Tag Archives: look
#437683 iRobot Remembers That Robots Are ...
iRobot has released several new robots over the last few years, including the i7 and s9 vacuums. Both of these models are very fancy and very capable, packed with innovative and useful features that we’ve been impressed by. They’re both also quite expensive—with dirt docks included, you’re looking at US $800 for the i7+, and a whopping $1,100 for the s9+. You can knock a couple hundred bucks off of those prices if you don’t want the docks, but still, these vacuums are absolutely luxury items.
If you just want something that’ll do some vacuuming so that you don’t have to, iRobot has recently announced a new Roomba option. The Roomba i3 is iRobot’s new low to midrange vacuum, starting at $400. It’s not nearly as smart as the i7 or the s9, but it can navigate (sort of) and make maps (sort of) and do some basic smart home integration. If that sounds like all you need, the i3 could be the robot vacuum for you.
iRobot calls the i3 “stylish,” and it does look pretty neat with that fabric top. Underneath, you get dual rubber primary brushes plus a side brush. There’s limited compatibility with the iRobot Home app and IFTTT, along with Alexa and Google Home. The i3 is also compatible with iRobot’s Clean Base, but that’ll cost you an extra $200, and iRobot refers to this bundle as the i3+.
The reason that the i3 only offers limited compatibility with iRobot’s app is that the i3 is missing the top-mounted camera that you’ll find in more expensive models. Instead, it relies on a downward-looking optical sensor to help it navigate, and it builds up a map as it’s cleaning by keeping track of when it bumps into obstacles and paying attention to internal sensors like a gyro and wheel odometers. The i3 can localize directly on its charging station or Clean Base (which have beacons on them that the robot can see if it’s close enough), which allows it to resume cleaning after emptying it’s bin or recharging. You’ll get a map of the area that the i3 has cleaned once it’s finished, but that map won’t persist between cleaning sessions, meaning that you can’t do things like set keep-out zones or identify specific rooms for the robot to clean. Many of the more useful features that iRobot’s app offers are based on persistent maps, and this is probably the biggest gap in functionality between the i3 and its more expensive siblings.
According to iRobot senior global product manager Sarah Wang, the kind of augmented dead-reckoning-based mapping that the i3 uses actually works really well: “Based on our internal and external testing, the performance is equivalent with our products that have cameras, like the Roomba 960,” she says. To get this level of performance, though, you do have to be careful, Wang adds. “If you kidnap i3, then it will be very confused, because it doesn’t have a reference to know where it is.” “Kidnapping” is a term that’s used often in robotics to refer to a situation in which an autonomous robot gets moved to an unmapped location, and in the context of a home robot, the best example of this is if you decide that you want your robot to vacuum a different room instead, so you pick it up and move it there.
iRobot used to make this easy by giving all of its robots carrying handles, but not anymore, because getting moved around makes things really difficult for any robot trying to keep track of where it is. While robots like the i7 can recover using their cameras to look for unique features that they recognize, the only permanent, unique landmark that the i3 can for sure identify is the beacon on its dock. What this means is that when it comes to the i3, even more than other Roomba models, the best strategy, is to just “let it do its thing,” says iRobot senior principal system engineer Landon Unninayar.
Photo: iRobot
The Roomba i3 is iRobot’s new low to midrange vacuum, starting at $400.
If you’re looking to spend a bit less than the $400 starting price of the i3, there are other options to be aware of as well. The Roomba 614, for example, does a totally decent job and costs $250. It’s scheduling isn’t very clever, it doesn’t make maps, and it won’t empty itself, but it will absolutely help keep your floors clean as long as you don’t mind being a little bit more hands-on. (And there’s also Neato’s D4, which offers basic persistent maps—and lasers!—for $330.)
The other thing to consider if you’re trying to decide between the i3 and a more expensive Roomba is that without the camera, the i3 likely won’t be able to take advantage of nearly as many of the future improvements that iRobot has said it’s working on. Spending more money on a robot with additional sensors isn’t just buying what it can do now, but also investing in what it may be able to do later on, with its more sophisticated localization and ability to recognize objects. iRobot has promised major app updates every six months, and our guess is that most of the cool new stuff is going to show in the i7 and s9. So, if your top priority is just cleaner floors, the i3 is a solid choice. But if you want a part of what iRobot is working on next, the i3 might end up holding you back. Continue reading
#437667 17 Teams to Take Part in DARPA’s ...
Among all of the other in-person events that have been totally wrecked by COVID-19 is the Cave Circuit of the DARPA Subterranean Challenge. DARPA has already hosted the in-person events for the Tunnel and Urban SubT circuits (see our previous coverage here), and the plan had always been for a trio of events representing three uniquely different underground environments in advance of the SubT Finals, which will somehow combine everything into one bonkers course.
While the SubT Urban Circuit event snuck in just under the lockdown wire in late February, DARPA made the difficult (but prudent) decision to cancel the in-person Cave Circuit event. What this means is that there will be no Systems Track Cave competition, which is a serious disappointment—we were very much looking forward to watching teams of robots navigating through an entirely unpredictable natural environment with a lot of verticality. Fortunately, DARPA is still running a Virtual Cave Circuit, and 17 teams will be taking part in this competition featuring a simulated cave environment that’s as dynamic and detailed as DARPA can make it.
From DARPA’s press releases:
DARPA’s Subterranean (SubT) Challenge will host its Cave Circuit Virtual Competition, which focuses on innovative solutions to map, navigate, and search complex, simulated cave environments November 17. Qualified teams have until Oct. 15 to develop and submit software-based solutions for the Cave Circuit via the SubT Virtual Portal, where their technologies will face unknown cave environments in the cloud-based SubT Simulator. Until then, teams can refine their roster of selected virtual robot models, choose sensor payloads, and continue to test autonomy approaches to maximize their score.
The Cave Circuit also introduces new simulation capabilities, including digital twins of Systems Competition robots to choose from, marsupial-style platforms combining air and ground robots, and breadcrumb nodes that can be dropped by robots to serve as communications relays. Each robot configuration has an associated cost, measured in SubT Credits – an in-simulation currency – based on performance characteristics such as speed, mobility, sensing, and battery life.
Each team’s simulated robots must navigate realistic caves, with features including natural terrain and dynamic rock falls, while they search for and locate various artifacts on the course within five meters of accuracy to score points during a 60-minute timed run. A correct report is worth one point. Each course contains 20 artifacts, which means each team has the potential for a maximum score of 20 points. Teams can leverage numerous practice worlds and even build their own worlds using the cave tiles found in the SubT Tech Repo to perfect their approach before they submit one official solution for scoring. The DARPA team will then evaluate the solution on a set of hidden competition scenarios.
Of the 17 qualified teams (you can see all of them here), there are a handful that we’ll quickly point out. Team BARCS, from Michigan Tech, was the winner of the SubT Virtual Urban Circuit, meaning that they may be the team to beat on Cave as well, although the course is likely to be unique enough that things will get interesting. Some Systems Track teams to watch include Coordinated Robotics, CTU-CRAS-NORLAB, MARBLE, NUS SEDS, and Robotika, and there are also a handful of brand new teams as well.
Now, just because there’s no dedicated Cave Circuit for the Systems Track teams, it doesn’t mean that there won’t be a Cave component (perhaps even a significant one) in the final event, which as far as we know is still scheduled to happen in fall of next year. We’ve heard that many of the Systems Track teams have been testing out their robots in caves anyway, and as the virtual event gets closer, we’ll be doing a sort of Virtual Systems Track series that highlights how different teams are doing mock Cave Circuits in caves they’ve found for themselves.
For more, we checked in with DARPA SubT program manager Dr. Timothy H. Chung.
IEEE Spectrum: Was it a difficult decision to cancel the Systems Track for Cave?
Tim Chung: The decision to go virtual only was heart wrenching, because I think DARPA’s role is to offer up opportunities that may be unimaginable for some of our competitors, like opening up a cave-type site for this competition. We crawled and climbed through a number of these sites, and I share the sense of disappointment that both our team and the competitors have that we won’t be able to share all the advances that have been made since the Urban Circuit. But what we’ve been able to do is pour a lot of our energy and the insights that we got from crawling around in those caves into what’s going to be a really great opportunity on the Virtual Competition side. And whether it’s a global pandemic, or just lack of access to physical sites like caves, virtual environments are an opportunity that we want to develop.
“The simulator offers us a chance to look at where things could be … it really allows for us to find where some of those limits are in the technology based only on our imagination.”
—Timothy H. Chung, DARPA
What kind of new features will be included in the Virtual Cave Circuit for this competition?
I’m really excited about these particular features because we’re seeing an opportunity for increased synergy between the physical and the virtual. The first I’d say is that we scanned some of the Systems Track robots using photogrammetry and combined that with some additional models that we got from the systems competitors themselves to turn their systems robots into virtual models. We often talk about the sim to real transfer and how successful we can get a simulation to transfer over to the physical world, but now we’ve taken something from the physical world and made it virtual. We’ve validated the controllers as well as the kinematics of the robots, we’ve iterated with the systems competitors themselves, and now we have these 13 robots (air and ground) in the SubT Tech Repo that now all virtual competitors can take advantage of.
We also have additional robot capability. Those comms bread crumbs are common among many of the competitors, so we’ve adopted that in the virtual world, and now you have comms relay nodes that are baked in to the SubT Simulator—you can have either six or twelve comms nodes that you can drop from a variety of our ground robot platforms. We have the marsupial deployment capability now, so now we have parent ground robots that can be mixed and matched with different child drones to become marsupial pairs.
And this is something I’ve been planning for for a while: we now have the ability to trigger things like rock falls. They still don’t quite look like Indiana Jones with the boulder coming down the corridor, but this comes really close. In addition to it just being an interesting and realistic consideration, we get to really dynamically test and stress the robots’ ability to navigate and recognize that something has changed in the environment and respond to it.
Image: DARPA
DARPA is still running a Virtual Cave Circuit, and 17 teams will be taking part in this competition featuring a simulated cave environment.
No simulation is perfect, so can you talk to us about what kinds of things aren’t being simulated right now? Where does the simulator not match up to reality?
I think that question is foundational to any conversation about simulation. I’ll give you a couple of examples:
We have the ability to represent wholesale damage to a robot, but it’s not at the actuator or component level. So there’s not a reliability model, although I think that would be really interesting to incorporate so that you could do assessments on things like mean time to failure. But if a robot falls off a ledge, it can be disabled by virtue of being too damaged to continue.
With communications, and this is one that’s near and dear not only to my heart but also to all of those that have lived through developing communication systems and robotic systems, we’ve gone through and conducted RF surveys of underground environments to get a better handle on what propagation effects are. There’s a lot of research that has gone into this, and trying to carry through some of that realism, we do have path loss models for RF communications baked into the SubT Simulator. For example, when you drop a bread crumb node, it’s using a path loss model so that it can represent the degradation of signal as you go farther into a cave. Now, we’re not modeling it at the Maxwell equations level, which I think would be awesome, but we’re not quite there yet.
We do have things like battery depletion, sensor degradation to the extent that simulators can degrade sensor inputs, and things like that. It’s just amazing how close we can get in some places, and how far away we still are in others, and I think showing where the limits are of how far you can get simulation is all part and parcel of why SubT Challenge wants to have both System and Virtual tracks. Simulation can be an accelerant, but it’s not going to be the panacea for development and innovation, and I think all the competitors are cognizant those limitations.
One of the most amazing things about the SubT Virtual Track is that all of the robots operate fully autonomously, without the human(s) in the loop that the System Track teams have when they compete. Why make the Virtual Track even more challenging in that way?
I think it’s one of the defining, delineating attributes of the Virtual Track. Our continued vision for the simulation side is that the simulator offers us a chance to look at where things could be, and allows for us to explore things like larger scales, or increased complexity, or types of environments that we can’t physically gain access to—it really allows for us to find where some of those limits are in the technology based only on our imagination, and this is one of the intrinsic values of simulation.
But I think finding a way to incorporate human input, or more generally human factors like teleoperation interfaces and the in-situ stress that you might not be able to recreate in the context of a virtual competition provided a good reason for us to delineate the two competitions, with the Virtual Competition really being about the role of fully autonomous or self-sufficient systems going off and doing their solution without human guidance, while also acknowledging that the real world has conditions that would not necessarily be represented by a fully simulated version. Having said that, I think cognitive engineering still has an incredibly important role to play in human robot interaction.
What do we have to look forward to during the Virtual Competition Showcase?
We have a number of additional features and capabilities that we’ve baked into the simulator that will allow for us to derive some additional insights into our competition runs. Those insights might involve things like the performance of one or more robots in a given scenario, or the impact of the environment on different types of robots, and what I can tease is that this will be an opportunity for us to showcase both the technology and also the excitement of the robots competing in the virtual environment. I’m trying not to give too many spoilers, but we’ll have an opportunity to really get into the details.
Check back as we get closer to the 17 November event for more on the DARPA SubT Challenge. Continue reading
#437643 Video Friday: Matternet Launches Urban ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):
IROS 2020 – October 25-25, 2020 – [Online]
Bay Area Robotics Symposium – November 20, 2020 – [Online]
ACRA 2020 – December 8-10, 2020 – [Online]
Let us know if you have suggestions for next week, and enjoy today's videos.
Sixteen teams chose their roster of virtual robots and sensor payloads, some based on real-life subterranean robots, and submitted autonomy and mapping algorithms that SubT Challenge officials then tested across eight cave courses in the cloud-based SubT Simulator. Their robots traversed the cave environments autonomously, without any input or adjustments from human operators. The Cave Circuit Virtual Competition teams earned points by correctly finding, identifying, and localizing up to 20 artifacts hidden in the cave courses within five-meter accuracy.
[ SubT ]
This year, the KUKA Innovation Award’s international jury of experts received a total of more than 40 ideas. The five finalist teams had time until November to implement their ideas. A KUKA LBR Med lightweight robot – the first robotic component to be certified for integration into a medical device – has been made available to them for this purpose. Beyond this, the teams have received a training for the hardware and coaching from KUKA experts throughout the competition. At virtual.MEDICA from 16-19.11.2020, the finalists presented their concepts to an international audience of experts and to the Innovation Award jury.
The winner of the KUKA Innovation Award 2020, worth 20,000 euros, is Team HIFUSK from the Scuola Superiore Sant'Anna in Italy.
[ KUKA Innovation Award ]
Like everything else the in-person Cybathlon event was cancelled, but the competition itself took place, just a little more distributed than it would have been otherwise.
[ Cybathlon ]
Matternet, developer of the world's leading urban drone logistics platform, today announced the launch of operations at Labor Berlin Charité Vivantes in Germany. The program kicked-off November 17, 2020 with permanent operations expected to take flight next year, creating the first urban BVLOS [Beyond Visual Line of Sight] medical drone delivery network in the European Union. The drone network expects to significantly improve the timeliness and efficiency of Labor Berlin’s diagnostics services by providing an option to avoid roadway delays, which will improve patient experience with potentially life-saving benefits and lower costs.
Routine BVLOS over an urban area? Impressive.
[ Matternet ]
Robots playing diabolo!
Thanks Thilo!
[ OMRON Sinic X]
Anki's tech has been repackaged into this robot that serves butter:
[ Butter Robot ]
Berkshire Grey just announced our Picking With Purpose Program in which we’ve partnered our robotic automation solutions with food rescue organizations City Harvest and The Greater Boston Food Bank to pick, pack, and distribute food to families in need in time for Thanksgiving. Berkshire Grey donated about 40,000 pounds of food, used one of our robotic automation systems to pick and pack that food into meal boxes for families in need, and our team members volunteered to run the system. City Harvest and The Greater Boston Food Bank are distributing the 4,000 meal boxes we produced. This is just the beginning. We are building a sponsorship program to make Picking With Purpose an ongoing initiative.
[ Berkshire Grey ]
Thanks Peter!
We posted a video previously of Cassie learning to skip, but here's a much more detailed look (accompanying an ICRA submission) that includes some very impressive stair descending.
[ DRL ]
From garage inventors to university students and entrepreneurs, NASA is looking for ideas on how to excavate the Moon’s icy regolith, or dirt, and deliver it to a hypothetical processing plant at the lunar South Pole. The NASA Break the Ice Lunar Challenge, a NASA Centennial Challenge, is now open for registration. The competition will take place over two phases and will reward new ideas and approaches for a system architecture capable of excavating and moving icy regolith and water on the lunar surface.
[ NASA ]
Adaptation to various scene configurations and object properties, stability and dexterity in robotic grasping manipulation is far from explored. This work presents an origami-based shape morphing fingertip design to actively tackle the grasping stability and dexterity problems. The proposed fingertip utilizes origami as its skeleton providing degrees of freedom at desired positions and motor-driven four-bar-linkages as its transmission components to achieve a compact size of the fingertip.
[ Paper ]
“If Roboy crashes… you die.”
[ Roboy ]
Traditionally lunar landers, as well as other large space exploration vehicles, are powered by solar arrays or small nuclear reactors. Rovers and small robots, however, are not big enough to carry their own dedicated power supplies and must be tethered to their larger counterparts via electrical cables. Tethering severely restricts mobility, and cables are prone to failure due to lunar dust (regolith) interfering with electrical contact points. Additionally, as robots become smaller and more complex, they are fitted with additional sensors that require more power, further exacerbating the problem. Lastly, solar arrays are not viable for charging during the lunar night. WiBotic is developing rapid charging systems and energy monitoring base stations for lunar robots, including the CubeRover – a shoebox-sized robot designed by Astrobotic – that will operate autonomously and charge wirelessly on the Moon.
[ WiBotic ]
Watching pick and place robots is my therapy.
[ Soft Robotics ]
It's really, really hard to beat liquid fuel for energy storage, as Quaternium demonstrates with their hybrid drone.
[ Quaternium ]
Thanks Gregorio!
State-of-the-art quadrotor simulators have a rigid and highly-specialized structure: either are they really fast, physically accurate, or photo-realistic. In this work, we propose a novel quadrotor simulator: Flightmare.
[ Flightmare ]
Drones that chuck fire-fighting balls into burning buildings, sure!
[ LARICS ]
If you missed ROS World, that's okay, because all of the talks are now online. Here's the opening keynote from Vivian Chu and Diligent robotics, along with a couple fun lightning talks.
[ ROS World 2020 ]
This week's CMU RI Seminar is by Chelsea Finn from Stanford University, on Data Scalability for Robot Learning.
Recent progress in robot learning has demonstrated how robots can acquire complex manipulation skills from perceptual inputs through trial and error, particularly with the use of deep neural networks. Despite these successes, the generalization and versatility of robots across environment conditions, tasks, and objects remains a major challenge. And, unfortunately, our existing algorithms and training set-ups are not prepared to tackle such challenges, which demand large and diverse sets of tasks and experiences. In this talk, I will discuss two central challenges that pertain to data scalability: first, acquiring large datasets of diverse and useful interactions with the world, and second, developing algorithms that can learn from such datasets. Then, I will describe multiple approaches that we might take to rethink our algorithms and data pipelines to serve these goals. This will include algorithms that allow a real robot to explore its environment in a targeted manner with minimal supervision, approaches that can perform robot reinforcement learning with videos of human trial-and-error experience, and visual model-based RL approaches that are not bottlenecked by their capacity to model everything about the world.
[ CMU RI ] Continue reading
#437608 Video Friday: Agility Robotics Raises ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):
IROS 2020 – October 25-29, 2020 – [Online]
ROS World 2020 – November 12, 2020 – [Online]
CYBATHLON 2020 – November 13-14, 2020 – [Online]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.
Digit is now in full commercial production and we’re excited to announce a $20M funding rounding round co-led by DCVC and Playground Global!
Digits for everyone!
[ Agility Robotics ]
A flexible rover that has both ability to travel long distances and rappel down hard-to-reach areas of scientific interest has undergone a field test in the Mojave Desert in California to showcase its versatility. Composed of two Axel robots, DuAxel is designed to explore crater walls, pits, scarps, vents and other extreme terrain on the moon, Mars and beyond.
This technology demonstration developed at NASA’s Jet Propulsion Laboratory in Southern California showcases the robot’s ability to split in two and send one of its halves — a two-wheeled Axle robot — over an otherwise inaccessible slope, using a tether as support and to supply power.
The rappelling Axel can then autonomously seek out areas to study, safely overcome slopes and rocky obstacles, and then return to dock with its other half before driving to another destination. Although the rover doesn’t yet have a mission, key technologies are being developed that might, one day, help us explore the rocky planets and moons throughout the solar system.
[ JPL ]
A rectangular robot as tiny as a few human hairs can travel throughout a colon by doing back flips, Purdue University engineers have demonstrated in live animal models. Why the back flips? Because the goal is to use these robots to transport drugs in humans, whose colons and other organs have rough terrain. Side flips work, too. Why a back-flipping robot to transport drugs? Getting a drug directly to its target site could remove side effects, such as hair loss or stomach bleeding, that the drug may otherwise cause by interacting with other organs along the way.
[ Purdue ]
This video shows the latest results in the whole-body locomotion control of the humanoid robot iCub achieved by the Dynamic Interaction Control line at IIT-Istituto Italiano di Tecnologia in Genova (Italy). In particular, the iCub now keeps the balance while walking and receiving pushes from an external user. The implemented control algorithms also ensure the robot to remain compliant during locomotion and human-robot interaction, a fundamental property to lower the possibility to harm humans that share the robot surrounding environment.
This is super impressive, considering that iCub was only able to crawl and was still tethered not too long ago. Also, it seems to be blinking properly now, so it doesn’t look like it’s always sleepy.
[ IIT ]
This video shows a set of new tests we performed on Bolt. We conducted tests on 5 different scenarios, 1) walking forward/backward 2) uneven surface 3) soft surface 4) push recovery 5) slippage recovery. Thanks to our feedback control based on Model Predictive Control, the robot can perform walking in the presence of all these uncertainties. We will open-source all the codes in a near future.
[ ODRI ]
The title of this video is “Can you throw your robot into a lake?” The title of this video should be, “Can you throw your robot into a lake and drive it out again?”
[ Norlab ]
AeroVironment Successfully Completes Sunglider Solar HAPS Stratospheric Test Flight, Surpassing 60,000 Feet Altitude and Demonstrating Broadband Mobile Connectivity.
[ AeroVironment ]
We present CoVR, a novel robotic interface providing strong kinesthetic feedback (100 N) in a room-scale VR arena. It consists of a physical column mounted on a 2D Cartesian ceiling robot (XY displacements) with the capacity of (1) resisting to body-scaled users actions such as pushing or leaning; (2) acting on the users by pulling or transporting them as well as (3) carrying multiple potentially heavy objects (up to 80kg) that users can freely manipulate or make interact with each other.
[ DeepAI ]
In a new video, personnel from Swiss energy supply company Kraftwerke Oberhasli AG (KWO) explain how they were able to keep employees out of harm’s way by using Flyability’s Elios 2 to collect visual data while building a new dam.
[ Flyability ]
Enjoy our Ascento robot fail compilation! With every failure we experience, we learn more and we can improve our robot for its next iteration, which will come soon… Stay tuned for more!
FYI posting a robot fails video will pretty much guarantee you a spot in Video Friday!
[ Ascento ]
Humans are remarkably good at using chopsticks. The Guinness World Record witnessed a person using chopsticks to pick up 65 M&Ms in just a minute. We aim to collect demonstrations from humans and to teach robot to use chopsticks.
[ UW Personal Robotics Lab ]
A surprising amount of personality from these Yaskawa assembly robots.
[ Yaskawa ]
This paper presents the system design, modeling, and control of the Aerial Robotic Chain Manipulator. This new robot design offers the potential to exert strong forces and moments to the environment, carry and lift significant payloads, and simultaneously navigate through narrow corridors. The presented experimental studies include a valve rotation task, a pick-and-release task, and the verification of load oscillation suppression to demonstrate the stability and performance of the system.
[ ARL ]
Whether animals or plants, whether in the water, on land or in the air, nature provides the model for many technical innovations and inventions. This is summed up in the term bionics, which is a combination of the words ‘biology‘ and ‘electronics’. At Festo, learning from nature has a long history, as our Bionic Learning Network is based on using nature as the source for future technologies like robots, assistance systems or drive solutions.
[ Festo ]
Dogs! Selfies! Thousands of LEGO bricks! This video has it all.
[ LEGO ]
An IROS workshop talk on “Cassie and Mini Cheetah Autonomy” by Maani Ghaffari and Jessy Grizzle from the University of Michigan.
[ Michigan Robotics ]
David Schaefer’s Cozmo robots are back with this mind-blowing dance-off!
What you just saw represents hundreds of hours of work, David tells us: “I wrote over 10,000 lines of code to create the dance performance as I had to translate the beats per minute of the song into motor rotations in order to get the right precision needed to make the moves look sharp. The most challenging move was the SpongeBob SquareDance as any misstep would send the Cozmos crashing into each other. LOL! Fortunately for me, Cozmo robots are pretty resilient.”
[ Life with Cozmo ]
Thanks David!
This week’s GRASP on Robotics seminar is by Sangbae Kim from MIT, on “Robots with Physical Intelligence.”
While industrial robots are effective in repetitive, precise kinematic tasks in factories, the design and control of these robots are not suited for physically interactive performance that humans do easily. These tasks require ‘physical intelligence’ through complex dynamic interactions with environments whereas conventional robots are designed primarily for position control. In order to develop a robot with ‘physical intelligence’, we first need a new type of machines that allow dynamic interactions. This talk will discuss how the new design paradigm allows dynamic interactive tasks. As an embodiment of such a robot design paradigm, the latest version of the MIT Cheetah robots and force-feedback teleoperation arms will be presented.
[ GRASP ]
This week’s CMU Ri Seminar is by Kevin Lynch from Northwestern, on “Robotics and Biosystems.”
Research at the Center for Robotics and Biosystems at Northwestern University encompasses bio-inspiration, neuromechanics, human-machine systems, and swarm robotics, among other topics. In this talk I will give an overview of some of our recent work on in-hand manipulation, robot locomotion on yielding ground, and human-robot systems.
[ CMU RI ] Continue reading