Tag Archives: machine
#437935 Start the New Year Right: By Watching ...
I don’t need to tell you that 2020 was a tough year. There was almost nothing good about it, and we saw it off with a “good riddance” and hopes for a better 2021. But robotics company Boston Dynamics took a different approach to closing out the year: when all else fails, why not dance?
The company released a video last week that I dare you to watch without laughing—or at the very least, cracking a pretty big smile. Because, well, dancing robots are funny. And it’s not just one dancing robot, it’s four of them: two humanoid Atlas bots, one four-legged Spot, and one Handle, a bot-on-wheels built for materials handling.
The robots’ killer moves look almost too smooth and coordinated to be real, leading many to speculate that the video was computer-generated. But if you can trust Elon Musk, there’s no CGI here.
This is not CGI https://t.co/VOivE97vPR
— Elon Musk (@elonmusk) December 29, 2020
Boston Dynamics went through a lot of changes in the last ten years; it was acquired by Google in 2013, then sold to Japanese conglomerate SoftBank in 2017 before being acquired again by Hyundai just a few weeks ago for $1.1 billion. But this isn’t the first time they teach a robot to dance and make a video for all the world to enjoy; Spot tore up the floor to “Uptown Funk” back in 2018.
Four-legged Spot went commercial in June, with a hefty price tag of $74,500, and was put to some innovative pandemic-related uses, including remotely measuring patients’ vital signs and reminding people to social distance.
Hyundai plans to implement its newly-acquired robotics prowess for everything from service and logistics robots to autonomous driving and smart factories.
They’ll have their work cut out for them. Besides being hilarious, kind of heartwarming, and kind of creepy all at once, the robots’ new routine is pretty impressive from an engineering standpoint. Compare it to a 2016 video of Atlas trying to pick up a box (I know it’s a machine with no feelings, but it’s hard not to feel a little bit bad for it, isn’t it?), and it’s clear Boston Dynamics’ technology has made huge strides. It wouldn’t be surprising if, in two years’ time, we see a video of a flash mob of robots whose routine includes partner dancing and back flips (which, admittedly, Atlas can already do).
In the meantime, though, this one is pretty entertaining—and not a bad note on which to start the new year.
Image Credit: Boston Dynamics Continue reading
#437924 How a Software Map of the Entire Planet ...
i
“3D map data is the scaffolding of the 21st century.”
–Edward Miller, Founder, Scape Technologies, UK
Covered in cameras, sensors, and a distinctly spaceship looking laser system, Google’s autonomous vehicles were easy to spot when they first hit public roads in 2015. The key hardware ingredient is a spinning laser fixed to the roof, called lidar, which provides the car with a pair of eyes to see the world. Lidar works by sending out beams of light and measuring the time it takes to bounce off objects back to the source. By timing the light’s journey, these depth-sensing systems construct fully 3D maps of their surroundings.
3D maps like these are essentially software copies of the real world. They will be crucial to the development of a wide range of emerging technologies including autonomous driving, drone delivery, robotics, and a fast-approaching future filled with augmented reality.
Like other rapidly improving technologies, lidar is moving quickly through its development cycle. What was an expensive technology on the roof of a well-funded research project is now becoming cheaper, more capable, and readily available to consumers. At some point, lidar will come standard on most mobile devices and is now available to early-adopting owners of the iPhone 12 Pro.
Consumer lidar represents the inevitable shift from wealthy tech companies generating our world’s map data, to a more scalable crowd-sourced approach. To develop the repository for their Street View Maps product, Google reportedly spent $1-2 billion sending cars across continents photographing every street. Compare that to a live-mapping service like Waze, which uses crowd-sourced user data from its millions of users to generate accurate and real-time traffic conditions. Though these maps serve different functions, one is a static, expensive, unchanging map of the world while the other is dynamic, real-time, and constructed by users themselves.
Soon millions of people may be scanning everything from bedrooms to neighborhoods, resulting in 3D maps of significant quality. An online search for lidar room scans demonstrates just how richly textured these three-dimensional maps are compared to anything we’ve had before. With lidar and other depth-sensing systems, we now have the tools to create exact software copies of everywhere and everything on earth.
At some point, likely aided by crowdsourcing initiatives, these maps will become living breathing, real-time representations of the world. Some refer to this idea as a “digital twin” of the planet. In a feature cover story, Kevin Kelly, the cofounder of Wired magazine, calls this concept the “mirrorworld,” a one-to-one software map of everything.
So why is that such a big deal? Take augmented reality as an example.
Of all the emerging industries dependent on such a map, none are more invested in seeing this concept emerge than those within the AR landscape. Apple, for example, is not-so-secretly developing a pair of AR glasses, which they hope will deliver a mainstream turning point for the technology.
For Apple’s AR devices to work as anticipated, they will require virtual maps of the world, a concept AR insiders call the “AR cloud,” which is synonymous with the “mirrorworld” concept. These maps will be two things. First, they will be a tool that creators use to place AR content in very specific locations; like a world canvas to paint on. Second, they will help AR devices both locate and understand the world around them so they can render content in a believable way.
Imagine walking down a street wanting to check the trading hours of a local business. Instead of pulling out your phone to do a tedious search online, you conduct the equivalent of a visual google search simply by gazing at the store. Albeit a trivial example, the AR cloud represents an entirely non-trivial new way of managing how we organize the world’s information. Access to knowledge can be shifted away from the faraway monitors in our pocket, to its relevant real-world location.
Ultimately this describes a blurring of physical and digital infrastructure. Our public and private spaces will thus be comprised equally of both.
No example demonstrates this idea better than Pokémon Go. The game is straightforward enough; users capture virtual characters scattered around the real world. Today, the game relies on traditional GPS technology to place its characters, but GPS is accurate only to within a few meters of a location. For a car navigating on a highway or locating Pikachus in the world, that level of precision is sufficient. For drone deliveries, driverless cars, or placing a Pikachu in a specific location, say on a tree branch in a park, GPS isn’t accurate enough. As astonishing as it may seem, many experimental AR cloud concepts, even entirely mapped cities, are location specific down to the centimeter.
Niantic, the $4 billion publisher behind Pokémon Go, is aggressively working on developing a crowd-sourced approach to building better AR Cloud maps by encouraging their users to scan the world for them. Their recent acquisition of 6D.ai, a mapping software company developed by the University of Oxford’s Victor Prisacariu through his work at Oxford’s Active Vision Lab, indicates Niantic’s ambition to compete with the tech giants in this space.
With 6D.ai’s technology, Niantic is developing the in-house ability to generate their own 3D maps while gaining better semantic understanding of the world. By going beyond just knowing there’s a temporary collection of orange cones in a certain location, for example, the game may one day understand the meaning behind this; that a temporary construction zone means no Pokémon should spawn here to avoid drawing players to this location.
Niantic is not the only company working on this. Many of the big tech firms you would expect have entire teams focused on map data. Facebook, for example, recently acquired the UK-based Scape technologies, a computer vision startup mapping entire cities with centimeter precision.
As our digital maps of the world improve, expect a relentless and justified discussion of privacy concerns as well. How will society react to the idea of a real-time 3D map of their bedroom living on a Facebook or Amazon server? Those horrified by the use of facial recognition AI being used in public spaces are unlikely to find comfort in the idea of a machine-readable world subject to infinite monitoring.
The ability to build high-precision maps of the world could reshape the way we engage with our planet and promises to be one of the biggest technology developments of the next decade. While these maps may stay hidden as behind-the-scenes infrastructure powering much flashier technologies that capture the world’s attention, they will soon prop up large portions of our technological future.
Keep that in mind when a car with no driver is sharing your road.
Image credit: sergio souza / Pexels Continue reading
#437896 Solar-based Electronic Skin Generates ...
Replicating the human sense of touch is complicated—electronic skins need to be flexible, stretchable, and sensitive to temperature, pressure and texture; they need to be able to read biological data and provide electronic readouts. Therefore, how to power electronic skin for continuous, real-time use is a big challenge.
To address this, researchers from Glasgow University have developed an energy-generating e-skin made out of miniaturized solar cells, without dedicated touch sensors. The solar cells not only generate their own power—and some surplus—but also provide tactile capabilities for touch and proximity sensing. An early-view paper of their findings was published in IEEE Transactions on Robotics.
When exposed to a light source, the solar cells on the s-skin generate energy. If a cell is shadowed by an approaching object, the intensity of the light, and therefore the energy generated, reduces, dropping to zero when the cell makes contact with the object, confirming touch. In proximity mode, the light intensity tells you how far the object is with respect to the cell. “In real time, you can then compare the light intensity…and after calibration find out the distances,” says Ravinder Dahiya of the Bendable Electronics and Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, where the study was carried out. The team used infra-red LEDs with the solar cells for proximity sensing for better results.
To demonstrate their concept, the researchers wrapped a generic 3D-printed robotic hand in their solar skin, which was then recorded interacting with its environment. The proof-of-concept tests showed an energy surplus of 383.3 mW from the palm of the robotic arm. “The eSkin could generate more than 100 W if present over the whole body area,” they reported in their paper.
“If you look at autonomous, battery-powered robots, putting an electronic skin [that] is consuming energy is a big problem because then it leads to reduced operational time,” says Dahiya. “On the other hand, if you have a skin which generates energy, then…it improves the operational time because you can continue to charge [during operation].” In essence, he says, they turned a challenge—how to power the large surface area of the skin—into an opportunity—by turning it into an energy-generating resource.
Dahiya envisages numerous applications for BEST’s innovative e-skin, given its material-integrated sensing capabilities, apart from the obvious use in robotics. For instance, in prosthetics: “[As] we are using [a] solar cell as a touch sensor itself…we are also [making it] less bulkier than other electronic skins.” This, he adds, will help create prosthetics that are of optimal weight and size, thus making it easier for prosthetics users. “If you look at electronic skin research, the the real action starts after it makes contact… Solar skin is a step ahead, because it will start to work when the object is approaching…[and] have more time to prepare for action.” This could effectively reduce the time lag that is often seen in brain–computer interfaces.
There are also possibilities in the automation sector, particularly in electrical and interactive vehicles. A car covered with solar e-skin, because of its proximity-sensing capabilities, would be able to “see” an approaching obstacle or a person. It isn’t “seeing” in the biological sense, Dahiya clarifies, but from the point of view of a machine. This can be integrated with other objects, not just cars, for a variety of uses. “Gestures can be recognized as well…[which] could be used for gesture-based control…in gaming or in other sectors.”
In the lab, tests were conducted with a single source of white light at 650 lux, but Dahiya feels there are interesting possibilities if they could work with multiple light sources that the e-skin could differentiate between. “We are exploring different AI techniques [for that],” he says, “processing the data in an innovative way [so] that we can identify the the directions of the light sources as well as the object.”
The BEST team’s achievement brings us closer to a flexible, self-powered, cost-effective electronic skin that can touch as well as “see.” At the moment, however, there are still some challenges. One of them is flexibility. In their prototype, they used commercial solar cells made of amorphous silicon, each 1cm x 1cm. “They are not flexible, but they are integrated on a flexible substrate,” Dahiya says. “We are currently exploring nanowire-based solar cells…[with which] we we hope to achieve good performance in terms of energy as well as sensing functionality.” Another shortcoming is what Dahiya calls “the integration challenge”—how to make the solar skin work with different materials. Continue reading