Tag Archives: Machine Learning

#432563 This Week’s Awesome Stories From ...

ARTIFICIAL INTELLIGENCE
Pedro Domingos on the Arms Race in Artificial Intelligence
Christoph Scheuermann and Bernhard Zand | Spiegel Online
“AI lowers the cost of knowledge by orders of magnitude. One good, effective machine learning system can do the work of a million people, whether it’s for commercial purposes or for cyberespionage. Imagine a country that produces a thousand times more knowledge than another. This is the challenge we are facing.”

BIOTECHNOLOGY
Gene Therapy Could Free Some People From a Lifetime of Blood Transfusions
Emily Mullin | MIT Technology Review
“A one-time, experimental treatment for an inherited blood disorder has shown dramatic results in a small study. …[Lead author Alexis Thompson] says the effect on patients has been remarkable. ‘They have been tied to this ongoing medical therapy that is burdensome and expensive for their whole lives,’ she says. ‘Gene therapy has allowed people to have aspirations and really pursue them.’ ”

ENVIRONMENT
The Revolutionary Giant Ocean Cleanup Machine Is About to Set Sail
Adele Peters | Fast Company
“By the end of 2018, the nonprofit says it will bring back its first harvest of ocean plastic from the North Pacific Gyre, along with concrete proof that the design works. The organization expects to bring 5,000 kilograms of plastic ashore per month with its first system. With a full fleet of systems deployed, it believes that it can collect half of the plastic trash in the Great Pacific Garbage Patch—around 40,000 metric tons—within five years.”

ROBOTICS
Autonomous Boats Will Be on the Market Sooner Than Self-Driving Cars
Tracey Lindeman | Motherboard
“Some unmanned watercraft…may be at sea commercially before 2020. That’s partly because automating all ships could generate a ridiculous amount of revenue. According to the United Nations, 90 percent of the world’s trade is carried by sea and 10.3 billion tons of products were shipped in 2016.”

DIGITAL CULTURE
Style Is an Algorithm
Kyle Chayka | Racked
“Confronting the Echo Look’s opaque statements on my fashion sense, I realize that all of these algorithmic experiences are matters of taste: the question of what we like and why we like it, and what it means that taste is increasingly dictated by black-box robots like the camera on my shelf.”

COMPUTING
How Apple Will Use AR to Reinvent the Human-Computer Interface
Tim Bajarin | Fast Company
“It’s in Apple’s DNA to continually deliver the ‘next’ major advancement to the personal computing experience. Its innovation in man-machine interfaces started with the Mac and then extended to the iPod, the iPhone, the iPad, and most recently, the Apple Watch. Now, get ready for the next chapter, as Apple tackles augmented reality, in a way that could fundamentally transform the human-computer interface.”

SCIENCE
Advanced Microscope Shows Cells at Work in Incredible Detail
Steve Dent | Engadget
“For the first time, scientists have peered into living cells and created videos showing how they function with unprecedented 3D detail. Using a special microscope and new lighting techniques, a team from Harvard and the Howard Hughes Medical Institute captured zebrafish immune cell interactions with unheard-of 3D detail and resolution.”

Image Credit: dubassy / Shutterstock.com Continue reading

Posted in Human Robots

#432538 Cloud Computing and Robotics: The ...

Cloud Robotics is a term that was popularized by James Kuffner after he brought together researchers from different relevant fields (robotics, machine learning, and computer vision) to assist in coming up with the initial Cloud Robotics concept. Cloud robotics, as the name suggests is bringing together cloud computing and robotics. In essence, taking all the …

The post Cloud Computing and Robotics: The Interesting Emerging Field of Cloud Robotics appeared first on TFOT. Continue reading

Posted in Human Robots

#432433 Just a Few of the Amazing Things AI Is ...

In an interview at Singularity University’s Exponential Medicine in San Diego, Neil Jacobstein shared some groundbreaking developments in artificial intelligence for healthcare.

Jacobstein is Singularity University’s faculty chair in AI and robotics, a distinguished visiting scholar at Stanford University’s MediaX Program, and has served as an AI technical consultant on research and development projects for organizations like DARPA, Deloitte, NASA, Boeing, and many more.

According to Jacobstein, 2017 was an exciting year for AI, not only due to how the technology matured, but also thanks to new applications and successes in several health domains.

Among the examples cited in his interview, Jacobstein referenced a 2017 breakthrough at Stanford University where an AI system was used for skin cancer identification. To train the system, the team showed a convolutional neural network images of 129,000 skin lesions. The system was able to differentiate between images displaying malignant melanomas and benign skin lesions. When tested against 21 board–certified dermatologists, the system made comparable diagnostic calls.

Pattern recognition and image detection are just two examples of successful uses of AI in healthcare and medicine—the list goes on.

“We’re seeing AI and machine learning systems performing at narrow tasks remarkably well, and getting breakthrough results both in AI for problem-solving and AI with medicine,” Jacobstein said.

He continued, “We are not seeing super-human terminator systems. But we are seeing more members of the AI community paying attention to managing the downside risk of AI responsibly.”

Watch the full interview to learn more examples of how AI is advancing in healthcare and medicine and elsewhere and what Jacobstein thinks is coming next.

Image Credit: GrAI / Shutterstock.com Continue reading

Posted in Human Robots

#432311 Everyone Is Talking About AI—But Do ...

In 2017, artificial intelligence attracted $12 billion of VC investment. We are only beginning to discover the usefulness of AI applications. Amazon recently unveiled a brick-and-mortar grocery store that has successfully supplanted cashiers and checkout lines with computer vision, sensors, and deep learning. Between the investment, the press coverage, and the dramatic innovation, “AI” has become a hot buzzword. But does it even exist yet?

At the World Economic Forum Dr. Kai-Fu Lee, a Taiwanese venture capitalist and the founding president of Google China, remarked, “I think it’s tempting for every entrepreneur to package his or her company as an AI company, and it’s tempting for every VC to want to say ‘I’m an AI investor.’” He then observed that some of these AI bubbles could burst by the end of 2018, referring specifically to “the startups that made up a story that isn’t fulfillable, and fooled VCs into investing because they don’t know better.”

However, Dr. Lee firmly believes AI will continue to progress and will take many jobs away from workers. So, what is the difference between legitimate AI, with all of its pros and cons, and a made-up story?

If you parse through just a few stories that are allegedly about AI, you’ll quickly discover significant variation in how people define it, with a blurred line between emulated intelligence and machine learning applications.

I spoke to experts in the field of AI to try to find consensus, but the very question opens up more questions. For instance, when is it important to be accurate to a term’s original definition, and when does that commitment to accuracy amount to the splitting of hairs? It isn’t obvious, and hype is oftentimes the enemy of nuance. Additionally, there is now a vested interest in that hype—$12 billion, to be precise.

This conversation is also relevant because world-renowned thought leaders have been publicly debating the dangers posed by AI. Facebook CEO Mark Zuckerberg suggested that naysayers who attempt to “drum up these doomsday scenarios” are being negative and irresponsible. On Twitter, business magnate and OpenAI co-founder Elon Musk countered that Zuckerberg’s understanding of the subject is limited. In February, Elon Musk engaged again in a similar exchange with Harvard professor Steven Pinker. Musk tweeted that Pinker doesn’t understand the difference between functional/narrow AI and general AI.

Given the fears surrounding this technology, it’s important for the public to clearly understand the distinctions between different levels of AI so that they can realistically assess the potential threats and benefits.

As Smart As a Human?
Erik Cambria, an expert in the field of natural language processing, told me, “Nobody is doing AI today and everybody is saying that they do AI because it’s a cool and sexy buzzword. It was the same with ‘big data’ a few years ago.”

Cambria mentioned that AI, as a term, originally referenced the emulation of human intelligence. “And there is nothing today that is even barely as intelligent as the most stupid human being on Earth. So, in a strict sense, no one is doing AI yet, for the simple fact that we don’t know how the human brain works,” he said.

He added that the term “AI” is often used in reference to powerful tools for data classification. These tools are impressive, but they’re on a totally different spectrum than human cognition. Additionally, Cambria has noticed people claiming that neural networks are part of the new wave of AI. This is bizarre to him because that technology already existed fifty years ago.

However, technologists no longer need to perform the feature extraction by themselves. They also have access to greater computing power. All of these advancements are welcomed, but it is perhaps dishonest to suggest that machines have emulated the intricacies of our cognitive processes.

“Companies are just looking at tricks to create a behavior that looks like intelligence but that is not real intelligence, it’s just a mirror of intelligence. These are expert systems that are maybe very good in a specific domain, but very stupid in other domains,” he said.

This mimicry of intelligence has inspired the public imagination. Domain-specific systems have delivered value in a wide range of industries. But those benefits have not lifted the cloud of confusion.

Assisted, Augmented, or Autonomous
When it comes to matters of scientific integrity, the issue of accurate definitions isn’t a peripheral matter. In a 1974 commencement address at the California Institute of Technology, Richard Feynman famously said, “The first principle is that you must not fool yourself—and you are the easiest person to fool.” In that same speech, Feynman also said, “You should not fool the layman when you’re talking as a scientist.” He opined that scientists should bend over backwards to show how they could be wrong. “If you’re representing yourself as a scientist, then you should explain to the layman what you’re doing—and if they don’t want to support you under those circumstances, then that’s their decision.”

In the case of AI, this might mean that professional scientists have an obligation to clearly state that they are developing extremely powerful, controversial, profitable, and even dangerous tools, which do not constitute intelligence in any familiar or comprehensive sense.

The term “AI” may have become overhyped and confused, but there are already some efforts underway to provide clarity. A recent PwC report drew a distinction between “assisted intelligence,” “augmented intelligence,” and “autonomous intelligence.” Assisted intelligence is demonstrated by the GPS navigation programs prevalent in cars today. Augmented intelligence “enables people and organizations to do things they couldn’t otherwise do.” And autonomous intelligence “establishes machines that act on their own,” such as autonomous vehicles.

Roman Yampolskiy is an AI safety researcher who wrote the book “Artificial Superintelligence: A Futuristic Approach.” I asked him whether the broad and differing meanings might present difficulties for legislators attempting to regulate AI.

Yampolskiy explained, “Intelligence (artificial or natural) comes on a continuum and so do potential problems with such technology. We typically refer to AI which one day will have the full spectrum of human capabilities as artificial general intelligence (AGI) to avoid some confusion. Beyond that point it becomes superintelligence. What we have today and what is frequently used in business is narrow AI. Regulating anything is hard, technology is no exception. The problem is not with terminology but with complexity of such systems even at the current level.”

When asked if people should fear AI systems, Dr. Yampolskiy commented, “Since capability comes on a continuum, so do problems associated with each level of capability.” He mentioned that accidents are already reported with AI-enabled products, and as the technology advances further, the impact could spread beyond privacy concerns or technological unemployment. These concerns about the real-world effects of AI will likely take precedence over dictionary-minded quibbles. However, the issue is also about honesty versus deception.

Is This Buzzword All Buzzed Out?
Finally, I directed my questions towards a company that is actively marketing an “AI Virtual Assistant.” Carl Landers, the CMO at Conversica, acknowledged that there are a multitude of explanations for what AI is and isn’t.

He said, “My definition of AI is technology innovation that helps solve a business problem. I’m really not interested in talking about the theoretical ‘can we get machines to think like humans?’ It’s a nice conversation, but I’m trying to solve a practical business problem.”

I asked him if AI is a buzzword that inspires publicity and attracts clients. According to Landers, this was certainly true three years ago, but those effects have already started to wane. Many companies now claim to have AI in their products, so it’s less of a differentiator. However, there is still a specific intention behind the word. Landers hopes to convey that previously impossible things are now possible. “There’s something new here that you haven’t seen before, that you haven’t heard of before,” he said.

According to Brian Decker, founder of Encom Lab, machine learning algorithms only work to satisfy their preexisting programming, not out of an interior drive for better understanding. Therefore, he views AI as an entirely semantic argument.

Decker stated, “A marketing exec will claim a photodiode controlled porch light has AI because it ‘knows when it is dark outside,’ while a good hardware engineer will point out that not one bit in a register in the entire history of computing has ever changed unless directed to do so according to the logic of preexisting programming.”

Although it’s important for everyone to be on the same page regarding specifics and underlying meaning, AI-powered products are already powering past these debates by creating immediate value for humans. And ultimately, humans care more about value than they do about semantic distinctions. In an interview with Quartz, Kai-Fu Lee revealed that algorithmic trading systems have already given him an 8X return over his private banking investments. “I don’t trade with humans anymore,” he said.

Image Credit: vrender / Shutterstock.com Continue reading

Posted in Human Robots

#432271 Your Shopping Experience Is on the Verge ...

Exponential technologies (AI, VR, 3D printing, and networks) are radically reshaping traditional retail.

E-commerce giants (Amazon, Walmart, Alibaba) are digitizing the retail industry, riding the exponential growth of computation.

Many brick-and-mortar stores have already gone bankrupt, or migrated their operations online.

Massive change is occurring in this arena.

For those “real-life stores” that survive, an evolution is taking place from a product-centric mentality to an experience-based business model by leveraging AI, VR/AR, and 3D printing.

Let’s dive in.

E-Commerce Trends
Last year, 3.8 billion people were connected online. By 2024, thanks to 5G, stratospheric and space-based satellites, we will grow to 8 billion people online, each with megabit to gigabit connection speeds.

These 4.2 billion new digital consumers will begin buying things online, a potential bonanza for the e-commerce world.

At the same time, entrepreneurs seeking to service these four-billion-plus new consumers can now skip the costly steps of procuring retail space and hiring sales clerks.

Today, thanks to global connectivity, contract production, and turnkey pack-and-ship logistics, an entrepreneur can go from an idea to building and scaling a multimillion-dollar business from anywhere in the world in record time.

And while e-commerce sales have been exploding (growing from $34 billion in Q1 2009 to $115 billion in Q3 2017), e-commerce only accounted for about 10 percent of total retail sales in 2017.

In 2016, global online sales totaled $1.8 trillion. Remarkably, this $1.8 trillion was spent by only 1.5 billion people — a mere 20 percent of Earth’s global population that year.

There’s plenty more room for digital disruption.

AI and the Retail Experience
For the business owner, AI will demonetize e-commerce operations with automated customer service, ultra-accurate supply chain modeling, marketing content generation, and advertising.

In the case of customer service, imagine an AI that is trained by every customer interaction, learns how to answer any consumer question perfectly, and offers feedback to product designers and company owners as a result.

Facebook’s handover protocol allows live customer service representatives and language-learning bots to work within the same Facebook Messenger conversation.

Taking it one step further, imagine an AI that is empathic to a consumer’s frustration, that can take any amount of abuse and come back with a smile every time. As one example, meet Ava. “Ava is a virtual customer service agent, to bring a whole new level of personalization and brand experience to that customer experience on a day-to-day basis,” says Greg Cross, CEO of Ava’s creator, an Austrian company called Soul Machines.

Predictive modeling and machine learning are also optimizing product ordering and the supply chain process. For example, Skubana, a platform for online sellers, leverages data analytics to provide entrepreneurs constant product performance feedback and maintain optimal warehouse stock levels.

Blockchain is set to follow suit in the retail space. ShipChain and Ambrosus plan to introduce transparency and trust into shipping and production, further reducing costs for entrepreneurs and consumers.

Meanwhile, for consumers, personal shopping assistants are shifting the psychology of the standard shopping experience.

Amazon’s Alexa marks an important user interface moment in this regard.

Alexa is in her infancy with voice search and vocal controls for smart homes. Already, Amazon’s Alexa users, on average, spent more on Amazon.com when purchasing than standard Amazon Prime customers — $1,700 versus $1,400.

As I’ve discussed in previous posts, the future combination of virtual reality shopping, coupled with a personalized, AI-enabled fashion advisor will make finding, selecting, and ordering products fast and painless for consumers.

But let’s take it one step further.

Imagine a future in which your personal AI shopper knows your desires better than you do. Possible? I think so. After all, our future AIs will follow us, watch us, and observe our interactions — including how long we glance at objects, our facial expressions, and much more.

In this future, shopping might be as easy as saying, “Buy me a new outfit for Saturday night’s dinner party,” followed by a surprise-and-delight moment in which the outfit that arrives is perfect.

In this future world of AI-enabled shopping, one of the most disruptive implications is that advertising is now dead.

In a world where an AI is buying my stuff, and I’m no longer in the decision loop, why would a big brand ever waste money on a Super Bowl advertisement?

The dematerialization, demonetization, and democratization of personalized shopping has only just begun.

The In-Store Experience: Experiential Retailing
In 2017, over 6,700 brick-and-mortar retail stores closed their doors, surpassing the former record year for store closures set in 2008 during the financial crisis. Regardless, business is still booming.

As shoppers seek the convenience of online shopping, brick-and-mortar stores are tapping into the power of the experience economy.

Rather than focusing on the practicality of the products they buy, consumers are instead seeking out the experience of going shopping.

The Internet of Things, artificial intelligence, and computation are exponentially improving the in-person consumer experience.

As AI dominates curated online shopping, AI and data analytics tools are also empowering real-life store owners to optimize staffing, marketing strategies, customer relationship management, and inventory logistics.

In the short term,retail store locations will serve as the next big user interface for production 3D printing (custom 3D printed clothes at the Ministry of Supply), virtual and augmented reality (DIY skills clinics), and the Internet of Things (checkout-less shopping).

In the long term,we’ll see how our desire for enhanced productivity and seamless consumption balances with our preference for enjoyable real-life consumer experiences — all of which will be driven by exponential technologies.

One thing is certain: the nominal shopping experience is on the verge of a major transformation.

Implications
The convergence of exponential technologies has already revamped how and where we shop, how we use our time, and how much we pay.

Twenty years ago, Amazon showed us how the web could offer each of us the long tail of available reading material, and since then, the world of e-commerce has exploded.

And yet we still haven’t experienced the cost savings coming our way from drone delivery, the Internet of Things, tokenized ecosystems, the impact of truly powerful AI, or even the other major applications for 3D printing and AR/VR.

Perhaps nothing will be more transformed than today’s $20 trillion retail sector.

Hold on, stay tuned, and get your AI-enabled cryptocurrency ready.

Join Me
Abundance Digital Online Community: I’ve created a digital/online community of bold, abundance-minded entrepreneurs called Abundance Digital.

Abundance Digital is my ‘onramp’ for exponential entrepreneurs — those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: Zapp2Photo / Shutterstock.com Continue reading

Posted in Human Robots