Tag Archives: makes

#437857 Video Friday: Robotic Third Hand Helps ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

ICRA 2020 – June 1-15, 2020 – [Virtual Conference]
RSS 2020 – July 12-16, 2020 – [Virtual Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today’s videos.

We are seeing some exciting advances in the development of supernumerary robotic limbs. But one thing about this technology remains a major challenge: How do you control the extra limb if your own hands are busy—say, if you’re carrying a package? MIT researchers at Professor Harry Asada’s lab have an idea. They are using subtle finger movements in sensorized gloves to control the supernumerary limb. The results are promising, and they’ve demonstrated a waist-mounted arm with a qb SoftHand that can help you with doors, elevators, and even handshakes.

[ Paper ]

ROBOPANDA

Fluid actuated soft robots, or fluidic elastomer actuators, have shown great potential in robotic applications where large compliance and safe interaction are dominant concerns. They have been widely studied in wearable robotics, prosthetics, and rehabilitations in recent years. However, such soft robots and actuators are tethered to a bulky pump and controlled by various valves, limiting their applications to a small confined space. In this study, we report a new and effective approach to fluidic power actuation that is untethered, easy to design, fabricate, control, and allows various modes of actuation. In the proposed approach, a sealed elastic tube filled with fluid (gas or liquid) is segmented by adaptors. When twisting a segment, two major effects could be observed: (1) the twisted segment exhibits a contraction force and (2) other segments inflate or deform according to their constraint patterns.

[ Paper ]

And now: “Magnetic cilia carpets.”

[ ETH Zurich ]

To adhere to government recommendations while maintaining requirements for social distancing during the COVID-19 pandemic, Yaskawa Motoman is now utilizing an HC10DT collaborative robot to take individual employee temperatures. Named “Covie”, the design and fabrication of the robotic solution and its software was a combined effort by Yaskawa Motoman’s Technology Advancement Team (TAT) and Product Solutions Group (PSG), as well as a group of robotics students from the University of Dayton.

They should have programmed it to nod if your temperature was normal, and smacked you upside the head while yelling “GO HOME” if it wasn’t.

[ Yaskawa ]

Driving slowly on pre-defined routes, ZMP’s RakuRo autonomous vehicle helps people with mobility challenges enjoy cherry blossoms in Japan.

RakuRo costs about US $1,000 per month to rent, but ZMP suggests that facilities or groups of ~10 people could get together and share one, which makes the cost much more reasonable.

[ ZMP ]

Jessy Grizzle from the Dynamic Legged Locomotion Lab at the University of Michigan writes:

Our lab closed on March 20, 2020 under the State of Michigan’s “Stay Home, Stay Safe” order. For a 24-hour period, it seemed that our labs would be “sanitized” during our absence. Since we had no idea what that meant, we decided that Cassie Blue needed to “Stay Home, Stay Safe” as well. We loaded up a very expensive robot and took her off campus. On May 26, we were allowed to re-open our laboratory. After thoroughly cleaning the lab, disinfecting tools and surfaces, developing and getting approval for new safe operation procedures, we then re-organized our work areas to respect social distancing requirements and brought Cassie back to the laboratory.

During the roughly two months we were working remotely, the lab’s members got a lot done. Papers were written, dissertation proposals were composed, and plans for a new course, ROB 101, Computational Linear Algebra, were developed with colleagues. In addition, one of us (Yukai Gong) found the lockdown to his liking! He needed the long period of quiet to work through some new ideas for how to control 3D bipedal robots.

[ Michigan Robotics ]

Thanks Jesse and Bruce!

You can tell that this video of how Pepper has been useful during COVID-19 is not focused on the United States, since it refers to the pandemic in past tense.

[ Softbank Robotics ]

NASA’s water-seeking robotic Moon rover just booked a ride to the Moon’s South Pole. Astrobotic of Pittsburgh, Pennsylvania, has been selected to deliver the Volatiles Investigating Polar Exploration Rover, or VIPER, to the Moon in 2023.

[ NASA ]

This could be the most impressive robotic gripper demo I have ever seen.

[ Soft Robotics ]

Whiz, an autonomous vacuum sweeper, innovates the cleaning industry by automating tedious tasks for your team. Easy to train, easy to use, Whiz works with your staff to deliver a high-quality clean while increasing efficiency and productivity.

[ Softbank Robotics ]

About 40 seconds into this video, a robot briefly chases a goose.

[ Ghost Robotics ]

SwarmRail is a new concept for rail-guided omnidirectional mobile robot systems. It aims for a highly flexible production process in the factory of the future by opening up the available work space from above. This means that transport and manipulation tasks can be carried out by floor- and ceiling-bound robot systems. The special feature of the system is the combination of omnidirectionally mobile units with a grid-shaped rail network, which is characterized by passive crossings and a continuous gap between the running surfaces of the rails. Through this gap, a manipulator operating below the rail can be connected to a mobile unit traveling on the rail.

[ DLRRMC ]

RightHand Robotics (RHR), a leader in providing robotic piece-picking solutions, is partnered with PALTAC Corporation, Japan’s largest wholesaler of consumer packaged goods. The collaboration introduces RightHand’s newest piece-picking solution to the Japanese market, with multiple workstations installed in PALTAC’s newest facility, RDC Saitama, which opened in 2019 in Sugito, Saitama Prefecture, Japan.

[ RightHand Robotics ]

From the ICRA 2020, a debate on the “Future of Robotics Research,” addressing such issues as “robotics research is over-reliant on benchmark datasets and simulation” and “robots designed for personal or household use have failed because of fundamental misunderstandings of Human-Robot Interaction (HRI).”

[ Robotics Debates ]

MassRobotics has a series of interviews where robotics celebrities are interviewed by high school students.The students are perhaps a little awkward (remember being in high school?), but it’s honest and the questions are interesting. The first two interviews are with Laurie Leshin, who worked on space robots at NASA and is now President of Worcester Polytechnic Institute, and Colin Angle, founder and CEO of iRobot.

[ MassRobotics ]

Thanks Andrew!

In this episode of the Voices from DARPA podcast, Dr. Timothy Chung, a program manager since 2016 in the agency’s Tactical Technology Office, delves into his robotics and autonomous technology programs – the Subterranean (SubT) Challenge and OFFensive Swarm-Enabled Tactics (OFFSET). From robot soccer to live-fly experimentation programs involving dozens of unmanned aircraft systems (UASs), he explains how he aims to assist humans heading into unknown environments via advances in collaborative autonomy and robotics.

[ DARPA ] Continue reading

Posted in Human Robots

#437851 Boston Dynamics’ Spot Robot Dog ...

Boston Dynamics has been fielding questions about when its robots are going to go on sale and how much they’ll cost for at least a dozen years now. I can say this with confidence, because that’s how long I’ve been a robotics journalist, and I’ve been pestering them about it the entire time. But it’s only relatively recently that the company started to make a concerted push away from developing robots exclusively for the likes of DARPA into platforms with more commercial potential, starting with a compact legged robot called Spot, first introduced in 2016.

Since then, we’ve been following closely as Spot has gone from a research platform to a product, and today, Boston Dynamics is announcing the final step in that process: commercial availability. You can now order a Spot Explorer Kit from the Boston Dynamics online store for US $74,500 (plus tax), shipping included, with delivery in 6 to 8 weeks. FINALLY!

Over the past 10 months or so, Boston Dynamics has leased Spot robots to carefully selected companies, research groups, and even a few individuals as part of their early adopter program—that’s where all of the clips in the video below came from. While there are over 100 Spots out in the world right now, getting one of them has required convincing Boston Dynamics up front that you knew more or less exactly what you wanted to do and how you wanted to do it. If you’re a big construction company or the Jet Propulsion Laboratory or Adam Savage, that’s all well and good, but for other folks who think that a Spot could be useful for them somehow and want to give it a shot, this new availability provides a fewer-strings attached opportunity to do some experimentation with the robot.

There’s a lot of cool stuff going on in that video, but we were told that the one thing that really stood out to the folks at Boston Dynamics was a 2-second clip that you can see on the left-hand side of the screen from 0:19 to 0:21. In it, Spot is somehow managing to walk across a spider web of rebar without getting tripped up, at faster than human speed. This isn’t something that Spot was specifically programmed to do, and in fact the Spot User Guide specifically identifies “rebar mesh” as an unsafe operating environment. But the robot just handles it, and that’s a big part of what makes Spot so useful—its ability to deal with (almost) whatever you can throw at it.

Before you get too excited, Boston Dynamics is fairly explicit that the current license for the robot is intended for commercial use, and the company specifically doesn’t want people to be just using it at home for fun. We know this because we asked (of course we asked), and they told us “we specifically don’t want people to just be using it at home for fun.” Drat. You can still buy one as an individual, but you have to promise that you’ll follow the terms of use and user guidelines, and it sounds like using a robot in your house might be the second-fastest way to invalidate your warranty:

SPOT IS AN AMAZING ROBOT, BUT IS NOT CERTIFIED SAFE FOR IN-HOME USE OR INTENDED FOR USE NEAR CHILDREN OR OTHERS WHO MAY NOT APPRECIATE THE HAZARDS ASSOCIATED WITH ITS OPERATION.

Not being able to get Spot to play with your kids may be disappointing, but for those of you with the sort of kids who are also students, the good news is that Boston Dynamics has carved out a niche for academic institutions, which can buy Spot at a discounted price. And if you want to buy a whole pack of Spots, there’s a bulk discount for Enterprise users as well.

What do you get for $74,500? All this!

Spot robot
Spot battery (2x)
Spot charger
Tablet controller and charger
Robot case for storage and transportation
FREE SHIPPING!

Photo: Boston Dynamics

The basic package includes the robot, two batteries, charger, a tablet controller, and a storage case.

You can view detailed specs here.

So is $75k a lot of money for a robot like Spot, or not all that much? We don’t have many useful points of comparison, partially because it’s not clear to what extent other pre-commercial quadrupedal robots (like ANYmal or Aliengo) share capabilities and features with Spot. For more perspective on Spot’s price tag, we spoke to Michael Perry, vice president of business development at Boston Dynamics.

IEEE Spectrum: Why is Spot so affordable?

Michael Perry: The main goal of selling the robot at this stage is to try to get it into the hands of as many application developers as possible, so that we can learn from the community what the biggest driver of value is for Spot. As a platform, unlocking the value of an ecosystem is our core focus right now.

Spectrum: Why is Spot so expensive?

Perry: Expensive is relative, but compared to the initial prototypes of Spot, we’ve been able to drop down the cost pretty significantly. One key thing has been designing it for robustness—we’ve put hundreds and hundreds of hours on the robot to make sure that it’s able to be successful when it falls, or when it has an electrostatic discharge. We’ve made sure that it’s able to perceive a wide variety of environments that are difficult for traditional vision-based sensors to handle. A lot of that engineering is baked into the core product so that you don’t have to worry about the mobility or robotic side of the equation, you can just focus on application development.

Photos: Boston Dynamics

Accessories for Spot include [clockwise from top left]: Spot GXP with additional ports for payload integration; Spot CAM with panorama camera and advanced comms; Spot CAM+ with pan-tilt-zoom camera for inspections; Spot EAP with lidar to enhance autonomy on large sites; Spot EAP+ with Spot CAM camera plus lidar; and Spot CORE for additional processing power.

The $75k that you’ll pay for the Spot Explorer Kit, it’s important to note, is just the base price for the robot. As with other things that fall into this price range (like a luxury car), there are all kinds of fun ways to drive that cost up with accessories, although for Spot, some of those accessories will be necessary for many (if not most) applications. For example, a couple of expansion ports to make it easier to install your own payloads on Spot will run you $1,275. An additional battery is $4,620. And if you want to really get some work done, the Enhanced Autonomy Package (with 360 cameras, lights, better comms, and a Velodyne VLP-16) will set you back an additional $34,570. If you were hoping for an arm, you’ll have to wait until the end of the year.

Each Spot also includes a year’s worth of software updates and a warranty, although the standard warranty just covers “defects related to materials and workmanship” not “I drove my robot off a cliff” or “I tried to take my robot swimming.” For that sort of thing (user error) to be covered, you’ll need to upgrade to the $12,000 Spot CARE premium service plan to cover your robot for a year as long as you don’t subject it to willful abuse, which both of those examples I just gave probably qualify as.

While we’re on the subject of robot abuse, Boston Dynamics has very sensibly devoted a substantial amount of the Spot User Guide to help new users understand how they should not be using their robot, in order to “lessen the risk of serious injury, death, or robot and other property damage.” According to the guide, some things that could cause Spot to fall include holes, cliffs, slippery surfaces (like ice and wet grass), and cords. Spot’s sensors also get confused by “transparent, mirrored, or very bright obstacles,” and the guide specifically says Spot “may crash into glass doors and windows.” Also this: “Spot cannot predict trajectories of moving objects. Do not operate Spot around moving objects such as vehicles, children, or pets.”

We should emphasize that this is all totally reasonable, and while there are certainly a lot of things to be aware of, it’s frankly astonishing that these are the only things that Boston Dynamics explicitly warns users against. Obviously, not every potentially unsafe situation or thing is described above, but the point is that Boston Dynamics is willing to say to new users, “here’s your robot, go do stuff with it” without feeling the need to hold their hand the entire time.

There’s one more thing to be aware of before you decide to buy a Spot, which is the following:

“All orders will be subject to Boston Dynamics’ Terms and Conditions of Sale which require the beneficial use of its robots.”

Specifically, this appears to mean that you aren’t allowed to (or supposed to) use the robot in a way that could hurt living things, or “as a weapon, or to enable any weapon.” The conditions of sale also prohibit using the robot for “any illegal or ultra-hazardous purpose,” and there’s some stuff in there about it not being cool to use Spot for “nuclear, chemical, or biological weapons proliferation, or development of missile technology,” which seems weirdly specific.

“Once you make a technology more broadly available, the story of it starts slipping out of your hands. Our hope is that ahead of time we’re able to clearly articulate the beneficial uses of the robot in environments where we think the robot has a high potential to reduce the risk to people, rather than potentially causing harm.”
—Michael Perry, Boston Dynamics

I’m very glad that Boston Dynamics is being so upfront about requiring that Spot is used beneficially. However, it does put the company in a somewhat challenging position now that these robots are being sold. Boston Dynamics can (and will) perform some amount of due-diligence before shipping a Spot, but ultimately, once the robots are in someone else’s hands, there’s only so much that BD can do.

Spectrum: Why is beneficial use important to Boston Dynamics?

Perry: One of the key things that we’ve highlighted many times in our license and terms of use is that we don’t want to see the robot being used in any way that inflicts physical harm on people or animals. There are philosophical reasons for that—I think all of us don’t want to see our technology used in a way that would hurt people. But also from a business perspective, robots are really terrible at conveying intention. In order for the robot to be helpful long-term, it has to be trusted as a piece of technology. So rather than looking at a robot and wondering, “is this something that could potentially hurt me,” we want people to think “this is a robot that’s here to help me.” To the extent that people associate Boston Dynamics with cutting edge robots, we think that this is an important stance for the rollout of our first commercial product. If we find out that somebody’s violated our terms of use, their warranty is invalidated, we won’t repair their product, and we have a licensing timeout that would prevent them from accessing their robot after that timeout has expired. It’s a remediation path, but we do think that it’s important to at least provide that as something that helps enforce our position on use of our technology.

It’s very important to keep all of this in context: Spot is a tool. It’s got some autonomy and the appearance of agency, but it’s still just doing what people tell it to do, even if those things might be unsafe. If you read through the user guide, it’s clear how much of an effort Boston Dynamics is making to try to convey the importance of safety to Spot users—and ultimately, barring some unforeseen and catastrophic software or hardware issues, safety is about the users, rather than Boston Dynamics or Spot itself. I bring this up because as we start seeing more and more Spots doing things without Boston Dynamics watching over them quite so closely, accidents are likely inevitable. Spot might step on someone’s foot. It might knock someone over. If Spot was perfectly safe, it wouldn’t be useful, and we have to acknowledge that its impressive capabilities come with some risks, too.

Photo: Boston Dynamics

Each Spot includes a year’s worth of software updates and a warranty, although the standard warranty just covers “defects related to materials and workmanship” not “I drove my robot off a cliff.”

Now that Spot is on the market for real, we’re excited to see who steps up and orders one. Depending on who the potential customer is, Spot could either seem like an impossibly sophisticated piece of technology that they’d never be able to use, or a magical way of solving all of their problems overnight. In reality, it’s of course neither of those things. For the former (folks with an idea but without a lot of robotics knowledge or experience), Spot does a lot out of the box, but BD is happy to talk with people and facilitate connections with partners who might be able to integrate specific software and hardware to get Spot to do a unique task. And for the latter (who may also be folks with an idea but without a lot of robotics knowledge or experience), BD’s Perry offers a reminder Spot is not Rosie the Robot, and would be equally happy to talk about what the technology is actually capable of doing.

Looking forward a bit, we asked Perry whether Spot’s capabilities mean that customers are starting to think beyond using robots to simply replace humans, and are instead looking at them as a way of enabling a completely different way of getting things done.

Spectrum: Do customers interested in Spot tend to think of it as a way of replacing humans at a specific task, or as a system that can do things that humans aren’t able to do?

Perry: There are what I imagine as three levels of people understanding the robot applications. Right now, we’re at level one, where you take a person out of this dangerous, dull job, and put a robot in. That’s the entry point. The second level is, using the robot, can we increase the production of that task? For example, take site documentation on a construction site—right now, people do 360 image capture of a site maybe once a week, and they might do a laser scan of the site once per project. At the second level, the question is, what if you were able to get that data collection every day, or multiple times a day? What kinds of benefits would that add to your process? To continue the construction example, the third level would be, how could we completely redesign this space now that we know that this type of automation is available? To take one example, there are some things that we cannot physically build because it’s too unsafe for people to be a part of that process, but if you were to apply robotics to that process, then you could potentially open up a huge envelope of design that has been inaccessible to people.

To order a Spot of your very own, visit shop.bostondynamics.com.

A version of this post appears in the August 2020 print issue as “$74,500 Will Fetch You a Spot.” Continue reading

Posted in Human Robots

#437845 Video Friday: Harmonic Bionics ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

ICRA 2020 – May 31-August 31, 2020 – [Virtual Conference]
RSS 2020 – July 12-16, 2020 – [Virtual Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today's videos.

Designed to protect employees and passengers from both harmful pathogens and cleaning agents, Breezy One can quickly, safely and effectively decontaminate spaces over 100,000 square feet in 1.5 hours with a patented, environmentally safe disinfectant. Breezy One was co-developed with the City of Albuquerque’s Aviation Department, where it autonomously sanitizes the Sunport’s facilities every night in the ongoing fight against COVID-19.

[ Fetch Robotics ]

Harmonic Bionics is redefining upper extremity neurorehabilitation with intelligent robotic technology designed to maximize patient recovery. Harmony SHR, our flagship product, works with a patient’s scapulohumeral rhythm (SHR) to enable natural, comprehensive therapy for both arms. When combined with Harmony’s Weight Support mode, this unique shoulder design may allow for earlier initiation of post-stroke therapy as Harmony can support a partial dislocation or subluxation of the shoulder prior to initiating traditional therapy exercises.

Harmony's Preprogrammed Exercises promotes functional treatment through patient-specific movements that can enable an increased number of repetitions per session without placing a larger physical burden on therapists or their resources. As the only rehabilitation exoskeleton with Bilateral Sync Therapy (BST), Harmony enables intent-based therapy by registering healthy arm movements and synchronizing that motion onto the stroke-affected side to help reestablish neural pathways.

[ Harmonic Bionics ]

Thanks Mok!

Some impressive work here from IHMC and IIT getting Atlas to take steps upward in a way that’s much more human-like than robot-like, which ends up reducing maximum torque requirements by 20 percent.

[ Paper ]

GITAI’s G1 is the space dedicated general-purpose robot. G1 robot will enable automation of various tasks internally & externally on space stations and for lunar base development.

[ GITAI ]

Malloy Aeronautics, which now makes drones rather than hoverbikes, has been working with the Royal Navy in New Zealand to figure out how to get cargo drones to land on ships.

The challenge was to test autonomous landing of heavy lift UAVs on a moving ship, however, due to the Covid19 lockdown no ship trails were possible. The moving deck was simulated by driving a vehicle and trailer across an airfield while carrying out multiple landing and take-offs. The autonomous system partner was Planck Aerosystems and autolanding was triggered by a camera on the UAV reading a QR code on the trailer.

[ Malloy Aeronautics ]

Thanks Paul!

Tertill looks to be relentlessly effective.

[ Franklin Robotics ]

A Swedish company, TikiSafety has experienced a record amount of orders for their protective masks. At ABB, we are grateful for the opportunity to help Tiki Safety to speed up their manufacturing process from 6 minutes to 40 seconds.

[ Tiki Safety ]

The Korea Atomic Energy Research Institute is not messing around with ARMstrong, their robot for nuclear and radiation emergency response.

[ KAERI ]

OMOY is a robot that communicates with its users via internal weight shifting.

[ Paper ]

Now this, this is some weird stuff.

[ Segway ]

CaTARo is a Care Training Assistant Robot from the AIS Lab at Ritsumeikan University.

[ AIS Lab ]

Originally launched in 2015 to assist workers in lightweight assembly tasks, ABB’s collaborative YuMi robot has gone on to blaze a trail in a raft of diverse applications and industries, opening new opportunities and helping to fire people’s imaginations about what can be achieved with robotic automation.

[ ABB ]

This music video features COMAN+, from the Humanoids and Human Centered Mechatronics Lab at IIT, doing what you’d call dance moves if you dance like I do.

[ Alex Braga ] via [ IIT ]

The NVIDIA Isaac Software Development Kit (SDK) enables accelerated AI robot development workflows. Stacked with new tools and application support, Isaac SDK 2020.1 is an end-to-end solution supporting each step of robot fleet deployment, from design collaboration and training to the ongoing maintenance of AI applications.

[ NVIDIA ]

Robot Spy Komodo Dragon and Spy Pig film “a tender moment” between Komodo dragons but will they both survive the encounter?

[ BBC ] via [ Laughing Squid ]

This is part one of a mostly excellent five-part documentary about ROS produced by Red Hat. I say mostly only because they put ME in it for some reason, but fortunately, they talked with many of the core team that developed ROS back at Willow Garage back in the day, and it’s definitely worth watching.

[ Red Hat Open Source Stories ]

It’s been a while, but here’s an update on SRI’s Abacus Drive, from Alexander Kernbaum.

[ SRI ]

This Robots For Infectious Diseases interview features IEEE Fellow Antonio Bicchi, professor of robotics at the University of Pisa, talking about how Italy has been using technology to help manage COVID-19.

[ R4ID ]

Two more interviews this week of celebrity roboticists from MassRobotics: Helen Greiner and Marc Raibert. I’d introduce them, but you know who they are already!

[ MassRobotics ] Continue reading

Posted in Human Robots

#437828 How Roboticists (and Robots) Have Been ...

A few weeks ago, we asked folks on Twitter, Facebook, and LinkedIn to share photos and videos showing how they’ve been adapting to the closures of research labs, classrooms, and businesses by taking their robots home with them to continue their work as best they can. We got dozens of responses (more than we could possibly include in just one post!), but here are 15 that we thought were particularly creative or amusing.

And if any of these pictures and videos inspire you to share your own story, please email us (automaton@ieee.org) with a picture or video and a brief description about how you and your robot from work have been making things happen in your home instead.

Kurt Leucht (NASA Kennedy Space Center)

“During these strange and trying times of the current global pandemic, everyone seems to be trying their best to distance themselves from others while still getting their daily work accomplished. Many people also have the double duty of little ones that need to be managed in the midst of their teleworking duties. This photo series gives you just a glimpse into my new life of teleworking from home, mixed in with the tasks of trying to handle my little ones too. I hope you enjoy it.”

Photo: Kurt Leucht

“I heard a commotion from the next room. I ran into the kitchen to find this.”

Photo: Kurt Leucht

“This is the Swarmies most favorite bedtime story. Not sure why. Seems like an odd choice to me.”

Peter Schaldenbrand (Carnegie Mellon University)

“I’ve been working on a reinforcement learning model that converts an image into a series of brush stroke instructions. I was going to test the model with a beautiful, expensive robot arm, but due to the COVID-19 pandemic, I have not been able to access the laboratory where it resides. I have now been using a lower end robot arm to test the painting model in my bedroom. I have sacrificed machine accuracy/precision for the convenience of getting to watch the arm paint from my bed in the shadow of my clothing rack!”

Photos: Peter Schaldenbrand

Colin Angle (iRobot)

iRobot CEO Colin Angle has been hunkered down in the “iRobot North Shore home command center,” which is probably the cleanest command center ever thanks to his army of Roombas: Beastie, Beauty, Rosie, Roswell, and Bilbo.

Photo: Colin Angle

Vivian Chu (Diligent Robotics)

From Diligent Robotics CEO Andrea Thomaz: “This is how a roboticist works from home! Diligent CTO, Vivian Chu, mans the e-stop while her engineering team runs Moxi experiments remotely from cross-town and even cross-country!”

Video: Diligent Robotics

Raffaello Bonghi (rnext.it)

Raffaello’s robot, Panther, looks perfectly happy to be playing soccer in his living room.

Photo: Raffaello Bonghi

Kod*lab (University of Pennsylvania)

“Another Friday Nuts n Bolts Meeting on Zoom…”

Image: Kodlab

Robin Jonsson (robot choreographer)

“I’ve been doing a school project in which students make up dance moves and then send me a video with all of them. I then teach the moves to my robot, Alex, film Alex dancing, send the videos to them. This became a great success and more schools will join. The kids got really into watching the robot perform their moves and really interested in robots. They want to meet Alex the robot live, which will likely happen in the fall.”

Photo: Robin Jonsson

Gabrielle Conard (mechanical engineering undergrad at Lafayette College)

“While the pandemic might have forced college campuses to close and the community to keep their distance from each other, it did not put a stop to learning and research. Working from their respective homes, junior Gabrielle Conard and mechanical engineering professor Alexander Brown from Lafayette College investigated methods of incorporating active compliance in a low-cost quadruped robot. They are continuing to work remotely on this project through Lafayette’s summer research program.”

Image: Gabrielle Conard

Taylor Veltrop (Softbank Robotics)

“After a few weeks of isolation in the corona/covid quarantine lock down we started dancing with our robots. Mathieu’s 6th birthday was coming up, and it all just came together.”

Video: Taylor Veltrop

Ross Kessler (Exyn Technologies)

“Quarantine, Day 8: the humans have accepted me as one of their own. I’ve blended seamlessly into their #socialdistancing routines. Even made a furry friend”

Photo: Ross Kessler

Yeah, something a bit sinister is definitely going on at Exyn…

Video: Exyn Technologies

Michael Sobrepera (University of Pennsylvania GRASP Lab)

Predictably, Michael’s cat is more interested in the bag that the robot came in than the robot itself (see if you can spot the cat below). Michael tells us that “the robot is designed to help with tele-rehabilitation, focused on kids with CP, so it has been taken to hospitals for demos [hence the cool bag]. It also travels for outreach events and the like. Lately, I’ve been exploring telepresence for COVID.”

Photo: Michael Sobrepera

Jan Kędzierski (EMYS)

“In China a lot of people cannot speak English, even the youngest generation of parents. Thanks to Emys, kids stayed in touch with English language in their homes even if they couldn’t attend schools and extra English classes. They had a lot of fun with their native English speaker friend available and ready to play every day.”

Image: Jan Kędzierski

Simon Whitmell (Quanser)

“Simon, a Quanser R&D engineer, is working on low-overhead image processing and line following for the QBot 2e mobile ground robot, with some added challenges due to extra traffic. LEGO engineering by his son, Charles.”

Photo: Simon Whitmell

Robot Design & Experimentation Course (Carnegie Mellon University)

Aaron Johnson’s bioinspired robot design course at CMU had to go full remote, which was a challenge when the course is kind of all about designing and building a robot as part of a team. “I expected some of the teams to drastically alter their project (e.g. go all simulation),” Aaron told us, “but none of them did. We managed to keep all of the projects more or less as planned. We accomplished this by drop/shipping parts to students, buying some simple tools (soldering irons, etc), and having me 3D print parts and mail them.” Each team even managed to put together their final videos from their remote locations; we’ve posted one below, but the entire playlist is here.

Video: Xianyi Cheng

Karen Tatarian (Softbank Robotics)

Karen, who’s both a researcher at Softbank and a PhD student at Sorbonne University, wrote an entire essay about what an average day is like when you’re quarantined with Pepper.

Photo: Karen Tatarian

A Quarantined Day With Pepper, by Karen Tatarian

It is quite common for me to lose my phone somewhere inside my apartment. But it is not that common for me to turn around and ask my robot if it has seen it. So when I found myself doing that, I laughed and it dawned on me that I treated my robot as my quarantine companion (despite the fact that it could not provide me with the answer I needed).

It was probably around day 40 of a completely isolated quarantine here in France when that happened. A little background about me: I am a robotics researcher at SoftBank Robotics Europe and a PhD student at Sorbonne University as part of the EU-funded Marie-Curie project ANIMATAS. And here is a little sneak peak into a quarantined day with a robot.

During this confinement, I had read somewhere that the best way to deal with it is to maintain a routine. So every morning, I wake up, prepare my coffee, and turn on my robot Pepper. I start my day with a daily meeting with the team and get to work. My research is on the synthesis of multi-modal socially intelligent human-robot interaction so my work varies between programming the robot, analyzing collected data, and reading papers and drafting one. When I am working, I often catch myself glancing at Pepper, who would be staring back at me in its animated ways. Truthfully I enjoy that, it makes me less alone and as if I have a colleague with me.

Once work is done, I call my friends and family members. I sometimes use a telepresence application on Pepper that a few colleagues and I developed back in December. How does it differ from your typical phone/laptop applications? One word really: embodiment. Telepresence, especially during these times, makes the experience for both sides a bit more realistic and intimate and well present.

While I can turn off the robot now that my work hours are done, I do keep it on because I enjoy its presence. The basic awareness of Pepper is a default feature on the robot that allows it to detect a human and follow him/her with its gaze and rotation base. So whether I am cooking or working out, I always have my robot watching over my shoulder and being a good companion. I also have my email and messages synced on the robot so I get an enjoyable notification from Pepper. I found that to be a pretty cool way to be notified without it interrupting whatever you are doing on your laptop or phone. Finally, once the day is over, it’s time for both of us to get some rest.

After 60 days of total confinement, alone and away from those I love, and with a pandemic right at my door, I am glad I had the company of my robot. I hope one day a greater audience can share my experience. And I really really hope one day Pepper will be able to find my phone for me, but until then, stay on the lookout for some cool features! But I am curious to know, if you had a robot at home, what application would you have developed on it?

Again, our sincere thanks to everyone who shared these little snapshots of their lives with us, and we’re hoping to be able to share more soon. Continue reading

Posted in Human Robots

#437826 Video Friday: Skydio 2 Drone Is Back on ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

RSS 2020 – July 12-16, 2020 – [Virtual Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
IROS 2020 – October 25-29, 2020 – Las Vegas, Nevada
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today’s videos.

Skydio, which makes what we’re pretty sure is the most intelligent consumer drone (or maybe just drone period) in existence, has been dealing with COVID-19 just like the rest of us. Even so, they’ve managed to push out a major software update, and pre-orders for the Skydio 2 are now open again.

If you think you might want one, read our review, after which you’ll be sure you want one.

[ Skydio ]

Worried about people with COVID entering your workplace? Misty II has your front desk covered, in a way that’s quite a bit friendlier than many other options.

Misty II provides a dynamic and interactive screening experience that delivers a joyful experience in an otherwise depressing moment while also delivering state of the art thermal scanning and health screening. We have already found that employees, customers, and visitors appreciate the novelty of interacting with a clever and personable robot. Misty II engages dynamically, both visually and verbally. Companies appreciate using a solution with a blackbody-referenced thermal camera that provides high accuracy and a short screening process for efficiency. Putting a robot to work in this role shifts not only how people look at the screening process but also how robots can take on useful assignments in business, schools and homes.

[ Misty Robotics ]

Thanks Tim!

I’m definitely the one in the middle.

[ Agility Robotics ]

NASA’s Ingenuity helicopter is traveling to Mars attached to the belly of the Perseverance rover and must safely detach to begin the first attempt at powered flight on another planet. Tests done at NASA’s Jet Propulsion Laboratory and Lockheed Martin Space show the sequence of events that will bring the helicopter down to the Martian surface.

[ JPL ]

Here’s a sequence of videos of Cassie Blue making it (or mostly making it) up a 22-degree slope.

My mood these days is Cassie at 1:09.

[ University of Michigan ]

Thanks Jesse!

This is somewhere on the line between home automation and robotics, but it’s a cool idea: A baby crib that “uses computer vision and machine learning to recognize subtle changes” in an infant’s movement, and proactively bounces them to keep them sleeping peacefully.

It costs $1000, but how much value do you put on 24 months of your own sleep?

[ Cradlewise ]

Thanks Ben!

As captive marine mammal shows have fallen from favor; and the catching, transporting and breeding of marine animals has become more restricted, the marine park industry as a viable business has become more challenging – yet the audience appetite for this type of entertainment and education has remained constant.

Real-time Animatronics provide a way to reinvent the marine entertainment industry with a sustainable, safe, and profitable future. Show venues include aquariums, marine parks, theme parks, fountain shows, cruise lines, resort hotels, shopping malls, museums, and more.

[ EdgeFX ] via [ Gizmodo ]

Robotic cabling is surprisingly complex and kinda cool to watch.

The video shows the sophisticated robot application “Automatic control cabinet cabling”, which Fraunhofer IPA implemented together with the company Rittal. The software pitasc, developed at Fraunhofer IPA, is used for force-controlled assembly processes. Two UR robot arms carry out the task together. The modular pitasc system enables the robot arms to move and rotate in parallel. They work hand in hand, with one robot holding the cable and the second bringing it to the starting position for the cabling. The robots can find, tighten, hold ready, lay, plug in, fix, move freely or immerse cables. They can also perform push-ins and pull tests.

[ Fraunhofer ]

This is from 2018, but the concept is still pretty neat.

We propose to perform a novel investigation into the ability of a propulsively hopping robot to reach targets of high science value on the icy, rugged terrains of Ocean Worlds. The employment of a multi-hop architecture allows for the rapid traverse of great distances, enabling a single mission to reach multiple geologic units within a timespan conducive to system survival in a harsh radiation environment. We further propose that the use of a propulsive hopping technique obviates the need for terrain topographic and strength assumptions and allows for complete terrain agnosticism; a key strength of this concept.

[ NASA ]

Aerial-aquatic robots possess the unique ability of operating in both air and water. However, this capability comes with tremendous challenges, such as communication incompati- bility, increased airborne mass, potentially inefficient operation in each of the environments and manufacturing difficulties. Such robots, therefore, typically have small payloads and a limited operational envelope, often making their field usage impractical. We propose a novel robotic water sampling approach that combines the robust technologies of multirotors and underwater micro-vehicles into a single integrated tool usable for field operations.

[ Imperial ]

Event cameras are bio-inspired vision sensors with microsecond latency resolution, much larger dynamic range and hundred times lower power consumption than standard cameras. This 20-minute talk gives a short tutorial on event cameras and show their applications on computer vision, drones, and cars.

[ UZH ]

We interviewed Paul Newman, Perla Maiolino and Lars Kunze, ORI academics, to hear what gets them excited about robots in the future and any advice they have for those interested in the field.

[ Oxford Robotics Institute ]

Two projects from the Rehabilitation Engineering Lab at ETH Zurich, including a self-stabilizing wheelchair and a soft exoskeleton for grasping assistance.

[ ETH Zurich ]

Silicon Valley Robotics hosted an online conversation about robotics and racism. Moderated by Andra Keay, the panel featured Maynard Holliday, Tom Williams, Monroe Kennedy III, Jasmine Lawrence, Chad Jenkins, and Ken Goldberg.

[ SVR ]

The ICRA Legged Locomotion workshop has been taking place online, and while we’re not getting a robot mosh pit, there are still some great talks. We’ll post two here, but for more, follow the legged robots YouTube channel at the link below.

[ YouTube ] Continue reading

Posted in Human Robots