Tag Archives: lines
#433770 Will Tech Make Insurance Obsolete in the ...
We profit from it, we fear it, and we find it impossibly hard to quantify: risk.
While not the sexiest of industries, insurance can be a life-saving protector, pooling everyone’s premiums to safeguard against some of our greatest, most unexpected losses.
One of the most profitable in the world, the insurance industry exceeded $1.2 trillion in annual revenue since 2011 in the US alone.
But risk is becoming predictable. And insurance is getting disrupted fast.
By 2025, we’ll be living in a trillion-sensor economy. And as we enter a world where everything is measured all the time, we’ll start to transition from protecting against damages to preventing them in the first place.
But what happens to health insurance when Big Brother is always watching? Do rates go up when you sneak a cigarette? Do they go down when you eat your vegetables?
And what happens to auto insurance when most cars are autonomous? Or life insurance when the human lifespan doubles?
For that matter, what happens to insurance brokers when blockchain makes them irrelevant?
In this article, I’ll be discussing four key transformations:
Sensors and AI replacing your traditional broker
Blockchain
The ecosystem approach
IoT and insurance connectivity
Let’s dive in.
AI and the Trillion-Sensor Economy
As sensors continue to proliferate across every context—from smart infrastructure to millions of connected home devices to medicine—smart environments will allow us to ask any question, anytime, anywhere.
And as I often explain, once your AI has access to this treasure trove of ubiquitous sensor data in real time, it will be the quality of your questions that make or break your business.
But perhaps the most exciting insurance application of AI’s convergence with sensors is in healthcare. Tremendous advances in genetic screening are empowering us with predictive knowledge about our long-term health risks.
Leading the charge in genome sequencing, Illumina predicts that in a matter of years, decoding the full human genome will drop to $100, taking merely one hour to complete. Other companies are racing to get you sequences faster and cheaper.
Adopting an ecosystem approach, incumbent insurers and insurtech firms will soon be able to collaborate to provide risk-minimizing services in the health sector. Using sensor data and AI-driven personalized recommendations, insurance partnerships could keep consumers healthy, dramatically reducing the cost of healthcare.
Some fear that information asymmetry will allow consumers to learn of their health risks and leave insurers in the dark. However, both parties could benefit if insurers become part of the screening process.
A remarkable example of this is Gilad Meiri’s company, Neura AI. Aiming to predict health patterns, Neura has developed machine learning algorithms that analyze data from all of a user’s connected devices (sometimes from up to 54 apps!).
Neura predicts a user’s behavior and draws staggering insights about consumers’ health risks. Meiri soon began selling his personal risk assessment tool to insurers, who could then help insured customers mitigate long-term health risks.
But artificial intelligence will impact far more than just health insurance.
In October of 2016, a claim was submitted to Lemonade, the world’s first peer-to-peer insurance company. Rather than being processed by a human, every step in this claim resolution chain—from initial triage through fraud mitigation through final payment—was handled by an AI.
This transaction marks the first time an AI has processed an insurance claim. And it won’t be the last. A traditional human-processed claim takes 40 days to pay out. In Lemonade’s case, payment was transferred within three seconds.
However, Lemonade’s achievement only marks a starting point. Over the course of the next decade, nearly every facet of the insurance industry will undergo a similarly massive transformation.
New business models like peer-to-peer insurance are replacing traditional brokerage relationships, while AI and blockchain pairings significantly reduce the layers of bureaucracy required (with each layer getting a cut) for traditional insurance.
Consider Juniper, a startup that scrapes social media to build your risk assessment, subsequently asking you 12 questions via an iPhone app. Geared with advanced analytics, the platform can generate a million-dollar life insurance policy, approved in less than five minutes.
But what’s keeping all your data from unwanted hands?
Blockchain Building Trust
Current distrust in centralized financial services has led to staggering rates of underinsurance. Add to this fear of poor data and privacy protection, particularly in the wake of 2017’s widespread cybercriminal hacks.
Enabling secure storage and transfer of personal data, blockchain holds remarkable promise against the fraudulent activity that often plagues insurance firms.
The centralized model of insurance companies and other organizations is becoming redundant. Developing blockchain-based solutions for capital markets, Symbiont develops smart contracts to execute payments with little to no human involvement.
But distributed ledger technology (DLT) is enabling far more than just smart contracts.
Also targeting insurance is Tradle, leveraging blockchain for its proclaimed goal of “building a trust provisioning network.” Built around “know-your-customer” (KYC) data, Tradle aims to verify KYC data so that it can be securely forwarded to other firms without any further verification.
By requiring a certain number of parties to reuse pre-verified data, the platform makes your data much less vulnerable to hacking and allows you to keep it on a personal device. Only its verification—let’s say of a transaction or medical exam—is registered in the blockchain.
As insurance data grow increasingly decentralized, key insurance players will experience more and more pressure to adopt an ecosystem approach.
The Ecosystem Approach
Just as exponential technologies converge to provide new services, exponential businesses must combine the strengths of different sectors to expand traditional product lines.
By partnering with platform-based insurtech firms, forward-thinking insurers will no longer serve only as reactive policy-providers, but provide risk-mitigating services as well.
Especially as digital technologies demonetize security services—think autonomous vehicles—insurers must create new value chains and span more product categories.
For instance, France’s multinational AXA recently partnered with Alibaba and Ant Financial Services to sell a varied range of insurance products on Alibaba’s global e-commerce platform at the click of a button.
Building another ecosystem, Alibaba has also collaborated with Ping An Insurance and Tencent to create ZhongAn Online Property and Casualty Insurance—China’s first internet-only insurer, offering over 300 products. Now with a multibillion-dollar valuation, Zhong An has generated about half its business from selling shipping return insurance to Alibaba consumers.
But it doesn’t stop there. Insurers that participate in digital ecosystems can now sell risk-mitigating services that prevent damage before it occurs.
Imagine a corporate manufacturer whose sensors collect data on environmental factors affecting crop yield in an agricultural community. With the backing of investors and advanced risk analytics, such a manufacturer could sell crop insurance to farmers. By implementing an automated, AI-driven UI, they could automatically make payments when sensors detect weather damage to crops.
Now let’s apply this concept to your house, your car, your health insurance.
What’s stopping insurers from partnering with third-party IoT platforms to predict fires, collisions, chronic heart disease—and then empowering the consumer with preventive services?
This brings us to the powerful field of IoT.
Internet of Things and Insurance Connectivity
Leap ahead a few years. With a centralized hub like Echo, your smart home protects itself with a network of sensors. While gone, you’ve left on a gas burner and your internet-connected stove notifies you via a home app.
Better yet, home sensors monitoring heat and humidity levels run this data through an AI, which then remotely controls heating, humidity levels, and other connected devices based on historical data patterns and fire risk factors.
Several firms are already working toward this reality.
AXA plans to one day cooperate with a centralized home hub whereby remote monitoring will collect data for future analysis and detect abnormalities.
With remote monitoring and app-centralized control for users, MonAXA is aimed at customizing insurance bundles. These would reflect exact security features embedded in smart homes.
Wouldn’t you prefer not to have to rely on insurance after a burglary? With digital ecosystems, insurers may soon prevent break-ins from the start.
By gathering sensor data from third parties on neighborhood conditions, historical theft data, suspicious activity and other risk factors, an insurtech firm might automatically put your smart home on high alert, activating alarms and specialized locks in advance of an attack.
Insurance policy premiums are predicted to vastly reduce with lessened likelihood of insured losses. But insurers moving into preventive insurtech will likely turn a profit from other areas of their business. PricewaterhouseCoopers predicts that the connected home market will reach $149 billion USD by 2020.
Let’s look at car insurance.
Car insurance premiums are currently calculated according to the driver and traits of the car. But as more autonomous vehicles take to the roads, not only does liability shift to manufacturers and software engineers, but the risk of collision falls dramatically.
But let’s take this a step further.
In a future of autonomous cars, you will no longer own your car, instead subscribing to Transport as a Service (TaaS) and giving up the purchase of automotive insurance altogether.
This paradigm shift has already begun with Waymo, which automatically provides passengers with insurance every time they step into a Waymo vehicle.
And with the rise of smart traffic systems, sensor-embedded roads, and skyrocketing autonomous vehicle technology, the risks involved in transit only continue to plummet.
Final Thoughts
Insurtech firms are hitting the market fast. IoT, autonomous vehicles and genetic screening are rapidly making us invulnerable to risk. And AI-driven services are quickly pushing conventional insurers out of the market.
By 2024, roll-out of 5G on the ground, as well as OneWeb and Starlink in orbit are bringing 4.2 billion new consumers to the web—most of whom will need insurance. Yet, because of the changes afoot in the industry, none of them will buy policies from a human broker.
While today’s largest insurance companies continue to ignore this fact at their peril (and this segment of the market), thousands of entrepreneurs see it more clearly: as one of the largest opportunities ahead.
Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.
Image Credit: 24Novembers / Shutterstock.com Continue reading →
#433400 A Model for the Future of Education, and ...
As kids worldwide head back to school, I’d like to share my thoughts on the future of education.
Bottom line, how we educate our kids needs to radically change given the massive potential of exponential tech (e.g. artificial intelligence and virtual reality).
Without question, the number one driver for education is inspiration. As such, if you have a kid age 8–18, you’ll want to get your hands on an incredibly inspirational novel written by my dear friend Ray Kurzweil called Danielle: Chronicles of a Superheroine.
Danielle offers boys and girls a role model of a young woman who uses smart technologies and super-intelligence to partner with her friends to solve some of the world’s greatest challenges. It’s perfect to inspire anyone to pursue their moonshot.
Without further ado, let’s dive into the future of educating kids, and a summary of my white paper thoughts….
Just last year, edtech (education technology) investments surpassed a record high of 9.5 billion USD—up 30 percent from the year before.
Already valued at over half a billion USD, the AI in education market is set to surpass 6 billion USD by 2024.
And we’re now seeing countless new players enter the classroom, from a Soul Machines AI teacher specializing in energy use and sustainability to smart “lab schools” with personalized curricula.
As my two boys enter 1st grade, I continue asking myself, given the fact that most elementary schools haven’t changed in many decades (perhaps a century), what do I want my kids to learn? How do I think about elementary school during an exponential era?
This post covers five subjects related to elementary school education:
Five Issues with Today’s Elementary Schools
Five Guiding Principles for Future Education
An Elementary School Curriculum for the Future
Exponential Technologies in our Classroom
Mindsets for the 21st Century
Excuse the length of this post, but if you have kids, the details might be meaningful. If you don’t, then next week’s post will return to normal length and another fun subject.
Also, if you’d like to see my detailed education “white paper,” you can view or download it here.
Let’s dive in…
Five Issues With Today’s Elementary Schools
There are probably lots of issues with today’s traditional elementary schools, but I’ll just choose a few that bother me most.
Grading: In the traditional education system, you start at an “A,” and every time you get something wrong, your score gets lower and lower. At best it’s demotivating, and at worst it has nothing to do with the world you occupy as an adult. In the gaming world (e.g. Angry Birds), it’s just the opposite. You start with zero and every time you come up with something right, your score gets higher and higher.
Sage on the Stage: Most classrooms have a teacher up in front of class lecturing to a classroom of students, half of whom are bored and half of whom are lost. The one-teacher-fits-all model comes from an era of scarcity where great teachers and schools were rare.
Relevance: When I think back to elementary and secondary school, I realize how much of what I learned was never actually useful later in life, and how many of my critical lessons for success I had to pick up on my own (I don’t know about you, but I haven’t ever actually had to factor a polynomial in my adult life).
Imagination, Coloring inside the Lines: Probably of greatest concern to me is the factory-worker, industrial-era origin of today’s schools. Programs are so structured with rote memorization that it squashes the originality from most children. I’m reminded that “the day before something is truly a breakthrough, it’s a crazy idea.” Where do we pursue crazy ideas in our schools? Where do we foster imagination?
Boring: If learning in school is a chore, boring, or emotionless, then the most important driver of human learning, passion, is disengaged. Having our children memorize facts and figures, sit passively in class, and take mundane standardized tests completely defeats the purpose.
An average of 7,200 students drop out of high school each day, totaling 1.3 million each year. This means only 69 percent of students who start high school finish four years later. And over 50 percent of these high school dropouts name boredom as the number one reason they left.
Five Guiding Principles for Future Education
I imagine a relatively near-term future in which robotics and artificial intelligence will allow any of us, from ages 8 to 108, to easily and quickly find answers, create products, or accomplish tasks, all simply by expressing our desires.
From ‘mind to manufactured in moments.’ In short, we’ll be able to do and create almost whatever we want.
In this future, what attributes will be most critical for our children to learn to become successful in their adult lives? What’s most important for educating our children today?
For me it’s about passion, curiosity, imagination, critical thinking, and grit.
Passion: You’d be amazed at how many people don’t have a mission in life… A calling… something to jolt them out of bed every morning. The most valuable resource for humanity is the persistent and passionate human mind, so creating a future of passionate kids is so very important. For my 7-year-old boys, I want to support them in finding their passion or purpose… something that is uniquely theirs. In the same way that the Apollo program and Star Trek drove my early love for all things space, and that passion drove me to learn and do.
Curiosity: Curiosity is something innate in kids, yet something lost by most adults during the course of their life. Why? In a world of Google, robots, and AI, raising a kid that is constantly asking questions and running “what if” experiments can be extremely valuable. In an age of machine learning, massive data, and a trillion sensors, it will be the quality of your questions that will be most important.
Imagination: Entrepreneurs and visionaries imagine the world (and the future) they want to live in, and then they create it. Kids happen to be some of the most imaginative humans around… it’s critical that they know how important and liberating imagination can be.
Critical Thinking: In a world flooded with often-conflicting ideas, baseless claims, misleading headlines, negative news, and misinformation, learning the skill of critical thinking helps find the signal in the noise. This principle is perhaps the most difficult to teach kids.
Grit/Persistence: Grit is defined as “passion and perseverance in pursuit of long-term goals,” and it has recently been widely acknowledged as one of the most important predictors of and contributors to success.
Teaching your kids not to give up, to keep trying, and to keep trying new ideas for something that they are truly passionate about achieving is extremely critical. Much of my personal success has come from such stubbornness. I joke that both XPRIZE and the Zero Gravity Corporation were “overnight successes after 10 years of hard work.”
So given those five basic principles, what would an elementary school curriculum look like? Let’s take a look…
An Elementary School Curriculum for the Future
Over the last 30 years, I’ve had the pleasure of starting two universities, International Space University (1987) and Singularity University (2007). My favorite part of co-founding both institutions was designing and implementing the curriculum. Along those lines, the following is my first shot at the type of curriculum I’d love my own boys to be learning.
I’d love your thoughts, I’ll be looking for them here: https://www.surveymonkey.com/r/DDRWZ8R
For the purpose of illustration, I’ll speak about ‘courses’ or ‘modules,’ but in reality these are just elements that would ultimately be woven together throughout the course of K-6 education.
Module 1: Storytelling/Communications
When I think about the skill that has served me best in life, it’s been my ability to present my ideas in the most compelling fashion possible, to get others onboard, and support birth and growth in an innovative direction. In my adult life, as an entrepreneur and a CEO, it’s been my ability to communicate clearly and tell compelling stories that has allowed me to create the future. I don’t think this lesson can start too early in life. So imagine a module, year after year, where our kids learn the art and practice of formulating and pitching their ideas. The best of oration and storytelling. Perhaps children in this class would watch TED presentations, or maybe they’d put together their own TEDx for kids. Ultimately, it’s about practice and getting comfortable with putting yourself and your ideas out there and overcoming any fears of public speaking.
Module 2: Passions
A modern school should help our children find and explore their passion(s). Passion is the greatest gift of self-discovery. It is a source of interest and excitement, and is unique to each child.
The key to finding passion is exposure. Allowing kids to experience as many adventures, careers, and passionate adults as possible. Historically, this was limited by the reality of geography and cost, implemented by having local moms and dads presenting in class about their careers. “Hi, I’m Alan, Billy’s dad, and I’m an accountant. Accountants are people who…”
But in a world of YouTube and virtual reality, the ability for our children to explore 500 different possible careers or passions during their K-6 education becomes not only possible but compelling. I imagine a module where children share their newest passion each month, sharing videos (or VR experiences) and explaining what they love and what they’ve learned.
Module 3: Curiosity & Experimentation
Einstein famously said, “I have no special talent. I am only passionately curious.” Curiosity is innate in children, and many times lost later in life. Arguably, it can be said that curiosity is responsible for all major scientific and technological advances; it’s the desire of an individual to know the truth.
Coupled with curiosity is the process of experimentation and discovery. The process of asking questions, creating and testing a hypothesis, and repeated experimentation until the truth is found. As I’ve studied the most successful entrepreneurs and entrepreneurial companies, from Google and Amazon to Uber, their success is significantly due to their relentless use of experimentation to define their products and services.
Here I imagine a module which instills in children the importance of curiosity and gives them permission to say, “I don’t know, let’s find out.”
Further, a monthly module that teaches children how to design and execute valid and meaningful experiments. Imagine children who learn the skill of asking a question, proposing a hypothesis, designing an experiment, gathering the data, and then reaching a conclusion.
Module 4: Persistence/Grit
Doing anything big, bold, and significant in life is hard work. You can’t just give up when the going gets rough. The mindset of persistence, of grit, is a learned behavior I believe can be taught at an early age, especially when it’s tied to pursuing a child’s passion.
I imagine a curriculum that, each week, studies the career of a great entrepreneur and highlights their story of persistence. It would highlight the individuals and companies that stuck with it, iterated, and ultimately succeeded.
Further, I imagine a module that combines persistence and experimentation in gameplay, such as that found in Dean Kamen’s FIRST LEGO league, where 4th graders (and up) research a real-world problem such as food safety, recycling, energy, and so on, and are challenged to develop a solution. They also must design, build, and program a robot using LEGO MINDSTORMS®, then compete on a tabletop playing field.
Module 5: Technology Exposure
In a world of rapidly accelerating technology, understanding how technologies work, what they do, and their potential for benefiting society is, in my humble opinion, critical to a child’s future. Technology and coding (more on this below) are the new “lingua franca” of tomorrow.
In this module, I imagine teaching (age appropriate) kids through play and demonstration. Giving them an overview of exponential technologies such as computation, sensors, networks, artificial intelligence, digital manufacturing, genetic engineering, augmented/virtual reality, and robotics, to name a few. This module is not about making a child an expert in any technology, it’s more about giving them the language of these new tools, and conceptually an overview of how they might use such a technology in the future. The goal here is to get them excited, give them demonstrations that make the concepts stick, and then to let their imaginations run.
Module 6: Empathy
Empathy, defined as “the ability to understand and share the feelings of another,” has been recognized as one of the most critical skills for our children today. And while there has been much written, and great practices for instilling this at home and in school, today’s new tools accelerate this.
Virtual reality isn’t just about video games anymore. Artists, activists, and journalists now see the technology’s potential to be an empathy engine, one that can shine spotlights on everything from the Ebola epidemic to what it’s like to live in Gaza. And Jeremy Bailenson has been at the vanguard of investigating VR’s power for good.
For more than a decade, Bailenson’s lab at Stanford has been studying how VR can make us better people. Through the power of VR, volunteers at the lab have felt what it is like to be Superman (to see if it makes them more helpful), a cow (to reduce meat consumption), and even a coral (to learn about ocean acidification).
Silly as they might seem, these sorts of VR scenarios could be more effective than the traditional public service ad at making people behave. Afterwards, they waste less paper. They save more money for retirement. They’re nicer to the people around them. And this could have consequences in terms of how we teach and train everyone from cliquey teenagers to high court judges.
Module 7: Ethics/Moral Dilemmas
Related to empathy, and equally important, is the goal of infusing kids with a moral compass. Over a year ago, I toured a special school created by Elon Musk (the Ad Astra school) for his five boys (age 9 to 14). One element that is persistent in that small school of under 40 kids is the conversation about ethics and morals, a conversation manifested by debating real-world scenarios that our kids may one day face.
Here’s an example of the sort of gameplay/roleplay that I heard about at Ad Astra, that might be implemented in a module on morals and ethics. Imagine a small town on a lake, in which the majority of the town is employed by a single factory. But that factory has been polluting the lake and killing all the life. What do you do? It’s posed that shutting down the factory would mean that everyone loses their jobs. On the other hand, keeping the factory open means the lake is destroyed and the lake dies. This kind of regular and routine conversation/gameplay allows the children to see the world in a critically important fashion.
Module 8: The 3R Basics (Reading, wRiting & aRithmetic)
There’s no question that young children entering kindergarten need the basics of reading, writing, and math. The only question is what’s the best way for them to get it? We all grew up in the classic mode of a teacher at the chalkboard, books, and homework at night. But I would argue that such teaching approaches are long outdated, now replaced with apps, gameplay, and the concept of the flip classroom.
Pioneered by high school teachers Jonathan Bergman and Aaron Sams in 2007, the flipped classroom reverses the sequence of events from that of the traditional classroom.
Students view lecture materials, usually in the form of video lectures, as homework prior to coming to class. In-class time is reserved for activities such as interactive discussions or collaborative work, all performed under the guidance of the teacher.
The benefits are clear:
Students can consume lectures at their own pace, viewing the video again and again until they get the concept, or fast-forwarding if the information is obvious.
The teacher is present while students apply new knowledge. Doing the homework into class time gives teachers insight into which concepts, if any, that their students are struggling with and helps them adjust the class accordingly.
The flipped classroom produces tangible results: 71 percent of teachers who flipped their classes noticed improved grades, and 80 percent reported improved student attitudes as a result.
Module 9: Creative Expression & Improvisation
Every single one of us is creative. It’s human nature to be creative… the thing is that we each might have different ways of expressing our creativity.
We must encourage kids to discover and to develop their creative outlets early. In this module, imagine showing kids the many different ways creativity is expressed, from art to engineering to music to math, and then guiding them as they choose the area (or areas) they are most interested in. Critically, teachers (or parents) can then develop unique lessons for each child based on their interests, thanks to open education resources like YouTube and the Khan Academy. If my child is interested in painting and robots, a teacher or AI could scour the web and put together a custom lesson set from videos/articles where the best painters and roboticists in the world share their skills.
Adapting to change is critical for success, especially in our constantly changing world today. Improvisation is a skill that can be learned, and we need to be teaching it early.
In most collegiate “improv” classes, the core of great improvisation is the “Yes, and…” mindset. When acting out a scene, one actor might introduce a new character or idea, completely changing the context of the scene. It’s critical that the other actors in the scene say “Yes, and…” accept the new reality, then add something new of their own.
Imagine playing similar role-play games in elementary schools, where a teacher gives the students a scene/context and constantly changes variables, forcing them to adapt and play.
Module 10: Coding
Computer science opens more doors for students than any other discipline in today’s world. Learning even the basics will help students in virtually any career, from architecture to zoology.
Coding is an important tool for computer science, in the way that arithmetic is a tool for doing mathematics and words are a tool for English. Coding creates software, but computer science is a broad field encompassing deep concepts that go well beyond coding.
Every 21st century student should also have a chance to learn about algorithms, how to make an app, or how the internet works. Computational thinking allows preschoolers to grasp concepts like algorithms, recursion and heuristics. Even if they don’t understand the terms, they’ll learn the basic concepts.
There are more than 500,000 open jobs in computing right now, representing the number one source of new wages in the US, and these jobs are projected to grow at twice the rate of all other jobs.
Coding is fun! Beyond the practical reasons for learning how to code, there’s the fact that creating a game or animation can be really fun for kids.
Module 11: Entrepreneurship & Sales
At its core, entrepreneurship is about identifying a problem (an opportunity), developing a vision on how to solve it, and working with a team to turn that vision into reality. I mentioned Elon’s school, Ad Astra: here, again, entrepreneurship is a core discipline where students create and actually sell products and services to each other and the school community.
You could recreate this basic exercise with a group of kids in lots of fun ways to teach them the basic lessons of entrepreneurship.
Related to entrepreneurship is sales. In my opinion, we need to be teaching sales to every child at an early age. Being able to “sell” an idea (again related to storytelling) has been a critical skill in my career, and it is a competency that many people simply never learned.
The lemonade stand has been a classic, though somewhat meager, lesson in sales from past generations, where a child sits on a street corner and tries to sell homemade lemonade for $0.50 to people passing by. I’d suggest we step the game up and take a more active approach in gamifying sales, and maybe having the classroom create a Kickstarter, Indiegogo or GoFundMe campaign. The experience of creating a product or service and successfully selling it will create an indelible memory and give students the tools to change the world.
Module 12: Language
A little over a year ago, I spent a week in China meeting with parents whose focus on kids’ education is extraordinary. One of the areas I found fascinating is how some of the most advanced parents are teaching their kids new languages: through games. On the tablet, the kids are allowed to play games, but only in French. A child’s desire to win fully engages them and drives their learning rapidly.
Beyond games, there’s virtual reality. We know that full immersion is what it takes to become fluent (at least later in life). A semester abroad in France or Italy, and you’ve got a great handle on the language and the culture. But what about for an eight-year-old?
Imagine a module where for an hour each day, the children spend their time walking around Italy in a VR world, hanging out with AI-driven game characters who teach them, engage them, and share the culture and the language in the most personalized and compelling fashion possible.
Exponential Technologies for Our Classrooms
If you’ve attended Abundance 360 or Singularity University, or followed my blogs, you’ll probably agree with me that the way our children will learn is going to fundamentally transform over the next decade.
Here’s an overview of the top five technologies that will reshape the future of education:
Tech 1: Virtual Reality (VR) can make learning truly immersive. Research has shown that we remember 20 percent of what we hear, 30 percent of what we see, and up to 90 percent of what we do or simulate. Virtual reality yields the latter scenario impeccably. VR enables students to simulate flying through the bloodstream while learning about different cells they encounter, or travel to Mars to inspect the surface for life.
To make this a reality, Google Cardboard just launched its Pioneer Expeditions product. Under this program, thousands of schools around the world have gotten a kit containing everything a teacher needs to take his or her class on a virtual trip. While data on VR use in K-12 schools and colleges have yet to be gathered, the steady growth of the market is reflected in the surge of companies (including zSpace, Alchemy VR and Immersive VR Education) solely dedicated to providing schools with packaged education curriculum and content.
Add to VR a related technology called augmented reality (AR), and experiential education really comes alive. Imagine wearing an AR headset that is able to superimpose educational lessons on top of real-world experiences. Interested in botany? As you walk through a garden, the AR headset superimposes the name and details of every plant you see.
Tech 2: 3D Printing is allowing students to bring their ideas to life. Never mind the computer on every desktop (or a tablet for every student), that’s a given. In the near future, teachers and students will want or have a 3D printer on the desk to help them learn core science, technology, engineering and mathematics (STEM) principles. Bre Pettis, of MakerBot Industries, in a grand but practical vision, sees a 3D printer on every school desk in America. “Imagine if you had a 3D printer instead of a LEGO set when you were a kid; what would life be like now?” asks Mr. Pettis. You could print your own mini-figures, your own blocks, and you could iterate on new designs as quickly as your imagination would allow. MakerBots are now in over 5,000 K-12 schools across the US.
Taking this one step further, you could imagine having a 3D file for most entries in Wikipedia, allowing you to print out and study an object you can only read about or visualize in VR.
Tech 3: Sensors & Networks. An explosion of sensors and networks are going to connect everyone at gigabit speeds, making access to rich video available at all times. At the same time, sensors continue to miniaturize and reduce in power, becoming embedded in everything. One benefit will be the connection of sensor data with machine learning and AI (below), such that knowledge of a child’s attention drifting, or confusion, can be easily measured and communicated. The result would be a representation of the information through an alternate modality or at a different speed.
Tech 4: Machine Learning is making learning adaptive and personalized. No two students are identical—they have different modes of learning (by reading, seeing, hearing, doing), come from different educational backgrounds, and have different intellectual capabilities and attention spans. Advances in machine learning and the surging adaptive learning movement are seeking to solve this problem. Companies like Knewton and Dreambox have over 15 million students on their respective adaptive learning platforms. Soon, every education application will be adaptive, learning how to personalize the lesson for a specific student. There will be adaptive quizzing apps, flashcard apps, textbook apps, simulation apps and many more.
Tech 5: Artificial Intelligence or “An AI Teaching Companion.” Neil Stephenson’s book The Diamond Age presents a fascinating piece of educational technology called “A Young Lady’s Illustrated Primer.”
As described by Beat Schwendimann, “The primer is an interactive book that can answer a learner’s questions (spoken in natural language), teach through allegories that incorporate elements of the learner’s environment, and presents contextual just-in-time information.
“The primer includes sensors that monitor the learner’s actions and provide feedback. The learner is in a cognitive apprenticeship with the book: The primer models a certain skill (through allegorical fairy tale characters), which the learner then imitates in real life.
“The primer follows a learning progression with increasingly more complex tasks. The educational goals of the primer are humanist: To support the learner to become a strong and independently thinking person.”
The primer, an individualized AI teaching companion is the result of technological convergence and is beautifully described by YouTuber CGP Grey in his video: Digital Aristotle: Thoughts on the Future of Education.
Your AI companion will have unlimited access to information on the cloud and will deliver it at the optimal speed to each student in an engaging, fun way. This AI will demonetize and democratize education, be available to everyone for free (just like Google), and offering the best education to the wealthiest and poorest children on the planet equally.
This AI companion is not a tutor who spouts facts, figures and answers, but a player on the side of the student, there to help him or her learn, and in so doing, learn how to learn better. The AI is always alert, watching for signs of frustration and boredom that may precede quitting, for signs of curiosity or interest that tend to indicate active exploration, and for signs of enjoyment and mastery, which might indicate a successful learning experience.
Ultimately, we’re heading towards a vastly more educated world. We are truly living during the most exciting time to be alive.
Mindsets for the 21st Century
Finally, it’s important for me to discuss mindsets. How we think about the future colors how we learn and what we do. I’ve written extensively about the importance of an abundance and exponential mindset for entrepreneurs and CEOs. I also think that attention to mindset in our elementary schools, when a child is shaping the mental “operating system” for the rest of their life, is even more important.
As such, I would recommend that a school adopt a set of principles that teach and promote a number of mindsets in the fabric of their programs.
Many “mindsets” are important to promote. Here are a couple to consider:
Nurturing Optimism & An Abundance Mindset:
We live in a competitive world, and kids experience a significant amount of pressure to perform. When they fall short, they feel deflated. We all fail at times; that’s part of life. If we want to raise “can-do” kids who can work through failure and come out stronger for it, it’s wise to nurture optimism. Optimistic kids are more willing to take healthy risks, are better problem-solvers, and experience positive relationships. You can nurture optimism in your school by starting each day by focusing on gratitude (what each child is grateful for), or a “positive focus” in which each student takes 30 seconds to talk about what they are most excited about, or what recent event was positively impactful to them. (NOTE: I start every meeting inside my Strike Force team with a positive focus.)
Finally, helping students understand (through data and graphs) that the world is in fact getting better (see my first book: Abundance: The Future is Better Than You Think) will help them counter the continuous flow of negative news flowing through our news media.
When kids feel confident in their abilities and excited about the world, they are willing to work harder and be more creative.
Tolerance for Failure:
Tolerating failure is a difficult lesson to learn and a difficult lesson to teach. But it is critically important to succeeding in life.
Astro Teller, who runs Google’s innovation branch “X,” talks a lot about encouraging failure. At X, they regularly try to “kill” their ideas. If they are successful in killing an idea, and thus “failing,” they save lots of time, money and resources. The ideas they can’t kill survive and develop into billion-dollar businesses. The key is that each time an idea is killed, Astro rewards the team, literally, with cash bonuses. Their failure is celebrated and they become a hero.
This should be reproduced in the classroom: kids should try to be critical of their best ideas (learn critical thinking), then they should be celebrated for ‘successfully failing,’ perhaps with cake, balloons, confetti, and lots of Silly String.
Join Me & Get Involved!
Abundance Digital Online Community: I have created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance Digital. This is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.
Image Credit: sakkarin sapu / Shutterstock.com Continue reading →
#432311 Everyone Is Talking About AI—But Do ...
In 2017, artificial intelligence attracted $12 billion of VC investment. We are only beginning to discover the usefulness of AI applications. Amazon recently unveiled a brick-and-mortar grocery store that has successfully supplanted cashiers and checkout lines with computer vision, sensors, and deep learning. Between the investment, the press coverage, and the dramatic innovation, “AI” has become a hot buzzword. But does it even exist yet?
At the World Economic Forum Dr. Kai-Fu Lee, a Taiwanese venture capitalist and the founding president of Google China, remarked, “I think it’s tempting for every entrepreneur to package his or her company as an AI company, and it’s tempting for every VC to want to say ‘I’m an AI investor.’” He then observed that some of these AI bubbles could burst by the end of 2018, referring specifically to “the startups that made up a story that isn’t fulfillable, and fooled VCs into investing because they don’t know better.”
However, Dr. Lee firmly believes AI will continue to progress and will take many jobs away from workers. So, what is the difference between legitimate AI, with all of its pros and cons, and a made-up story?
If you parse through just a few stories that are allegedly about AI, you’ll quickly discover significant variation in how people define it, with a blurred line between emulated intelligence and machine learning applications.
I spoke to experts in the field of AI to try to find consensus, but the very question opens up more questions. For instance, when is it important to be accurate to a term’s original definition, and when does that commitment to accuracy amount to the splitting of hairs? It isn’t obvious, and hype is oftentimes the enemy of nuance. Additionally, there is now a vested interest in that hype—$12 billion, to be precise.
This conversation is also relevant because world-renowned thought leaders have been publicly debating the dangers posed by AI. Facebook CEO Mark Zuckerberg suggested that naysayers who attempt to “drum up these doomsday scenarios” are being negative and irresponsible. On Twitter, business magnate and OpenAI co-founder Elon Musk countered that Zuckerberg’s understanding of the subject is limited. In February, Elon Musk engaged again in a similar exchange with Harvard professor Steven Pinker. Musk tweeted that Pinker doesn’t understand the difference between functional/narrow AI and general AI.
Given the fears surrounding this technology, it’s important for the public to clearly understand the distinctions between different levels of AI so that they can realistically assess the potential threats and benefits.
As Smart As a Human?
Erik Cambria, an expert in the field of natural language processing, told me, “Nobody is doing AI today and everybody is saying that they do AI because it’s a cool and sexy buzzword. It was the same with ‘big data’ a few years ago.”
Cambria mentioned that AI, as a term, originally referenced the emulation of human intelligence. “And there is nothing today that is even barely as intelligent as the most stupid human being on Earth. So, in a strict sense, no one is doing AI yet, for the simple fact that we don’t know how the human brain works,” he said.
He added that the term “AI” is often used in reference to powerful tools for data classification. These tools are impressive, but they’re on a totally different spectrum than human cognition. Additionally, Cambria has noticed people claiming that neural networks are part of the new wave of AI. This is bizarre to him because that technology already existed fifty years ago.
However, technologists no longer need to perform the feature extraction by themselves. They also have access to greater computing power. All of these advancements are welcomed, but it is perhaps dishonest to suggest that machines have emulated the intricacies of our cognitive processes.
“Companies are just looking at tricks to create a behavior that looks like intelligence but that is not real intelligence, it’s just a mirror of intelligence. These are expert systems that are maybe very good in a specific domain, but very stupid in other domains,” he said.
This mimicry of intelligence has inspired the public imagination. Domain-specific systems have delivered value in a wide range of industries. But those benefits have not lifted the cloud of confusion.
Assisted, Augmented, or Autonomous
When it comes to matters of scientific integrity, the issue of accurate definitions isn’t a peripheral matter. In a 1974 commencement address at the California Institute of Technology, Richard Feynman famously said, “The first principle is that you must not fool yourself—and you are the easiest person to fool.” In that same speech, Feynman also said, “You should not fool the layman when you’re talking as a scientist.” He opined that scientists should bend over backwards to show how they could be wrong. “If you’re representing yourself as a scientist, then you should explain to the layman what you’re doing—and if they don’t want to support you under those circumstances, then that’s their decision.”
In the case of AI, this might mean that professional scientists have an obligation to clearly state that they are developing extremely powerful, controversial, profitable, and even dangerous tools, which do not constitute intelligence in any familiar or comprehensive sense.
The term “AI” may have become overhyped and confused, but there are already some efforts underway to provide clarity. A recent PwC report drew a distinction between “assisted intelligence,” “augmented intelligence,” and “autonomous intelligence.” Assisted intelligence is demonstrated by the GPS navigation programs prevalent in cars today. Augmented intelligence “enables people and organizations to do things they couldn’t otherwise do.” And autonomous intelligence “establishes machines that act on their own,” such as autonomous vehicles.
Roman Yampolskiy is an AI safety researcher who wrote the book “Artificial Superintelligence: A Futuristic Approach.” I asked him whether the broad and differing meanings might present difficulties for legislators attempting to regulate AI.
Yampolskiy explained, “Intelligence (artificial or natural) comes on a continuum and so do potential problems with such technology. We typically refer to AI which one day will have the full spectrum of human capabilities as artificial general intelligence (AGI) to avoid some confusion. Beyond that point it becomes superintelligence. What we have today and what is frequently used in business is narrow AI. Regulating anything is hard, technology is no exception. The problem is not with terminology but with complexity of such systems even at the current level.”
When asked if people should fear AI systems, Dr. Yampolskiy commented, “Since capability comes on a continuum, so do problems associated with each level of capability.” He mentioned that accidents are already reported with AI-enabled products, and as the technology advances further, the impact could spread beyond privacy concerns or technological unemployment. These concerns about the real-world effects of AI will likely take precedence over dictionary-minded quibbles. However, the issue is also about honesty versus deception.
Is This Buzzword All Buzzed Out?
Finally, I directed my questions towards a company that is actively marketing an “AI Virtual Assistant.” Carl Landers, the CMO at Conversica, acknowledged that there are a multitude of explanations for what AI is and isn’t.
He said, “My definition of AI is technology innovation that helps solve a business problem. I’m really not interested in talking about the theoretical ‘can we get machines to think like humans?’ It’s a nice conversation, but I’m trying to solve a practical business problem.”
I asked him if AI is a buzzword that inspires publicity and attracts clients. According to Landers, this was certainly true three years ago, but those effects have already started to wane. Many companies now claim to have AI in their products, so it’s less of a differentiator. However, there is still a specific intention behind the word. Landers hopes to convey that previously impossible things are now possible. “There’s something new here that you haven’t seen before, that you haven’t heard of before,” he said.
According to Brian Decker, founder of Encom Lab, machine learning algorithms only work to satisfy their preexisting programming, not out of an interior drive for better understanding. Therefore, he views AI as an entirely semantic argument.
Decker stated, “A marketing exec will claim a photodiode controlled porch light has AI because it ‘knows when it is dark outside,’ while a good hardware engineer will point out that not one bit in a register in the entire history of computing has ever changed unless directed to do so according to the logic of preexisting programming.”
Although it’s important for everyone to be on the same page regarding specifics and underlying meaning, AI-powered products are already powering past these debates by creating immediate value for humans. And ultimately, humans care more about value than they do about semantic distinctions. In an interview with Quartz, Kai-Fu Lee revealed that algorithmic trading systems have already given him an 8X return over his private banking investments. “I don’t trade with humans anymore,” he said.
Image Credit: vrender / Shutterstock.com Continue reading →
#432303 What If the AI Revolution Is Neither ...
Why does everyone assume that the AI revolution will either lead to a fiery apocalypse or a glorious utopia, and not something in between? Of course, part of this is down to the fact that you get more attention by saying “The end is nigh!” or “Utopia is coming!”
But part of it is down to how humans think about change, especially unprecedented change. Millenarianism doesn’t have anything to do with being a “millennial,” being born in the 90s and remembering Buffy the Vampire Slayer. It is a way of thinking about the future that involves a deeply ingrained sense of destiny. A definition might be: “Millenarianism is the expectation that the world as it is will be destroyed and replaced with a perfect world, that a redeemer will come to cast down the evil and raise up the righteous.”
Millenarian beliefs, then, intimately link together the ideas of destruction and creation. They involve the idea of a huge, apocalyptic, seismic shift that will destroy the fabric of the old world and create something entirely new. Similar belief systems exist in many of the world’s major religions, and also the unspoken religion of some atheists and agnostics, which is a belief in technology.
Look at some futurist beliefs around the technological Singularity. In Ray Kurzweil’s vision, the Singularity is the establishment of paradise. Everyone is rendered immortal by biotechnology that can cure our ills; our brains can be uploaded to the cloud; inequality and suffering wash away under the wave of these technologies. The “destruction of the world” is replaced by a Silicon Valley buzzword favorite: disruption. And, as with many millenarian beliefs, your mileage varies on whether this destruction paves the way for a new utopia—or simply ends the world.
There are good reasons to be skeptical and interrogative towards this way of thinking. The most compelling reason is probably that millenarian beliefs seem to be a default mode of how humans think about change; just look at how many variants of this belief have cropped up all over the world.
These beliefs are present in aspects of Christian theology, although they only really became mainstream in their modern form in the 19th and 20th centuries. Ideas like the Tribulations—many years of hardship and suffering—before the Rapture, when the righteous will be raised up and the evil punished. After this destruction, the world will be made anew, or humans will ascend to paradise.
Despite being dogmatically atheist, Marxism has many of the same beliefs. It is all about a deterministic view of history that builds to a crescendo. In the same way as Rapture-believers look for signs that prophecies are beginning to be fulfilled, so Marxists look for evidence that we’re in the late stages of capitalism. They believe that, inevitably, society will degrade and degenerate to a breaking point—just as some millenarian Christians do.
In Marxism, this is when the exploitation of the working class by the rich becomes unsustainable, and the working class bands together and overthrows the oppressors. The “tribulation” is replaced by a “revolution.” Sometimes revolutionary figures, like Lenin, or Marx himself, are heralded as messiahs who accelerate the onset of the Millennium; and their rhetoric involves utterly smashing the old system such that a new world can be built. Of course, there is judgment, when the righteous workers take what’s theirs and the evil bourgeoisie are destroyed.
Even Norse mythology has an element of this, as James Hughes points out in his essay in Nick Bostrom’s book Global Catastrophic Risks. Ragnarok involves men and gods being defeated in a final, apocalyptic battle—but because that was a little bleak, they add in the idea that a new earth will arise where the survivors will live in harmony.
Judgement day is a cultural trope, too. Take the ancient Egyptians and their beliefs around the afterlife; the Lord of the underworld, Osiris, weighs the mortal’s heart against a feather. “Should the heart of the deceased prove to be heavy with wrongdoing, it would be eaten by a demon, and the hope of an afterlife vanished.”
Perhaps in the Singularity, something similar goes on. As our technology and hence our power improve, a final reckoning approaches: our hearts, as humans, will be weighed against a feather. If they prove too heavy with wrongdoing—with misguided stupidity, with arrogance and hubris, with evil—then we will fail the test, and we will destroy ourselves. But if we pass, and emerge from the Singularity and all of its threats and promises unscathed, then we will have paradise. And, like the other belief systems, there’s no room for non-believers; all of society is going to be radically altered, whether you want it to be or not, whether it benefits you or leaves you behind. A technological rapture.
It almost seems like every major development provokes this response. Nuclear weapons did, too. Either this would prove the final straw and we’d destroy ourselves, or the nuclear energy could be harnessed to build a better world. People talked at the dawn of the nuclear age about electricity that was “too cheap to meter.” The scientists who worked on the bomb often thought that with such destructive power in human hands, we’d be forced to cooperate and work together as a species.
When we see the same response over and over again to different circumstances, cropping up in different areas, whether it’s science, religion, or politics, we need to consider human biases. We like millenarian beliefs; and so when the idea of artificial intelligence outstripping human intelligence emerges, these beliefs spring up around it.
We don’t love facts. We don’t love information. We aren’t as rational as we’d like to think. We are creatures of narrative. Physicists observe the world and we weave our observations into narrative theories, stories about little billiard balls whizzing around and hitting each other, or space and time that bend and curve and expand. Historians try to make sense of an endless stream of events. We rely on stories: stories that make sense of the past, justify the present, and prepare us for the future.
And as stories go, the millenarian narrative is a brilliant and compelling one. It can lead you towards social change, as in the case of the Communists, or the Buddhist uprisings in China. It can justify your present-day suffering, if you’re in the tribulation. It gives you hope that your life is important and has meaning. It gives you a sense that things are evolving in a specific direction, according to rules—not just randomly sprawling outwards in a chaotic way. It promises that the righteous will be saved and the wrongdoers will be punished, even if there is suffering along the way. And, ultimately, a lot of the time, the millenarian narrative promises paradise.
We need to be wary of the millenarian narrative when we’re considering technological developments and the Singularity and existential risks in general. Maybe this time is different, but we’ve cried wolf many times before. There is a more likely, less appealing story. Something along the lines of: there are many possibilities, none of them are inevitable, and lots of the outcomes are less extreme than you might think—or they might take far longer than you think to arrive. On the surface, it’s not satisfying. It’s so much easier to think of things as either signaling the end of the world or the dawn of a utopia—or possibly both at once. It’s a narrative we can get behind, a good story, and maybe, a nice dream.
But dig a little below the surface, and you’ll find that the millenarian beliefs aren’t always the most promising ones, because they remove human agency from the equation. If you think that, say, the malicious use of algorithms, or the control of superintelligent AI, are serious and urgent problems that are worth solving, you can’t be wedded to a belief system that insists utopia or dystopia are inevitable. You have to believe in the shades of grey—and in your own ability to influence where we might end up. As we move into an uncertain technological future, we need to be aware of the power—and the limitations—of dreams.
Image Credit: Photobank gallery / Shutterstock.com
We are a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for us to earn fees by linking to Amazon.com and affiliated sites. Continue reading →
#432293 An Innovator’s City Guide to Shanghai
Shanghai is a city full of life. With its population of 24 million, Shanghai embraces vibrant growth, fosters rising diversity, and attracts visionaries, innovators, and adventurers. Fintech, artificial intelligence, and e-commerce are booming. Now is a great time to explore this multicultural, inspirational city as it experiences quick growth and ever greater influence.
Meet Your Guide
Qingsong (Dora) Ke
Singularity University Chapter: Shanghai Chapter
Profession: Associate Director for Asia Pacific, IE Business School and IE University; Mentor, Techstars Startup Weekend; Mentor, Startupbootcamp; China President, Her Century
Your City Guide to Shanghai, China
Top three industries in the city: Automotive, Retail, and Finance
1. Coworking Space: Mixpace
With 10 convenient locations in the Shanghai downtown area, Mixpace offers affordable prices and various office and event spaces to both foreign and local entrepreneurs and startups.
2. Makerspace: XinCheJian
The first hackerspace and a non-profit in China, Xinchejian was founded to support projects in physical computing, open source hardware, and the Internet of Things. It hosts regular events and talks to facilitate development of hackerspaces in China.
3. Local meetups/ networks: FinTech Connector
FinTech Connector is a community connecting local fintech entrepreneurs and start-ups with global professionals, thought leaders, and investors for the purpose of disrupting financial services with cutting-edge technology.
4. Best coffee shop with free WiFi: Seesaw
Clean and modern décor, convenient locations, a quiet environment, and high-quality coffee make Seesaw one of the most popular coffee shops in Shanghai.
5. The startup neighborhood: Knowledge & Innovation Community (KIC)
Located near 10 prestigious universities and over 100 scientific research institutions, KIC attempts to integrate Silicon Valley’s innovative spirit with the artistic culture of the Left Bank in Paris.
6. Well-known investor or venture capitalist: Nanpeng (Neil) Shen
Global executive partner at Sequoia Capital, founding and managing partner at Sequoia China, and founder of Ctrip.com and Home Inn, Neil Shen was named Best Venture Capitalist by Forbes China in 2010–2013 and ranked as the best Chinese investor among Global Best Investors by Forbes in 2012–2016.
7. Best way to get around: Metro
Shanghai’s 17 well-connected metro lines covering every corner of the city at affordable prices are the best way to get around.
8. Local must-have dish and where to get it: Mini Soupy Bun (steamed dumplings, xiaolongbao) at Din Tai Fung in Shanghai.
Named one of the top ten restaurants in the world by the New York Times, Din Tai Fung makes the best xiaolongbao, a delicious soup with stuffed dumplings.
9. City’s best-kept secret: Barber Shop
This underground bar gets its name from the barber shop it’s hidden behind. Visitors must discover how to unlock the door leading to Barber Shop’s sophisticated cocktails and engaging music. (No website for this underground location, but the address is 615 Yongjia Road).
10. Touristy must-do: Enjoy the nightlife and the skyline at the Bund
On the east side of the Bund are the most modern skyscrapers, including Shanghai Tower, Shanghai World Financial Centre, and Jin Mao Tower. The west side of the Bund features 26 buildings of diverse architectural styles, including Gothic, Baroque, Romanesque, and others; this area is known for its exotic buildings.
11. Local volunteering opportunity: Shanghai Volunteer
Shanghai Volunteer is a platform to connect volunteers with possible opportunities in various fields, including education, elderly care, city culture, and environment.
12. Local University with great resources: Shanghai Jiao Tong University
Established in 1896, Shanghai Jiao Tong University is the second-oldest university in China and one of the country’s most prestigious. It boasts notable alumni in government and politics, science, engineering, business, and sports, and it regularly collaborates with government and the private sector.
This article is for informational purposes only. All opinions in this post are the author’s alone and not those of Singularity University. Neither this article nor any of the listed information therein is an official endorsement by Singularity University.
Image Credits: Qinsong (Dora) Ke
Banner Image Credit: ESB Professional / Shutterstock.com Continue reading →