Tag Archives: making
#437471 How Giving Robots a Hybrid, Human-Like ...
Squeezing a lot of computing power into robots without using up too much space or energy is a constant battle for their designers. But a new approach that mimics the structure of the human brain could provide a workaround.
The capabilities of most of today’s mobile robots are fairly rudimentary, but giving them the smarts to do their jobs is still a serious challenge. Controlling a body in a dynamic environment takes a surprising amount of processing power, which requires both real estate for chips and considerable amounts of energy to power them.
As robots get more complex and capable, those demands are only going to increase. Today’s most powerful AI systems run in massive data centers across far more chips than can realistically fit inside a machine on the move. And the slow death of Moore’s Law suggests we can’t rely on conventional processors getting significantly more efficient or compact anytime soon.
That prompted a team from the University of Southern California to resurrect an idea from more than 40 years ago: mimicking the human brain’s division of labor between two complimentary structures. While the cerebrum is responsible for higher cognitive functions like vision, hearing, and thinking, the cerebellum integrates sensory data and governs movement, balance, and posture.
When the idea was first proposed the technology didn’t exist to make it a reality, but in a paper recently published in Science Robotics, the researchers describe a hybrid system that combines analog circuits that control motion and digital circuits that govern perception and decision-making in an inverted pendulum robot.
“Through this cooperation of the cerebrum and the cerebellum, the robot can conduct multiple tasks simultaneously with a much shorter latency and lower power consumption,” write the researchers.
The type of robot the researchers were experimenting with looks essentially like a pole balancing on a pair of wheels. They have a broad range of applications, from hoverboards to warehouse logistics—Boston Dynamics’ recently-unveiled Handle robot operates on the same principles. Keeping them stable is notoriously tough, but the new approach managed to significantly improve all digital control approaches by radically improving the speed and efficiency of computations.
Key to bringing the idea alive was the recent emergence of memristors—electrical components whose resistance relies on previous input, which allows them to combine computing and memory in one place in a way similar to how biological neurons operate.
The researchers used memristors to build an analog circuit that runs an algorithm responsible for integrating data from the robot’s accelerometer and gyroscope, which is crucial for detecting the angle and velocity of its body, and another that controls its motion. One key advantage of this setup is that the signals from the sensors are analog, so it does away with the need for extra circuitry to convert them into digital signals, saving both space and power.
More importantly, though, the analog system is an order of magnitude faster and more energy-efficient than a standard all-digital system, the authors report. This not only lets them slash the power requirements, but also lets them cut the processing loop from 3,000 microseconds to just 6. That significantly improves the robot’s stability, with it taking just one second to settle into a steady state compared to more than three seconds using the digital-only platform.
At the minute this is just a proof of concept. The robot the researchers have built is small and rudimentary, and the algorithms being run on the analog circuit are fairly basic. But the principle is a promising one, and there is currently a huge amount of R&D going into neuromorphic and memristor-based analog computing hardware.
As often turns out to be the case, it seems like we can’t go too far wrong by mimicking the best model of computation we have found so far: our own brains.
Image Credit: Photos Hobby / Unsplash Continue reading
#437446 Can the voice of healthcare robots ...
Robots are gradually making their way into hospitals and other clinical facilities, providing basic assistance to doctors and patients. To facilitate their widespread use in health care settings, however, robotics researchers need to ensure that users feel at ease with robots and accept the help they can offer. This could potentially be achieved by developing robots that communicate in empathetic and compassionate ways. Continue reading
#437357 Algorithms Workers Can’t See Are ...
“I’m sorry, Dave. I’m afraid I can’t do that.” HAL’s cold, if polite, refusal to open the pod bay doors in 2001: A Space Odyssey has become a defining warning about putting too much trust in artificial intelligence, particularly if you work in space.
In the movies, when a machine decides to be the boss (or humans let it) things go wrong. Yet despite myriad dystopian warnings, control by machines is fast becoming our reality.
Algorithms—sets of instructions to solve a problem or complete a task—now drive everything from browser search results to better medical care.
They are helping design buildings. They are speeding up trading on financial markets, making and losing fortunes in micro-seconds. They are calculating the most efficient routes for delivery drivers.
In the workplace, self-learning algorithmic computer systems are being introduced by companies to assist in areas such as hiring, setting tasks, measuring productivity, evaluating performance, and even terminating employment: “I’m sorry, Dave. I’m afraid you are being made redundant.”
Giving self‐learning algorithms the responsibility to make and execute decisions affecting workers is called “algorithmic management.” It carries a host of risks in depersonalizing management systems and entrenching pre-existing biases.
At an even deeper level, perhaps, algorithmic management entrenches a power imbalance between management and worker. Algorithms are closely guarded secrets. Their decision-making processes are hidden. It’s a black-box: perhaps you have some understanding of the data that went in, and you see the result that comes out, but you have no idea of what goes on in between.
Algorithms at Work
Here are a few examples of algorithms already at work.
At Amazon’s fulfillment center in south-east Melbourne, they set the pace for “pickers,” who have timers on their scanners showing how long they have to find the next item. As soon as they scan that item, the timer resets for the next. All at a “not quite walking, not quite running” speed.
Or how about AI determining your success in a job interview? More than 700 companies have trialed such technology. US developer HireVue says its software speeds up the hiring process by 90 percent by having applicants answer identical questions and then scoring them according to language, tone, and facial expressions.
Granted, human assessments during job interviews are notoriously flawed. Algorithms,however, can also be biased. The classic example is the COMPAS software used by US judges, probation, and parole officers to rate a person’s risk of re-offending. In 2016 a ProPublica investigation showed the algorithm was heavily discriminatory, incorrectly classifying black subjects as higher risk 45 percent of the time, compared with 23 percent for white subjects.
How Gig Workers Cope
Algorithms do what their code tells them to do. The problem is this code is rarely available. This makes them difficult to scrutinize, or even understand.
Nowhere is this more evident than in the gig economy. Uber, Lyft, Deliveroo, and other platforms could not exist without algorithms allocating, monitoring, evaluating, and rewarding work.
Over the past year Uber Eats’ bicycle couriers and drivers, for instance, have blamed unexplained changes to the algorithm for slashing their jobs, and incomes.
Rider’s can’t be 100 percent sure it was all down to the algorithm. But that’s part of the problem. The fact those who depend on the algorithm don’t know one way or the other has a powerful influence on them.
This is a key result from our interviews with 58 food-delivery couriers. Most knew their jobs were allocated by an algorithm (via an app). They knew the app collected data. What they didn’t know was how data was used to award them work.
In response, they developed a range of strategies (or guessed how) to “win” more jobs, such as accepting gigs as quickly as possible and waiting in “magic” locations. Ironically, these attempts to please the algorithm often meant losing the very flexibility that was one of the attractions of gig work.
The information asymmetry created by algorithmic management has two profound effects. First, it threatens to entrench systemic biases, the type of discrimination hidden within the COMPAS algorithm for years. Second, it compounds the power imbalance between management and worker.
Our data also confirmed others’ findings that it is almost impossible to complain about the decisions of the algorithm. Workers often do not know the exact basis of those decisions, and there’s no one to complain to anyway. When Uber Eats bicycle couriers asked for reasons about their plummeting income, for example, responses from the company advised them “we have no manual control over how many deliveries you receive.”
Broader Lessons
When algorithmic management operates as a “black box” one of the consequences is that it is can become an indirect control mechanism. Thus far under-appreciated by Australian regulators, this control mechanism has enabled platforms to mobilize a reliable and scalable workforce while avoiding employer responsibilities.
“The absence of concrete evidence about how the algorithms operate”, the Victorian government’s inquiry into the “on-demand” workforce notes in its report, “makes it hard for a driver or rider to complain if they feel disadvantaged by one.”
The report, published in June, also found it is “hard to confirm if concern over algorithm transparency is real.”
But it is precisely the fact it is hard to confirm that’s the problem. How can we start to even identify, let alone resolve, issues like algorithmic management?
Fair conduct standards to ensure transparency and accountability are a start. One example is the Fair Work initiative, led by the Oxford Internet Institute. The initiative is bringing together researchers with platforms, workers, unions, and regulators to develop global principles for work in the platform economy. This includes “fair management,” which focuses on how transparent the results and outcomes of algorithms are for workers.
Understandings about impact of algorithms on all forms of work is still in its infancy. It demands greater scrutiny and research. Without human oversight based on agreed principles we risk inviting HAL into our workplaces.
This article is republished from The Conversation under a Creative Commons license. Read the original article.
Image Credit: PickPik Continue reading
#437345 Moore’s Law Lives: Intel Says Chips ...
If you weren’t already convinced the digital world is taking over, you probably are now.
To keep the economy on life support as people stay home to stem the viral tide, we’ve been forced to digitize interactions at scale (for better and worse). Work, school, events, shopping, food, politics. The companies at the center of the digital universe are now powerhouses of the modern era—worth trillions and nearly impossible to avoid in daily life.
Six decades ago, this world didn’t exist.
A humble microchip in the early 1960s would have boasted a handful of transistors. Now, your laptop or smartphone runs on a chip with billions of transistors. As first described by Moore’s Law, this is possible because the number of transistors on a chip doubled with extreme predictability every two years for decades.
But now progress is faltering as the size of transistors approaches physical limits, and the money and time it takes to squeeze a few more onto a chip are growing. There’ve been many predictions that Moore’s Law is, finally, ending. But, perhaps also predictably, the company whose founder coined Moore’s Law begs to differ.
In a keynote presentation at this year’s Hot Chips conference, Intel’s chief architect, Raja Koduri, laid out a roadmap to increase transistor density—that is, the number of transistors you can fit on a chip—by a factor of 50.
“We firmly believe there is a lot more transistor density to come,” Koduri said. “The vision will play out over time—maybe a decade or more—but it will play out.”
Why the optimism?
Calling the end of Moore’s Law is a bit of a tradition. As Peter Lee, vice president at Microsoft Research, quipped to The Economist a few years ago, “The number of people predicting the death of Moore’s Law doubles every two years.” To date, prophets of doom have been premature, and though the pace is slowing, the industry continues to dodge death with creative engineering.
Koduri believes the trend will continue this decade and outlined the upcoming chip innovations Intel thinks can drive more gains in computing power.
Keeping It Traditional
First, engineers can further shrink today’s transistors. Fin field effect transistors (or FinFET) first hit the scene in the 2010s and have since pushed chip features past 14 and 10 nanometers (or nodes, as such size checkpoints are called). Korduri said FinFET will again triple chip density before it’s exhausted.
The Next Generation
FinFET will hand the torch off to nanowire transistors (also known as gate-all-around transistors).
Here’s how they’ll work. A transistor is made up of three basic components: the source, where current is introduced, the gate and channel, where current selectively flows, and the drain. The gate is like a light switch. It controls how much current flows through the channel. A transistor is “on” when the gate allows current to flow, and it’s off when no current flows. The smaller transistors get, the harder it is to control that current.
FinFET maintained fine control of current by surrounding the channel with a gate on three sides. Nanowire designs kick that up a notch by surrounding the channel with a gate on four sides (hence, gate-all-around). They’ve been in the works for years and are expected around 2025. Koduri said first-generation nanowire transistors will be followed by stacked nanowire transistors, and together, they’ll quadruple transistor density.
Building Up
Growing transistor density won’t only be about shrinking transistors, but also going 3D.
This is akin to how skyscrapers increase a city’s population density by adding more usable space on the same patch of land. Along those lines, Intel recently launched its Foveros chip design. Instead of laying a chip’s various “neighborhoods” next to each other in a 2D silicon sprawl, they’ve stacked them on top of each other like a layer cake. Chip stacking isn’t entirely new, but it’s advancing and being applied to general purpose CPUs, like the chips in your phone and laptop.
Koduri said 3D chip stacking will quadruple transistor density.
A Self-Fulfilling Prophecy
The technologies Koduri outlines are an evolution of the same general technology in use today. That is, we don’t need quantum computing or nanotube transistors to augment or replace silicon chips yet. Rather, as it’s done many times over the years, the chip industry will get creative with the design of its core product to realize gains for another decade.
Last year, veteran chip engineer Jim Keller, who at the time was Intel’s head of silicon engineering but has since left the company, told MIT Technology Review there are over a 100 variables driving Moore’s Law (including 3D architectures and new transistor designs). From the standpoint of pure performance, it’s also about how efficiently software uses all those transistors. Keller suggested that with some clever software tweaks “we could get chips that are a hundred times faster in 10 years.”
But whether Intel’s vision pans out as planned is far from certain.
Intel’s faced challenges recently, taking five years instead of two to move its chips from 14 nanometers to 10 nanometers. After a delay of six months for its 7-nanometer chips, it’s now a year behind schedule and lagging other makers who already offer 7-nanometer chips. This is a key point. Yes, chipmakers continue making progress, but it’s getting harder, more expensive, and timelines are stretching.
The question isn’t if Intel and competitors can cram more transistors onto a chip—which, Intel rival TSMC agrees is clearly possible—it’s how long will it take and at what cost?
That said, demand for more computing power isn’t going anywhere.
Amazon, Microsoft, Alphabet, Apple, and Facebook now make up a whopping 20 percent of the stock market’s total value. By that metric, tech is the most dominant industry in at least 70 years. And new technologies—from artificial intelligence and virtual reality to a proliferation of Internet of Things devices and self-driving cars—will demand better chips.
There’s ample motivation to push computing to its bitter limits and beyond. As is often said, Moore’s Law is a self-fulfilling prophecy, and likely whatever comes after it will be too.
Image credit: Laura Ockel / Unsplash Continue reading