new technologies is costly, risky, and even counterproductive. Instead, organizations are finding that they need to collaborate with uncommon partners as an ecosystem to cocreate the future together. Nathan [Furr] and his colleague at INSEAD, Andrew Shipilov, call this arrangement an adaptive ecosystem strategy and described how companies such as Lowe’s, Samsung, Mastercard, and others are learning to work differently with partners and to work with different kinds of partners to more effectively discover new opportunities. For Lowe’s, an adaptive ecosystem strategy working with uncommon partners forms the foundation of capturing new opportunities and transforming the company. Despite its increased agility, Lowe’s can’t be (and shouldn’t become) an independent additive-manufacturing, robotics-using, exosuit-building, AR-promoting, fill-in-the-blank-what’s-next-ing company in addition to being a home improvement company. Instead, Lowe’s applies an adaptive ecosystem strategy to find the uncommon partners with which it can collaborate in new territory.

To apply the adaptive ecosystem strategy with uncommon partners, start by identifying the technical or operational components required for a particular focus area (e.g., exosuits) and then sort these components into three groups. First, there are the components that are emerging organically without any assistance from the orchestrator—the leader who tries to bring together the adaptive ecosystem. Second, there are the elements that might emerge, with encouragement and support. Third are the elements that won’t happen unless you do something about it. In an adaptive ecosystem strategy, you can create regular partnerships for the first two elements—those already emerging or that might emerge—if needed. But you have to create the elements in the final category (those that won’t emerge) either with an uncommon partner or by yourself.

For example, when Lowe’s wanted to explore the additive-manufacturing space, it began a search for an uncommon partner to provide the missing but needed capabilities. Unfortunately, initial discussions with major 3D printing companies proved disappointing. The major manufacturers kept trying to sell Lowe’s 3D printers. But the vision our group had created with science fiction was not for vendors to sell Lowe’s a printer, but for partners to help the company build a system—something that would allow customers to scan, manipulate, print, and eventually recycle additive-manufacturing objects. Every time we discussed 3D printing systems with these major companies, they responded that they could do it and then tried to sell printers. When Carin Watson, one of the leading lights at Singularity University, introduced us to Made In Space (a company being incubated in Singularity University’s futuristic accelerator), we discovered an uncommon partner that understood what it meant to cocreate a system.

Initially, Made In Space had been focused on simply getting 3D printing to work in space, where you can’t rely on gravity, you can’t send up a technician if the machine breaks, and you can’t release noxious fumes into cramped spacecraft quarters. But after the four days in the conference room going over the comic for additive manufacturing, Made In Space and Lowe’s emerged with a bigger vision. The company helped lay out an artifact trail that included not only the first printer on the International Space Station but also printing system services in Lowe’s stores.

Of course, the vision for an additive-manufacturing future didn’t end there. It also reshaped Made In Space’s trajectory, encouraging the startup, during those four days in a NASA conference room, to design a bolder future. Today, some of its bold projects include the Archinaut, a system that enables satellites to build themselves while in space, a direction that emerged partly from the science fiction narrative we created around additive manufacturing.

In summary, uncommon partners help you succeed by providing you with the capabilities you shouldn’t be building yourself, as well as with fresh insights. You also help uncommon partners succeed by creating new opportunities from which they can prosper.

Helping Uncommon Partners Prosper
Working most effectively with uncommon partners can require a shift from more familiar outsourcing or partnership relationships. When working with uncommon partners, you are trying to cocreate the future, which entails a great deal more uncertainty. Because you can’t specify outcomes precisely, agreements are typically less formal than in other types of relationships, and they operate under the provisions of shared vision and trust more than binding agreement clauses. Moreover, your goal isn’t to extract all the value from the relationship. Rather, you need to find a way to share the value.

Ideally, your uncommon partners should be transformed for the better by the work you do. For example, Lowe’s uncommon partner developing the robotics narrative was a small startup called Fellow Robots. Through their work with Lowe’s, Fellow Robots transformed from a small team focused on a narrow application of robotics (which was arguably the wrong problem) to a growing company developing a very different and valuable set of capabilities: putting cutting-edge technology on top of the old legacy systems embedded at the core of most companies. Working with Lowe’s allowed Fellow Robots to discover new opportunities, and today Fellow Robots works with retailers around the world, including BevMo! and Yamada. Ultimately, working with uncommon partners should be transformative for both of you, so focus more on creating a bigger pie than on how you are going to slice up a smaller pie.

The above excerpt appears in the new book Leading Transformation: How to Take Charge of Your Company’s Future by Kyle Nel, Nathan Furr, and Thomas Ramsøy, published by Harvard Business Review Press.

Image Credit: Here / Shutterstock.com

We are a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for us to earn fees by linking to Amazon.com and affiliated sites. Continue reading

Posted in Human Robots

#433803 This Week’s Awesome Stories From ...

ARTIFICIAL INTELLIGENCE
The AI Cold War That Could Doom Us All
Nicholas Thompson | Wired
“At the dawn of a new stage in the digital revolution, the world’s two most powerful nations are rapidly retreating into positions of competitive isolation, like players across a Go board. …Is the arc of the digital revolution bending toward tyranny, and is there any way to stop it?”

LONGEVITY
Finally, the Drug That Keeps You Young
Stephen S. Hall | MIT Technology Review
“The other thing that has changed is that the field of senescence—and the recognition that senescent cells can be such drivers of aging—has finally gained acceptance. Whether those drugs will work in people is still an open question. But the first human trials are under way right now.”

SYNTHETIC BIOLOGY
Ginkgo Bioworks Is Turning Human Cells Into On-Demand Factories
Megan Molteni | Wired
“The biotech unicorn is already cranking out an impressive number of microbial biofactories that grow and multiply and burp out fragrances, fertilizers, and soon, psychoactive substances. And they do it at a fraction of the cost of traditional systems. But Kelly is thinking even bigger.”

CYBERNETICS
Thousands of Swedes Are Inserting Microchips Under Their Skin
Maddy Savage | NPR
“Around the size of a grain of rice, the chips typically are inserted into the skin just above each user’s thumb, using a syringe similar to that used for giving vaccinations. The procedure costs about $180. So many Swedes are lining up to get the microchips that the country’s main chipping company says it can’t keep up with the number of requests.”

ART
AI Art at Christie’s Sells for $432,500
Gabe Cohn | The New York Times
“Last Friday, a portrait produced by artificial intelligence was hanging at Christie’s New York opposite an Andy Warhol print and beside a bronze work by Roy Lichtenstein. On Thursday, it sold for well over double the price realized by both those pieces combined.”

ETHICS
Should a Self-Driving Car Kill the Baby or the Grandma? Depends on Where You’re From
Karen Hao | MIT Technology Review
“The researchers never predicted the experiment’s viral reception. Four years after the platform went live, millions of people in 233 countries and territories have logged 40 million decisions, making it one of the largest studies ever done on global moral preferences.”

TECHNOLOGY
The Rodney Brooks Rules for Predicting a Technology’s Success
Rodney Brooks | IEEE Spectrum
“Building electric cars and reusable rockets is fairly easy. Building a nuclear fusion reactor, flying cars, self-driving cars, or a Hyperloop system is very hard. What makes the difference?”

Image Source: spainter_vfx / Shutterstock.com Continue reading

Posted in Human Robots

#433785 DeepMind’s Eerie Reimagination of the ...

If a recent project using Google’s DeepMind were a recipe, you would take a pair of AI systems, images of animals, and a whole lot of computing power. Mix it all together, and you’d get a series of imagined animals dreamed up by one of the AIs. A look through the research paper about the project—or this open Google Folder of images it produced—will likely lead you to agree that the results are a mix of impressive and downright eerie.

But the eerie factor doesn’t mean the project shouldn’t be considered a success and a step forward for future uses of AI.

From GAN To BigGAN
The team behind the project consists of Andrew Brock, a PhD student at Edinburgh Center for Robotics, and DeepMind intern and researcher Jeff Donahue and Karen Simonyan.

They used a so-called Generative Adversarial Network (GAN) to generate the images. In a GAN, two AI systems collaborate in a game-like manner. One AI produces images of an object or creature. The human equivalent would be drawing pictures of, for example, a dog—without necessarily knowing what a dog exactly looks like. Those images are then shown to the second AI, which has already been fed images of dogs. The second AI then tells the first one how far off its efforts were. The first one uses this information to improve its images. The two go back and forth in an iterative process, and the goal is for the first AI to become so good at creating images of dogs that the second can’t tell the difference between its creations and actual pictures of dogs.

The team was able to draw on Google’s vast vaults of computational power to create images of a quality and life-like nature that were beyond almost anything seen before. In part, this was achieved by feeding the GAN with more images than is usually the case. According to IFLScience, the standard is to feed about 64 images per subject into the GAN. In this case, the research team fed about 2,000 images per subject into the system, leading to it being nicknamed BigGAN.

Their results showed that feeding the system with more images and using masses of raw computer power markedly increased the GAN’s precision and ability to create life-like renditions of the subjects it was trained to reproduce.

“The main thing these models need is not algorithmic improvements, but computational ones. […] When you increase model capacity and you increase the number of images you show at every step, you get this twofold combined effect,” Andrew Brock told Fast Company.

The Power Drain
The team used 512 of Google’s AI-focused Tensor Processing Units (TPU) to generate 512-pixel images. Each experiment took between 24 and 48 hours to run.

That kind of computing power needs a lot of electricity. As artist and Innovator-In-Residence at the Library of Congress Jer Thorp tongue-in-cheek put it on Twitter: “The good news is that AI can now give you a more believable image of a plate of spaghetti. The bad news is that it used roughly enough energy to power Cleveland for the afternoon.”

Thorp added that a back-of-the-envelope calculation showed that the computations to produce the images would require about 27,000 square feet of solar panels to have adequate power.

BigGAN’s images have been hailed by researchers, with Oriol Vinyals, research scientist at DeepMind, rhetorically asking if these were the ‘Best GAN samples yet?’

However, they are still not perfect. The number of legs on a given creature is one example of where the BigGAN seemed to struggle. The system was good at recognizing that something like a spider has a lot of legs, but seemed unable to settle on how many ‘a lot’ was supposed to be. The same applied to dogs, especially if the images were supposed to show said dogs in motion.

Those eerie images are contrasted by other renditions that show such lifelike qualities that a human mind has a hard time identifying them as fake. Spaniels with lolling tongues, ocean scenery, and butterflies were all rendered with what looks like perfection. The same goes for an image of a hamburger that was good enough to make me stop writing because I suddenly needed lunch.

The Future Use Cases
GAN networks were first introduced in 2014, and given their relative youth, researchers and companies are still busy trying out possible use cases.

One possible use is image correction—making pixillated images clearer. Not only does this help your future holiday snaps, but it could be applied in industries such as space exploration. A team from the University of Michigan and the Max Planck Institute have developed a method for GAN networks to create images from text descriptions. At Berkeley, a research group has used GAN to create an interface that lets users change the shape, size, and design of objects, including a handbag.

For anyone who has seen a film like Wag the Dog or read 1984, the possibilities are also starkly alarming. GANs could, in other words, make fake news look more real than ever before.

For now, it seems that while not all GANs require the computational and electrical power of the BigGAN, there is still some way to reach these potential use cases. However, if there’s one lesson from Moore’s Law and exponential technology, it is that today’s technical roadblock quickly becomes tomorrow’s minor issue as technology progresses.

Image Credit: Ondrej Prosicky/Shutterstock Continue reading

Posted in Human Robots