Tag Archives: line

#437610 How Intel’s OpenBot Wants to Make ...

You could make a pretty persuasive argument that the smartphone represents the single fastest area of technological progress we’re going to experience for the foreseeable future. Every six months or so, there’s something with better sensors, more computing power, and faster connectivity. Many different areas of robotics are benefiting from this on a component level, but over at Intel Labs, they’re taking a more direct approach with a project called OpenBot that turns US $50 worth of hardware and your phone into a mobile robot that can support “advanced robotics workloads such as person following and real-time autonomous navigation in unstructured environments.”

This work aims to address two key challenges in robotics: accessibility and scalability. Smartphones are ubiquitous and are becoming more powerful by the year. We have developed a combination of hardware and software that turns smartphones into robots. The resulting robots are inexpensive but capable. Our experiments have shown that a $50 robot body powered by a smartphone is capable of person following and real-time autonomous navigation. We hope that the presented work will open new opportunities for education and large-scale learning via thousands of low-cost robots deployed around the world.

Smartphones point to many possibilities for robotics that we have not yet exploited. For example, smartphones also provide a microphone, speaker, and screen, which are not commonly found on existing navigation robots. These may enable research and applications at the confluence of human-robot interaction and natural language processing. We also expect the basic ideas presented in this work to extend to other forms of robot embodiment, such as manipulators, aerial vehicles, and watercraft.

One of the interesting things about this idea is how not-new it is. The highest profile phone robot was likely the $150 Romo, from Romotive, which raised a not-insignificant amount of money on Kickstarter in 2012 and 2013 for a little mobile chassis that accepted one of three different iPhone models and could be controlled via another device or operated somewhat autonomously. It featured “computer vision, autonomous navigation, and facial recognition” capabilities, but was really designed to be a toy. Lack of compatibility hampered Romo a bit, and there wasn’t a lot that it could actually do once the novelty wore off.

As impressive as smartphone hardware was in a robotics context (even back in 2013), we’re obviously way, way beyond that now, and OpenBot figures that smartphones now have enough clout and connectivity that turning them into mobile robots is a good idea. You know, again. We asked Intel Labs’ Matthias Muller why now was the right time to launch OpenBot, and he mentioned things like the existence of a large maker community with broad access to 3D printing as well as open source software that makes broader development easier.

And of course, there’s the smartphone hardware: “Smartphones have become extremely powerful and feature dedicated AI processors in addition to CPUs and GPUs,” says Mueller. “Almost everyone owns a very capable smartphone now. There has been a big boost in sensor performance, especially in cameras, and a lot of the recent developments for VR applications are well aligned with robotic requirements for state estimation.” OpenBot has been tested with 10 recent Android phones, and since camera placement tends to be similar and USB-C is becoming the charging and communications standard, compatibility is less of an issue nowadays.

Image: OpenBot

Intel researchers created this table comparing OpenBot to other wheeled robot platforms, including Amazon’s DeepRacer, MIT’s Duckiebot, iRobot’s Create-2, and Thymio. The top group includes robots based on RC trucks; the bottom group includes navigation robots for deployment at scale and in education. Note that the cost of the smartphone needed for OpenBot is not included in this comparison.

If you’d like an OpenBot of your own, you don’t need to know all that much about robotics hardware or software. For the hardware, you probably need some basic mechanical and electronics experience—think Arduino project level. The software is a little more complicated; there’s a pretty good walkthrough to get some relatively sophisticated behaviors (like autonomous person following) up and running, but things rapidly degenerate into a command line interface that could be intimidating for new users. We did ask about why OpenBot isn’t ROS-based to leverage the robustness and reach of that community, and Muller said that ROS “adds unnecessary overhead,” although “if someone insists on using ROS with OpenBot, it should not be very difficult.”

Without building OpenBot to explicitly be part of an existing ecosystem, the challenge going forward is to make sure that the project is consistently supported, lest it wither and die like so many similar robotics projects have before it. “We are committed to the OpenBot project and will do our best to maintain it,” Mueller assures us. “We have a good track record. Other projects from our group (e.g. CARLA, Open3D, etc.) have also been maintained for several years now.” The inherently open source nature of the project certainly helps, although it can be tricky to rely too much on community contributions, especially when something like this is first starting out.

The OpenBot folks at Intel, we’re told, are already working on a “bigger, faster and more powerful robot body that will be suitable for mass production,” which would certainly help entice more people into giving this thing a go. They’ll also be focusing on documentation, which is probably the most important but least exciting part about building a low-cost community focused platform like this. And as soon as they’ve put together a way for us actual novices to turn our phones into robots that can do cool stuff for cheap, we’ll definitely let you know. Continue reading

Posted in Human Robots

#437608 Video Friday: Agility Robotics Raises ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

IROS 2020 – October 25-29, 2020 – [Online]
ROS World 2020 – November 12, 2020 – [Online]
CYBATHLON 2020 – November 13-14, 2020 – [Online]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

Digit is now in full commercial production and we’re excited to announce a $20M funding rounding round co-led by DCVC and Playground Global!

Digits for everyone!

[ Agility Robotics ]

A flexible rover that has both ability to travel long distances and rappel down hard-to-reach areas of scientific interest has undergone a field test in the Mojave Desert in California to showcase its versatility. Composed of two Axel robots, DuAxel is designed to explore crater walls, pits, scarps, vents and other extreme terrain on the moon, Mars and beyond.

This technology demonstration developed at NASA’s Jet Propulsion Laboratory in Southern California showcases the robot’s ability to split in two and send one of its halves — a two-wheeled Axle robot — over an otherwise inaccessible slope, using a tether as support and to supply power.

The rappelling Axel can then autonomously seek out areas to study, safely overcome slopes and rocky obstacles, and then return to dock with its other half before driving to another destination. Although the rover doesn’t yet have a mission, key technologies are being developed that might, one day, help us explore the rocky planets and moons throughout the solar system.

[ JPL ]

A rectangular robot as tiny as a few human hairs can travel throughout a colon by doing back flips, Purdue University engineers have demonstrated in live animal models. Why the back flips? Because the goal is to use these robots to transport drugs in humans, whose colons and other organs have rough terrain. Side flips work, too. Why a back-flipping robot to transport drugs? Getting a drug directly to its target site could remove side effects, such as hair loss or stomach bleeding, that the drug may otherwise cause by interacting with other organs along the way.

[ Purdue ]

This video shows the latest results in the whole-body locomotion control of the humanoid robot iCub achieved by the Dynamic Interaction Control line at IIT-Istituto Italiano di Tecnologia in Genova (Italy). In particular, the iCub now keeps the balance while walking and receiving pushes from an external user. The implemented control algorithms also ensure the robot to remain compliant during locomotion and human-robot interaction, a fundamental property to lower the possibility to harm humans that share the robot surrounding environment.

This is super impressive, considering that iCub was only able to crawl and was still tethered not too long ago. Also, it seems to be blinking properly now, so it doesn’t look like it’s always sleepy.

[ IIT ]

This video shows a set of new tests we performed on Bolt. We conducted tests on 5 different scenarios, 1) walking forward/backward 2) uneven surface 3) soft surface 4) push recovery 5) slippage recovery. Thanks to our feedback control based on Model Predictive Control, the robot can perform walking in the presence of all these uncertainties. We will open-source all the codes in a near future.

[ ODRI ]

The title of this video is “Can you throw your robot into a lake?” The title of this video should be, “Can you throw your robot into a lake and drive it out again?”

[ Norlab ]

AeroVironment Successfully Completes Sunglider Solar HAPS Stratospheric Test Flight, Surpassing 60,000 Feet Altitude and Demonstrating Broadband Mobile Connectivity.

[ AeroVironment ]

We present CoVR, a novel robotic interface providing strong kinesthetic feedback (100 N) in a room-scale VR arena. It consists of a physical column mounted on a 2D Cartesian ceiling robot (XY displacements) with the capacity of (1) resisting to body-scaled users actions such as pushing or leaning; (2) acting on the users by pulling or transporting them as well as (3) carrying multiple potentially heavy objects (up to 80kg) that users can freely manipulate or make interact with each other.

[ DeepAI ]

In a new video, personnel from Swiss energy supply company Kraftwerke Oberhasli AG (KWO) explain how they were able to keep employees out of harm’s way by using Flyability’s Elios 2 to collect visual data while building a new dam.

[ Flyability ]

Enjoy our Ascento robot fail compilation! With every failure we experience, we learn more and we can improve our robot for its next iteration, which will come soon… Stay tuned for more!

FYI posting a robot fails video will pretty much guarantee you a spot in Video Friday!

[ Ascento ]

Humans are remarkably good at using chopsticks. The Guinness World Record witnessed a person using chopsticks to pick up 65 M&Ms in just a minute. We aim to collect demonstrations from humans and to teach robot to use chopsticks.

[ UW Personal Robotics Lab ]

A surprising amount of personality from these Yaskawa assembly robots.

[ Yaskawa ]

This paper presents the system design, modeling, and control of the Aerial Robotic Chain Manipulator. This new robot design offers the potential to exert strong forces and moments to the environment, carry and lift significant payloads, and simultaneously navigate through narrow corridors. The presented experimental studies include a valve rotation task, a pick-and-release task, and the verification of load oscillation suppression to demonstrate the stability and performance of the system.

[ ARL ]

Whether animals or plants, whether in the water, on land or in the air, nature provides the model for many technical innovations and inventions. This is summed up in the term bionics, which is a combination of the words ‘biology‘ and ‘electronics’. At Festo, learning from nature has a long history, as our Bionic Learning Network is based on using nature as the source for future technologies like robots, assistance systems or drive solutions.

[ Festo ]

Dogs! Selfies! Thousands of LEGO bricks! This video has it all.

[ LEGO ]

An IROS workshop talk on “Cassie and Mini Cheetah Autonomy” by Maani Ghaffari and Jessy Grizzle from the University of Michigan.

[ Michigan Robotics ]

David Schaefer’s Cozmo robots are back with this mind-blowing dance-off!

What you just saw represents hundreds of hours of work, David tells us: “I wrote over 10,000 lines of code to create the dance performance as I had to translate the beats per minute of the song into motor rotations in order to get the right precision needed to make the moves look sharp. The most challenging move was the SpongeBob SquareDance as any misstep would send the Cozmos crashing into each other. LOL! Fortunately for me, Cozmo robots are pretty resilient.”

[ Life with Cozmo ]

Thanks David!

This week’s GRASP on Robotics seminar is by Sangbae Kim from MIT, on “Robots with Physical Intelligence.”

While industrial robots are effective in repetitive, precise kinematic tasks in factories, the design and control of these robots are not suited for physically interactive performance that humans do easily. These tasks require ‘physical intelligence’ through complex dynamic interactions with environments whereas conventional robots are designed primarily for position control. In order to develop a robot with ‘physical intelligence’, we first need a new type of machines that allow dynamic interactions. This talk will discuss how the new design paradigm allows dynamic interactive tasks. As an embodiment of such a robot design paradigm, the latest version of the MIT Cheetah robots and force-feedback teleoperation arms will be presented.

[ GRASP ]

This week’s CMU Ri Seminar is by Kevin Lynch from Northwestern, on “Robotics and Biosystems.”

Research at the Center for Robotics and Biosystems at Northwestern University encompasses bio-inspiration, neuromechanics, human-machine systems, and swarm robotics, among other topics. In this talk I will give an overview of some of our recent work on in-hand manipulation, robot locomotion on yielding ground, and human-robot systems.

[ CMU RI ] Continue reading

Posted in Human Robots

#437598 Video Friday: Sarcos Is Developing a New ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

IROS 2020 – October 25-29, 2020 – [Online]
ROS World 2020 – November 12, 2020 – [Online]
CYBATHLON 2020 – November 13-14, 2020 – [Online]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today's videos.

NASA’s Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx) spacecraft unfurled its robotic arm Oct. 20, 2020, and in a first for the agency, briefly touched an asteroid to collect dust and pebbles from the surface for delivery to Earth in 2023.

[ NASA ]

New from David Zarrouk’s lab at BGU is AmphiSTAR, which Zarrouk describes as “a kind of a ground-water drone inspired by the cockroaches (sprawling) and by the Basilisk lizard (running over water). The robot hovers due to the collision of its propellers with the water (hydrodynamics not aerodynamics). The robot can crawl and swim at high and low speeds and smoothly transition between the two. It can reach 3.5 m/s on ground and 1.5m/s in water.”

AmphiSTAR will be presented at IROS, starting next week!

[ BGU ]

This is unfortunately not a great video of a video that was taken at a SoftBank Hawks baseball game in Japan last week, but it’s showing an Atlas robot doing an honestly kind of impressive dance routine to support the team.

ロボット応援団に人型ロボット『ATLAS』がアメリカからリモートで緊急参戦!!!
ホークスビジョンの映像をお楽しみ下さい♪#sbhawks #Pepper #spot pic.twitter.com/6aTYn8GGli
— 福岡ソフトバンクホークス(公式) (@HAWKS_official)
October 16, 2020

Editor’s Note: The tweet embed above is not working for some reason—see the video here.

[ SoftBank Hawks ]

Thanks Thomas!

Sarcos is working on a new robot, which looks to be the torso of their powered exoskeleton with the human relocated somewhere else.

[ Sarcos ]

The biggest holiday of the year, International Sloth Day, was on Tuesday! To celebrate, here’s Slothbot!

[ NSF ]

This is one of those simple-seeming tasks that are really difficult for robots.

I love self-resetting training environments.

[ MIT CSAIL ]

The Chiel lab collaborates with engineers at the Center for Biologically Inspired Robotics Research at Case Western Reserve University to design novel worm-like robots that have potential applications in search-and-rescue missions, endoscopic medicine, or other scenarios requiring navigation through narrow spaces.

[ Case Western ]

ANYbotics partnered with Losinger Marazzi to explore ANYmal’s potential of patrolling construction sites to identify and report safety issues. With such a complex environment, only a robot designed to navigate difficult terrain is able to bring digitalization to such a physically demanding industry.

[ ANYbotics ]

Happy 2018 Halloween from Clearpath Robotics!

[ Clearpath ]

Overcoming illumination variance is a critical factor in vision-based navigation. Existing methods tackled this radical illumination variance issue by proposing camera control or high dynamic range (HDR) image fusion. Despite these efforts, we have found that the vision-based approaches still suffer from overcoming darkness. This paper presents real-time image synthesizing from carefully controlled seed low dynamic range (LDR) image, to enable visual simultaneous localization and mapping (SLAM) in an extremely dark environment (less than 10 lux).

[ KAIST ]

What can MoveIt do? Who knows! Let's find out!

[ MoveIt ]

Thanks Dave!

Here we pick a cube from a starting point, manipulate it within the hand, and then put it back. To explore the capabilities of the hand, no sensors were used in this demonstration. The RBO Hand 3 uses soft pneumatic actuators made of silicone. The softness imparts considerable robustness against variations in object pose and size. This lets us design manipulation funnels that work reliably without needing sensor feedback. We take advantage of this reliability to chain these funnels into more complex multi-step manipulation plans.

[ TU Berlin ]

If this was a real solar array, King Louie would have totally cleaned it. Mostly.

[ BYU ]

Autonomous exploration is a fundamental problem for various applications of unmanned aerial vehicles(UAVs). Existing methods, however, were demonstrated to have low efficiency, due to the lack of optimality consideration, conservative motion plans and low decision frequencies. In this paper, we propose FUEL, a hierarchical framework that can support Fast UAV ExpLoration in complex unknown environments.

[ HKUST ]

Countless precise repetitions? This is the perfect task for a robot, thought researchers at the University of Liverpool in the Department of Chemistry, and without further ado they developed an automation solution that can carry out and monitor research tasks, making autonomous decisions about what to do next.

[ Kuka ]

This video shows a demonstration of central results of the SecondHands project. In the context of maintenance and repair tasks, in warehouse environments, the collaborative humanoid robot ARMAR-6 demonstrates a number of cognitive and sensorimotor abilities such as 1) recognition of the need of help based on speech, force, haptics and visual scene and action interpretation, 2) collaborative bimanual manipulation of large objects, 3) compliant mobile manipulation, 4) grasping known and unknown objects and tools, 5) human-robot interaction (object and tool handover) 6) natural dialog and 7) force predictive control.

[ SecondHands ]

In celebration of Ada Lovelace Day, Silicon Valley Robotics hosted a panel of Women in Robotics.

[ Robohub ]

As part of the upcoming virtual IROS conference, HEBI robotics is putting together a tutorial on robotics actuation. While I’m sure HEBI would like you to take a long look at their own actuators, we’ve been assured that no matter what kind of actuators you use, this tutorial will still be informative and useful.

[ YouTube ] via [ HEBI Robotics ]

Thanks Dave!

This week’s UMD Lockheed Martin Robotics Seminar comes from Julie Shah at MIT, on “Enhancing Human Capability with Intelligent Machine Teammates.”

Every team has top performers- people who excel at working in a team to find the right solutions in complex, difficult situations. These top performers include nurses who run hospital floors, emergency response teams, air traffic controllers, and factory line supervisors. While they may outperform the most sophisticated optimization and scheduling algorithms, they cannot often tell us how they do it. Similarly, even when a machine can do the job better than most of us, it can’t explain how. In this talk I share recent work investigating effective ways to blend the unique decision-making strengths of humans and machines. I discuss the development of computational models that enable machines to efficiently infer the mental state of human teammates and thereby collaborate with people in richer, more flexible ways.

[ UMD ]

Matthew Piccoli gives a talk to the UPenn GRASP Lab on “Trading Complexities: Smart Motors and Dumb Vehicles.”

We will discuss my research journey through Penn making the world's smallest, simplest flying vehicles, and in parallel making the most complex brushless motors. What do they have in common? We'll touch on why the quadrotor went from an obscure type of helicopter to the current ubiquitous drone. Finally, we'll get into my life after Penn and what tools I'm creating to further drone and robot designs of the future.

[ UPenn ] Continue reading

Posted in Human Robots

#437562 Video Friday: Aquanaut Robot Takes to ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

IROS 2020 – October 25-25, 2020 – [Online]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Bay Area Robotics Symposium – November 20, 2020 – [Online]
ACRA 2020 – December 8-10, 2020 – [Online]
Let us know if you have suggestions for next week, and enjoy today's videos.

To prepare the Perseverance rover for its date with Mars, NASA’s Mars 2020 mission team conducted a wide array of tests to help ensure a successful entry, descent and landing at the Red Planet. From parachute verification in the world’s largest wind tunnel, to hazard avoidance practice in Death Valley, California, to wheel drop testing at NASA’s Jet Propulsion Laboratory and much more, every system was put through its paces to get ready for the big day. The Perseverance rover is scheduled to land on Mars on February 18, 2021.

[ JPL ]

Awesome to see Aquanaut—the “underwater transformer” we wrote about last year—take to the ocean!

Also their new website has SHARKS on it.

[ HMI ]

Nature has inspired engineers at UNSW Sydney to develop a soft fabric robotic gripper which behaves like an elephant's trunk to grasp, pick up and release objects without breaking them.

[ UNSW ]

Collaborative robots offer increased interaction capabilities at relatively low cost but, in contrast to their industrial counterparts, they inevitably lack precision. We address this problem by relying on a dual-arm system with laser-based sensing to measure relative poses between objects of interest and compensate for pose errors coming from robot proprioception.

[ Paper ]

Developed by NAVER LABS, with Korea University of Technology & Education (Koreatech), the robot arm now features an added waist, extending the available workspace, as well as a sensor head that can perceive objects. It has also been equipped with a robot hand “BLT Gripper” that can change to various grasping methods.

[ NAVER Labs ]

In case you were still wondering why SoftBank acquired Aldebaran and Boston Dynamics:

[ RobotStart ]

DJI's new Mini 2 drone is here with a commercial so hip it makes my teeth scream.

[ DJI ]

Using simple materials, such as plastic struts and cardboard rolls, the first prototype of the RBO Hand 3 is already capable of grasping a large range of different objects thanks to its opposable thumb.

The RBO Hand 3 performs an edge grasp before handing-over the object to a person. The hand actively exploits constraints in the environment (the tabletop) for grasping the object. Thanks to its compliance, this interaction is safe and robust.

[ TU Berlin ]

Flyability's Elios 2 helped researchers inspect Reactor Five at the Chernobyl nuclear disaster site in order to determine whether any uranium was present. Prior to this mission, Reactor Five had not been investigated since the disaster in April of 1986.

[ Flyability ]

Thanks Zacc!

SOTO 2 is here! Together with our development partners from the industry, we have greatly enhanced the SOTO prototype over the last two years. With the new version of the robot, Industry 4.0 will become a great deal more real: SOTO brings materials to the assembly line, just-in-time and completely autonomously.

[ Magazino ]

A drone that can fly sustainably for long distances over land and water, and can land almost anywhere, will be able to serve a wide range of applications. There are already drones that fly using ‘green’ hydrogen, but they either fly very slowly or cannot land vertically. That’s why researchers at TU Delft, together with the Royal Netherlands Navy and the Netherlands Coastguard, developed a hydrogen-powered drone that is capable of vertical take-off and landing whilst also being able to fly horizontally efficiently for several hours, much like regular aircraft. The drone uses a combination of hydrogen and batteries as its power source.

[ MAVLab ]

The National Nuclear User Facility for Hot Robotics (NNUF-HR) is an EPSRC funded facility to support UK academia and industry to deliver ground-breaking, impactful research in robotics and artificial intelligence for application in extreme and challenging nuclear environments.

[ NNUF ]

At the Karolinska University Laboratory in Sweden, an innovation project based around an ABB collaborative robot has increased efficiency and created a better working environment for lab staff.

[ ABB ]

What I find interesting about DJI's enormous new agricultural drone is that it's got a spinning obstacle detecting sensor that's a radar, not a lidar.

Also worth noting is that it seems to detect the telephone pole, but not the support wire that you can see in the video feed, although the visualization does make it seem like it can spot the power lines above.

[ DJI ]

Josh Pieper has spend the last year building his own quadruped, and you can see what he's been up to in just 12 minutes.

[ mjbots ]

Thanks Josh!

Dr. Ryan Eustice, TRI Senior Vice President of Automated Driving, delivers a keynote speech — “The Road to Vehicle Automation, a Toyota Guardian Approach” — to SPIE's Future Sensing Technologies 2020. During the presentation, Eustice provides his perspective on the current state of automated driving, summarizes TRI's Guardian approach — which amplifies human drivers, rather than replacing them — and summarizes TRI's recent developments in core AD capabilities.

[ TRI ]

Two excellent talks this week from UPenn GRASP Lab, from Ruzena Bajcsy and Vijay Kumar.

A panel discussion on the future of robotics and societal challenges with Dr. Ruzena Bajcsy as a Roboticist and Founder of the GRASP Lab.

In this talk I will describe the role of the White House Office of Science and Technology Policy in supporting science and technology research and education, and the lessons I learned while serving in the office. I will also identify a few opportunities at the intersection of technology and policy and broad societal challenges.

[ UPenn ]

The IROS 2020 “Perception, Learning, and Control for Autonomous Agile Vehicles” workshop is all online—here's the intro, but you can click through for a playlist that includes videos of the entire program, and slides are available as well.

[ NYU ] Continue reading

Posted in Human Robots

#437543 This Is How We’ll Engineer Artificial ...

Take a Jeopardy! guess: this body part was once referred to as the “consummation of all perfection as an instrument.”

Answer: “What is the human hand?”

Our hands are insanely complex feats of evolutionary engineering. Densely-packed sensors provide intricate and ultra-sensitive feelings of touch. Dozens of joints synergize to give us remarkable dexterity. A “sixth sense” awareness of where our hands are in space connects them to the mind, making it possible to open a door, pick up a mug, and pour coffee in total darkness based solely on what they feel.

So why can’t robots do the same?

In a new article in Science, Dr. Subramanian Sundaram at Boston and Harvard University argues that it’s high time to rethink robotic touch. Scientists have long dreamed of artificially engineering robotic hands with the same dexterity and feedback that we have. Now, after decades, we’re at the precipice of a breakthrough thanks to two major advances. One, we better understand how touch works in humans. Two, we have the mega computational powerhouse called machine learning to recapitulate biology in silicon.

Robotic hands with a sense of touch—and the AI brain to match it—could overhaul our idea of robots. Rather than charming, if somewhat clumsy, novelties, robots equipped with human-like hands are far more capable of routine tasks—making food, folding laundry—and specialized missions like surgery or rescue. But machines aren’t the only ones to gain. For humans, robotic prosthetic hands equipped with accurate, sensitive, and high-resolution artificial touch is the next giant breakthrough to seamlessly link a biological brain to a mechanical hand.

Here’s what Sundaram laid out to get us to that future.

How Does Touch Work, Anyway?
Let me start with some bad news: reverse engineering the human hand is really hard. It’s jam-packed with over 17,000 sensors tuned to mechanical forces alone, not to mention sensors for temperature and pain. These force “receptors” rely on physical distortions—bending, stretching, curling—to signal to the brain.

The good news? We now have a far clearer picture of how biological touch works. Imagine a coin pressed into your palm. The sensors embedded in the skin, called mechanoreceptors, capture that pressure, and “translate” it into electrical signals. These signals pulse through the nerves on your hand to the spine, and eventually make their way to the brain, where they gets interpreted as “touch.”

At least, that’s the simple version, but one too vague and not particularly useful for recapitulating touch. To get there, we need to zoom in.

The cells on your hand that collect touch signals, called tactile “first order” neurons (enter Star Wars joke) are like upside-down trees. Intricate branches extend from their bodies, buried deep in the skin, to a vast area of the hand. Each neuron has its own little domain called “receptor fields,” although some overlap. Like governors, these neurons manage a semi-dedicated region, so that any signal they transfer to the higher-ups—spinal cord and brain—is actually integrated from multiple sensors across a large distance.

It gets more intricate. The skin itself is a living entity that can regulate its own mechanical senses through hydration. Sweat, for example, softens the skin, which changes how it interacts with surrounding objects. Ever tried putting a glove onto a sweaty hand? It’s far more of a struggle than a dry one, and feels different.

In a way, the hand’s tactile neurons play a game of Morse Code. Through different frequencies of electrical beeps, they’re able to transfer information about an object’s size, texture, weight, and other properties, while also asking the brain for feedback to better control the object.

Biology to Machine
Reworking all of our hands’ greatest features into machines is absolutely daunting. But robots have a leg up—they’re not restricted to biological hardware. Earlier this year, for example, a team from Columbia engineered a “feeling” robotic finger using overlapping light emitters and sensors in a way loosely similar to receptor fields. Distortions in light were then analyzed with deep learning to translate into contact location and force.

Although a radical departure from our own electrical-based system, the Columbia team’s attempt was clearly based on human biology. They’re not alone. “Substantial progress is being made in the creation of soft, stretchable electronic skins,” said Sundaram, many of which can sense forces or pressure, although they’re currently still limited.

What’s promising, however, is the “exciting progress in using visual data,” said Sundaram. Computer vision has gained enormously from ubiquitous cameras and large datasets, making it possible to train powerful but data-hungry algorithms such as deep convolutional neural networks (CNNs).

By piggybacking on their success, we can essentially add “eyes” to robotic hands, a superpower us humans can’t imagine. Even better, CNNs and other classes of algorithms can be readily adopted for processing tactile data. Together, a robotic hand could use its eyes to scan an object, plan its movements for grasp, and use touch for feedback to adjust its grip. Maybe we’ll finally have a robot that easily rescues the phone sadly dropped into a composting toilet. Or something much grander to benefit humanity.

That said, relying too heavily on vision could also be a downfall. Take a robot that scans a wide area of rubble for signs of life during a disaster response. If touch relies on sight, then it would have to keep a continuous line-of-sight in a complex and dynamic setting—something computer vision doesn’t do well in, at least for now.

A Neuromorphic Way Forward
Too Debbie Downer? I got your back! It’s hard to overstate the challenges, but what’s clear is that emerging machine learning tools can tackle data processing challenges. For vision, it’s distilling complex images into “actionable control policies,” said Sundaram. For touch, it’s easy to imagine the same. Couple the two together, and that’s a robotic super-hand in the making.

Going forward, argues Sundaram, we need to closely adhere to how the hand and brain process touch. Hijacking our biological “touch machinery” has already proved useful. In 2019, one team used a nerve-machine interface for amputees to control a robotic arm—the DEKA LUKE arm—and sense what the limb and attached hand were feeling. Pressure on the LUKE arm and hand activated an implanted neural interface, which zapped remaining nerves in a way that the brain processes as touch. When the AI analyzed pressure data similar to biological tactile neurons, the person was able to better identify different objects with their eyes closed.

“Neuromorphic tactile hardware (and software) advances will strongly influence the future of bionic prostheses—a compelling application of robotic hands,” said Sundaram, adding that the next step is to increase the density of sensors.

Two additional themes made the list of progressing towards a cyborg future. One is longevity, in that sensors on a robot need to be able to reliably produce large quantities of high-quality data—something that’s seemingly mundane, but is a practical limitation.

The other is going all-in-one. Rather than just a pressure sensor, we need something that captures the myriad of touch sensations. From feather-light to a heavy punch, from vibrations to temperatures, a tree-like architecture similar to our hands would help organize, integrate, and otherwise process data collected from those sensors.

Just a decade ago, mind-controlled robotics were considered a blue sky, stretch-goal neurotechnological fantasy. We now have a chance to “close the loop,” from thought to movement to touch and back to thought, and make some badass robots along the way.

Image Credit: PublicDomainPictures from Pixabay Continue reading

Posted in Human Robots