Tag Archives: live

#439062 Xenobots 2.0: These Living Robots ...

The line between animals and machines was already getting blurry after a team of scientists and roboticists unveiled the first living robots last year. Now the same team has released version 2.0 of their so-called xenobots, and they’re faster, stronger, and more capable than ever.

In January 2020, researchers from Tufts University and the University of Vermont laid out a method for building tiny biological machines out of the eggs of the African claw frog Xenopus laevis. Dubbed xenobots after their animal forebear, they could move independently, push objects, and even team up to create swarms.

Remarkably, building them involved no genetic engineering. Instead, the team used an evolutionary algorithm running on a supercomputer to test out thousands of potential designs made up of different configurations of cells.

Once they’d found some promising candidates that could solve the tasks they were interested in, they used microsurgical tools to build real-world versions out of living cells. The most promising design was built by splicing heart muscle cells (which could contract to propel the xenobots), and skin cells (which provided a rigid support).

Impressive as that might sound, having to build each individual xenobot by hand is obviously tedious. But now the team has devised a new approach that works from the bottom up by getting the xenobots to self-assemble their bodies from single cells. Not only is the approach more scalable, the new xenobots are faster, live longer, and even have a rudimentary memory.

In a paper in Science Robotics, the researchers describe how they took stem cells from frog embryos and allowed them to grow into clumps of several thousand cells called spheroids. After a few days, the stem cells had turned into skin cells covered in small hair-like projections called cilia, which wriggle back and forth.

Normally, these structures are used to spread mucus around on the frog’s skin. But when divorced from their normal context they took on a function more similar to that seen in microorganisms, which use cilia to move about by acting like tiny paddles.

“We are witnessing the remarkable plasticity of cellular collectives, which build a rudimentary new ‘body’ that is quite distinct from their default—in this case, a frog—despite having a completely normal genome,” corresponding author Michael Levin from Tufts University said in a press release.

“We see that cells can re-purpose their genetically encoded hardware, like cilia, for new functions such as locomotion. It is amazing that cells can spontaneously take on new roles and create new body plans and behaviors without long periods of evolutionary selection for those features,” he said.

Not only were the new xenobots faster and longer-lived, they were also much better at tasks like working together as a swarm to gather piles of iron oxide particles. And while the form and function of the xenobots was achieved without any genetic engineering, in an extra experiment the team injected them with RNA that caused them to produce a fluorescent protein that changes color when exposed to a particular color of light.

This allowed the xenobots to record whether they had come into contact with a specific light source while traveling about. The researchers say this is a proof of principle that the xenobots can be imbued with a molecular memory, and future work could allow them to record multiple stimuli and potentially even react to them.

What exactly these xenobots could eventually be used for is still speculative, but they have features that make them a promising alternative to non-organic alternatives. For a start, robots made of stem cells are completely biodegradable and also have their own power source in the form of “yolk platelets” found in all amphibian embryos. They are also able to self-heal in as little as five minutes if cut, and can take advantage of cells’ ability to process all kinds of chemicals.

That suggests they could have applications in everything from therapeutics to environmental engineering. But the researchers also hope to use them to better understand the processes that allow individual cells to combine and work together to create a larger organism, and how these processes might be harnessed and guided for regenerative medicine.

As these animal-machine hybrids advance, they are sure to raise ethical concerns and question marks over the potential risks. But it looks like the future of robotics could be a lot more wet and squishy than we imagined.

Image Credit: Doug Blackiston/Tufts University Continue reading

Posted in Human Robots

#439036 Video Friday: Shadow Plays Jenga, and ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
DARPA SubT Finals – September 21-23, 2021 – Louisville, KY, USA
WeRobot 2021 – September 23-25, 2021 – Coral Gables, FL, USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

The Shadow Robot team couldn't resist! Our Operator, Joanna, is using the Shadow Teleoperation System which, fun and games aside, can help those in difficult, dangerous and distant jobs.

Shadow could challenge this MIT Jenga-playing robot, but I bet they wouldn't win:

[ Shadow Robot ]

Digit is gradually stomping the Agility Robotics logo into a big grassy field fully autonomously.

[ Agility Robotics ]

This is a pretty great and very short robotic magic show.

[ Mario the Magician ]

A research team at the Georgia Institute of Technology has developed a modular solution for drone delivery of larger packages without the need for a complex fleet of drones of varying sizes. By allowing teams of small drones to collaboratively lift objects using an adaptive control algorithm, the strategy could allow a wide range of packages to be delivered using a combination of several standard-sized vehicles.

[ GA Tech ]

I've seen this done using vision before, but Flexiv's Rizon 4s can keep a ball moving along a specific trajectory using only force sensing and control.

[ Flexiv ]

Thanks Yunfan!

This combination of a 3D aerial projection system and a sensing interface can be used as an interactive and intuitive control system for things like robot arms, but in this case, it's being used to make simulated pottery. Much less messy than the traditional way of doing it.

More details on Takafumi Matsumaru's work at the Bio-Robotics & Human-Mechatronics Laboratory at Waseda University at the link below.

[ BLHM ]

U.S. Vice President Kamala Harris called astronauts Shannon Walker and Kate Rubins on the ISS, and they brought up Astrobee, at which point Shannon reaches over and rips Honey right off of her charging dock to get her on camera.

[ NASA ]

Here's a quick three minute update on Perseverance and Ingenuity from JPL.

[ Mars 2020 ]

Rigid grippers used in existing aerial manipulators require precise positioning to achieve successful grasps and transmit large contact forces that may destabilize the drone. This limits the speed during grasping and prevents “dynamic grasping,” where the drone attempts to grasp an object while moving. On the other hand, biological systems (e.g. birds) rely on compliant and soft parts to dampen contact forces and compensate for grasping inaccuracy, enabling impressive feats. This paper presents the first prototype of a soft drone—a quadrotor where traditional (i.e. rigid) landing gears are replaced with a soft tendon-actuated gripper to enable aggressive grasping.

[ MIT ]

In this video we present results from a field deployment inside the Løkken Mine underground pyrite mine in Norway. The Løkken mine was operative from 1654 to 1987 and contains narrow but long corridors, alongside vast rooms and challenging vertical stopes. In this field study we evaluated selected autonomous exploration and visual search capabilities of a subset of the aerial robots of Team CERBERUS towards the goal of complete subterranean autonomy.

[ Team CERBERUS ]

What you can do with a 1,000 FPS projector with a high speed tracking system.

[ Ishikawa Group ]

ANYbotics’ collaboration with BASF, one of the largest global chemical manufacturers, displays the efficiency, quality, and scalability of robotic inspection and data-collection capabilities in complex industrial environments.

[ ANYbotics ]

Does your robot arm need a stylish jacket?

[ Fraunhofer ]

Trossen Robotics unboxes a Unitree A1, and it's actually an unboxing where they have to figure out everything from scratch.

[ Trossen ]

Robots have learned to drive cars, assist in surgeries―and vacuum our floors. But can they navigate the unwritten rules of a busy sidewalk? Until they can, robotics experts Leila Takayama and Chris Nicholson believe, robots won’t be able to fulfill their immense potential. In this conversation, Chris and Leila explore the future of robotics and the role open source will play in it.

[ Red Hat ]

Christoph Bartneck's keynote at the 6th Joint UAE Symposium on Social Robotics, focusing on what roles robots can play during the Covid crisis and why so many social robots fail in the market.

[ HIT Lab ]

Decision-making based on arbitrary criteria is legal in some contexts, such as employment, and not in others, such as criminal sentencing. As algorithms replace human deciders, HAI-EIS fellow Kathleen Creel argues arbitrariness at scale is morally and legally problematic. In this HAI seminar, she explains how the heart of this moral issue relates to domination and a lack of sufficient opportunity for autonomy. It relates in interesting ways to the moral wrong of discrimination. She proposes technically informed solutions that can lessen the impact of algorithms at scale and so mitigate or avoid the moral harm identified.

[ Stanford HAI ]

Sawyer B. Fuller speaks on Autonomous Insect-Sized Robots at the UC Berkeley EECS Colloquium series.

Sub-gram (insect-sized) robots have enormous potential that is largely untapped. From a research perspective, their extreme size, weight, and power (SWaP) constraints also forces us to reimagine everything from how they compute their control laws to how they are fabricated. These questions are the focus of the Autonomous Insect Robotics Laboratory at the University of Washington. I will discuss potential applications for insect robots and recent advances from our group. These include the first wireless flights of a sub-gram flapping-wing robot that weighs barely more than a toothpick. I will describe efforts to expand its capabilities, including the first multimodal ground-flight locomotion, the first demonstration of steering control, and how to find chemical plume sources by integrating the smelling apparatus of a live moth. I will also describe a backpack for live beetles with a steerable camera and conceptual design of robots that could scale all the way down to the “gnat robots” first envisioned by Flynn & Brooks in the ‘80s.

[ UC Berkeley ]

Thanks Fan!

Joshua Vander Hook, Computer Scientist, NIAC Fellow, and Technical Group Supervisor at NASA JPL, presents an overview of the AI Group(s) at JPL, and recent work on single and multi-agent autonomous systems supporting space exploration, Earth science, NASA technology development, and national defense programs.

[ UMD ] Continue reading

Posted in Human Robots

#439023 In ‘Klara and the Sun,’ We Glimpse ...

In a store in the center of an unnamed city, humanoid robots are displayed alongside housewares and magazines. They watch the fast-moving world outside the window, anxiously awaiting the arrival of customers who might buy them and take them home. Among them is Klara, a particularly astute robot who loves the sun and wants to learn as much as possible about humans and the world they live in.

So begins Kazuo Ishiguro’s new novel Klara and the Sun, published earlier this month. The book, told from Klara’s perspective, portrays an eerie future society in which intelligent machines and other advanced technologies have been integrated into daily life, but not everyone is happy about it.

Technological unemployment, the progress of artificial intelligence, inequality, the safety and ethics of gene editing, increasing loneliness and isolation—all of which we’re grappling with today—show up in Ishiguro’s world. It’s like he hit a fast-forward button, mirroring back to us how things might play out if we don’t approach these technologies with caution and foresight.

The wealthy genetically edit or “lift” their children to set them up for success, while the poor have to make do with the regular old brains and bodies bequeathed them by evolution. Lifted and unlifted kids generally don’t mix, and this is just one of many sinister delineations between a new breed of haves and have-nots.

There’s anger about robots’ steady infiltration into everyday life, and questions about how similar their rights should be to those of humans. “First they take the jobs. Then they take the seats at the theater?” one woman fumes.

References to “changes” and “substitutions” allude to an economy where automation has eliminated millions of jobs. While “post-employed” people squat in abandoned buildings and fringe communities arm themselves in preparation for conflict, those whose livelihoods haven’t been destroyed can afford to have live-in housekeepers and buy Artificial Friends (or AFs) for their lonely children.

“The old traditional model that we still live with now—where most of us can get some kind of paid work in exchange for our services or the goods we make—has broken down,” Ishiguro said in a podcast discussion of the novel. “We’re not talking just about the difference between rich and poor getting bigger. We’re talking about a gap appearing between people who participate in society in an obvious way and people who do not.”

He has a point; as much as techno-optimists claim that the economic changes brought by automation and AI will give us all more free time, let us work less, and devote time to our passion projects, how would that actually play out? What would millions of “post-employed” people receiving basic income actually do with their time and energy?

In the novel, we don’t get much of a glimpse of this side of the equation, but we do see how the wealthy live. After a long wait, just as the store manager seems ready to give up on selling her, Klara is chosen by a 14-year-old girl named Josie, the daughter of a woman who wears “high-rank clothes” and lives in a large, sunny home outside the city. Cheerful and kind, Josie suffers from an unspecified illness that periodically flares up and leaves her confined to her bed for days at a time.

Her life seems somewhat bleak, the need for an AF clear. In this future world, the children of the wealthy no longer go to school together, instead studying alone at home on their digital devices. “Interaction meetings” are set up for them to learn to socialize, their parents carefully eavesdropping from the next room and trying not to intervene when there’s conflict or hurt feelings.

Klara does her best to be a friend, aide, and confidante to Josie while continuing to learn about the world around her and decode the mysteries of human behavior. We surmise that she was programmed with a basic ability to understand emotions, which evolves along with her other types of intelligence. “I believe I have many feelings. The more I observe, the more feelings become available to me,” she explains to one character.

Ishiguro does an excellent job of representing Klara’s mind: a blend of pre-determined programming, observation, and continuous learning. Her narration has qualities both robotic and human; we can tell when something has been programmed in—she “Gives Privacy” to the humans around her when that’s appropriate, for example—and when she’s figured something out for herself.

But the author maintains some mystery around Klara’s inner emotional life. “Does she actually understand human emotions, or is she just observing human emotions and simulating them within herself?” he said. “I suppose the question comes back to, what are our emotions as human beings? What do they amount to?”

Klara is particularly attuned to human loneliness, since she essentially was made to help prevent it. It is, in her view, peoples’ biggest fear, and something they’ll go to great lengths to avoid, yet can never fully escape. “Perhaps all humans are lonely,” she says.

Warding off loneliness through technology isn’t a futuristic idea, it’s something we’ve been doing for a long time, with the technologies at hand growing more and more sophisticated. Products like AFs already exist. There’s XiaoIce, a chatbot that uses “sentiment analysis” to keep its 660 million users engaged, and Azuma Hikari, a character-based AI designed to “bring comfort” to users whose lives lack emotional connection with other humans.

The mere existence of these tools would be sinister if it wasn’t for their widespread adoption; when millions of people use AIs to fill a void in their lives, it raises deeper questions about our ability to connect with each other and whether technology is building it up or tearing it down.

This isn’t the only big question the novel tackles. An overarching theme is one we’ve been increasingly contemplating as computers start to acquire more complex capabilities, like the beginnings of creativity or emotional awareness: What is it that truly makes us human?

“Do you believe in the human heart?” one character asks. “I don’t mean simply the organ, obviously. I’m speaking in the poetic sense. The human heart. Do you think there is such a thing? Something that makes each of us special and individual?”

The alternative, at least in the story, is that people don’t have a unique essence, but rather we’re all a blend of traits and personalities that can be reduced to strings of code. Our understanding of the brain is still elementary, but at some level, doesn’t all human experience boil down to the firing of billions of neurons between our ears? Will we one day—in a future beyond that painted by Ishiguro, but certainly foreshadowed by it—be able to “decode” our humanity to the point that there’s nothing mysterious left about it? “A human heart is bound to be complex,” Klara says. “But it must be limited.”

Whether or not you agree, Klara and the Sun is worth the read. It’s both a marvelous, engaging story about what it means to love and be human, and a prescient warning to approach technological change with caution and nuance. We’re already living in a world where AI keeps us company, influences our behavior, and is wreaking various forms of havoc. Ishiguro’s novel is a snapshot of one of our possible futures, told through the eyes of a robot who keeps you rooting for her to the end.

Image Credit: Marion Wellmann from Pixabay Continue reading

Posted in Human Robots

#438809 This Week’s Awesome Tech Stories From ...

ARTIFICIAL INTELLIGENCE
Facebook’s New AI Teaches Itself to See With Less Human Help
Will Knight | Wired
“Peer inside an AI algorithm and you’ll find something constructed using data that was curated and labeled by an army of human workers. Now, Facebook has shown how some AI algorithms can learn to do useful work with far less human help. The company built an algorithm that learned to recognize objects in images with little help from labels.”

CULTURE
New AI ‘Deep Nostalgia’ Brings Old Photos, Including Very Old Ones, to Life
Kim Lyons | The Verge
“The Deep Nostalgia service, offered by online genealogy company MyHeritage, uses AI licensed from D-ID to create the effect that a still photo is moving. It’s kinda like the iOS Live Photos feature, which adds a few seconds of video to help smartphone photographers find the best shot. But Deep Nostalgia can take photos from any camera and bring them to ‘life.’i”

COMPUTING
Could ‘Topological Materials’ Be a New Medium For Ultra-Fast Electronics?
Charles Q. Choi | IEEE Spectrum
“Potential future transistors that can exceed Moore’s law may rely on exotic materials called ‘topological matter’ in which electricity flows across surfaces only, with virtually no dissipation of energy. And now new findings suggest these special topological materials might one day find use in high-speed, low-power electronics and in quantum computers.”

ENERGY
A Chinese Province Could Ban Bitcoin Mining to Cut Down Energy Use
Dharna Noor | Gizmodo
“Since energy prices in Inner Mongolia are particularly low, many bitcoin miners have set up shop there specifically. The region is the third-largest mining site in China. Because the grid is heavily coal-powered, however, that’s led to skyrocketing emissions, putting it in conflict with President Xi Jinping’s promise last September to have China reach peak carbon emissions by 2030 at the latest and achieve carbon neutrality before 2060.”

VIRTUAL REALITY
Mesh Is Microsoft’s Vision for Sending Your Hologram Back to the Office
Sam Rutherford | Gizmodo
“With Mesh, Microsoft is hoping to create a virtual environment capable of sharing data, 3D models, avatars, and more—basically, the company wants to upgrade the traditional remote-working experience with the power of AR and VR. In the future, Microsoft is planning for something it’s calling ‘holoportation,’ which will allow Mesh devices to create photorealistic digital avatars of your body that can appear in virtual spaces anywhere in the world—assuming you’ve been invited, of course.”

SPACE
Rocket Lab Could Be SpaceX’s Biggest Rival
Neel V. Patel | MIT Technology Review
“At 40 meters tall and able to carry 20 times the weight that Electron can, [the new] Neutron [rocket] is being touted by Rocket Lab as its entry into markets for large satellite and mega-constellation launches, as well as future robotics missions to the moon and Mars. Even more tantalizing, Rocket Lab says Neutron will be designed for human spaceflight as well.”

SCIENCE
Can Alien Smog Lead Us to Extraterrestrial Civilizations?
Meghan Herbst | Wired
“Kopparapu is at the forefront of an emerging field in astronomy that is aiming to identify technosignatures, or technological markers we can search for in the cosmos. No longer conceptually limited to radio signals, astronomers are looking for ways we could identify planets or other spacefaring objects by looking for things like atmospheric gases, lasers, and even hypothetical sun-encircling structures called Dyson spheres.”

DIGITAL CURRENCIES
China Charges Ahead With a National Digital Currency
Nathaniel Popper and Cao Li | The New York Times
“China has charged ahead with a bold effort to remake the way that government-backed money works, rolling out its own digital currency with different qualities than cash or digital deposits. The country’s central bank, which began testing eCNY last year in four cities, recently expanded those trials to bigger cities such as Beijing and Shanghai, according to government presentations.”

Image Credit: Leon Seibert / Unsplash Continue reading

Posted in Human Robots

#438801 This AI Thrashes the Hardest Atari Games ...

Learning from rewards seems like the simplest thing. I make coffee, I sip coffee, I’m happy. My brain registers “brewing coffee” as an action that leads to a reward.

That’s the guiding insight behind deep reinforcement learning, a family of algorithms that famously smashed most of Atari’s gaming catalog and triumphed over humans in strategy games like Go. Here, an AI “agent” explores the game, trying out different actions and registering ones that let it win.

Except it’s not that simple. “Brewing coffee” isn’t one action; it’s a series of actions spanning several minutes, where you’re only rewarded at the very end. By just tasting the final product, how do you learn to fine-tune grind coarseness, water to coffee ratio, brewing temperature, and a gazillion other factors that result in the reward—tasty, perk-me-up coffee?

That’s the problem with “sparse rewards,” which are ironically very abundant in our messy, complex world. We don’t immediately get feedback from our actions—no video-game-style dings or points for just grinding coffee beans—yet somehow we’re able to learn and perform an entire sequence of arm and hand movements while half-asleep.

This week, researchers from UberAI and OpenAI teamed up to bestow this talent on AI.

The trick is to encourage AI agents to “return” to a previous step, one that’s promising for a winning solution. The agent then keeps a record of that state, reloads it, and branches out again to intentionally explore other solutions that may have been left behind on the first go-around. Video gamers are likely familiar with this idea: live, die, reload a saved point, try something else, repeat for a perfect run-through.

The new family of algorithms, appropriately dubbed “Go-Explore,” smashed notoriously difficult Atari games like Montezuma’s Revenge that were previously unsolvable by its AI predecessors, while trouncing human performance along the way.

It’s not just games and digital fun. In a computer simulation of a robotic arm, the team found that installing Go-Explore as its “brain” allowed it to solve a challenging series of actions when given very sparse rewards. Because the overarching idea is so simple, the authors say, it can be adapted and expanded to other real-world problems, such as drug design or language learning.

Growing Pains
How do you reward an algorithm?

Rewards are very hard to craft, the authors say. Take the problem of asking a robot to go to a fridge. A sparse reward will only give the robot “happy points” if it reaches its destination, which is similar to asking a baby, with no concept of space and danger, to crawl through a potential minefield of toys and other obstacles towards a fridge.

“In practice, reinforcement learning works very well, if you have very rich feedback, if you can tell, ‘hey, this move is good, that move is bad, this move is good, that move is bad,’” said study author Joost Huinzinga. However, in situations that offer very little feedback, “rewards can intentionally lead to a dead end. Randomly exploring the space just doesn’t cut it.”

The other extreme is providing denser rewards. In the same robot-to-fridge example, you could frequently reward the bot as it goes along its journey, essentially helping “map out” the exact recipe to success. But that’s troubling as well. Over-holding an AI’s hand could result in an extremely rigid robot that ignores new additions to its path—a pet, for example—leading to dangerous situations. It’s a deceptive AI solution that seems effective in a simple environment, but crashes in the real world.

What we need are AI agents that can tackle both problems, the team said.

Intelligent Exploration
The key is to return to the past.

For AI, motivation usually comes from “exploring new or unusual situations,” said Huizinga. It’s efficient, but comes with significant downsides. For one, the AI agent could prematurely stop going back to promising areas because it thinks it had already found a good solution. For another, it could simply forget a previous decision point because of the mechanics of how it probes the next step in a problem.

For a complex task, the end result is an AI that randomly stumbles around towards a solution while ignoring potentially better ones.

“Detaching from a place that was previously visited after collecting a reward doesn’t work in difficult games, because you might leave out important clues,” Huinzinga explained.

Go-Explore solves these problems with a simple principle: first return, then explore. In essence, the algorithm saves different approaches it previously tried and loads promising save points—once more likely to lead to victory—to explore further.

Digging a bit deeper, the AI stores screen caps from a game. It then analyzes saved points and groups images that look alike as a potential promising “save point” to return to. Rinse and repeat. The AI tries to maximize its final score in the game, and updates its save points when it achieves a new record score. Because Atari doesn’t usually allow people to revisit any random point, the team used an emulator, which is a kind of software that mimics the Atari system but with custom abilities such as saving and reloading at any time.

The trick worked like magic. When pitted against 55 Atari games in the OpenAI gym, now commonly used to benchmark reinforcement learning algorithms, Go-Explore knocked out state-of-the-art AI competitors over 85 percent of the time.

It also crushed games previously unbeatable by AI. Montezuma’s Revenge, for example, requires you to move Pedro, the blocky protagonist, through a labyrinth of underground temples while evading obstacles such as traps and enemies and gathering jewels. One bad jump could derail the path to the next level. It’s a perfect example of sparse rewards: you need a series of good actions to get to the reward—advancing onward.

Go-Explore didn’t just beat all levels of the game, a first for AI. It also scored higher than any previous record for reinforcement learning algorithms at lower levels while toppling the human world record.

Outside a gaming environment, Go-Explore was also able to boost the performance of a simulated robot arm. While it’s easy for humans to follow high-level guidance like “put the cup on this shelf in a cupboard,” robots often need explicit training—from grasping the cup to recognizing a cupboard, moving towards it while avoiding obstacles, and learning motions to not smash the cup when putting it down.

Here, similar to the real world, the digital robot arm was only rewarded when it placed the cup onto the correct shelf, out of four possible shelves. When pitted against another algorithm, Go-Explore quickly figured out the movements needed to place the cup, while its competitor struggled with even reliably picking the cup up.

Combining Forces
By itself, the “first return, then explore” idea behind Go-Explore is already powerful. The team thinks it can do even better.

One idea is to change the mechanics of save points. Rather than reloading saved states through the emulator, it’s possible to train a neural network to do the same, without needing to relaunch a saved state. It’s a potential way to make the AI even smarter, the team said, because it can “learn” to overcome one obstacle once, instead of solving the same problem again and again. The downside? It’s much more computationally intensive.

Another idea is to combine Go-Explore with an alternative form of learning, called “imitation learning.” Here, an AI observes human behavior and mimics it through a series of actions. Combined with Go-Explore, said study author Adrien Ecoffet, this could make more robust robots capable of handling all the complexity and messiness in the real world.

To the team, the implications go far beyond Go-Explore. The concept of “first return, then explore” seems to be especially powerful, suggesting “it may be a fundamental feature of learning in general.” The team said, “Harnessing these insights…may be essential…to create generally intelligent agents.”

Image Credit: Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and Jeff Clune Continue reading

Posted in Human Robots