Tag Archives: lightweight

#436155 This MIT Robot Wants to Use Your ...

MIT researchers have demonstrated a new kind of teleoperation system that allows a two-legged robot to “borrow” a human operator’s physical skills to move with greater agility. The system works a bit like those haptic suits from the Spielberg movie “Ready Player One.” But while the suits in the film were used to connect humans to their VR avatars, the MIT suit connects the operator to a real robot.

The robot is called Little HERMES, and it’s currently just a pair of little legs, about a third the size of an average adult. It can step and jump in place or walk a short distance while supported by a gantry. While that in itself is not very impressive, the researchers say their approach could help bring capable disaster robots closer to reality. They explain that, despite recent advances, building fully autonomous robots with motor and decision-making skills comparable to those of humans remains a challenge. That’s where a more advanced teleoperation system could help.

The researchers, João Ramos, now an assistant professor at the University of Illinois at Urbana-Champaign, and Sangbae Kim, director of MIT’s Biomimetic Robotics Lab, describe the project in this week’s issue of Science Robotics. In the paper, they argue that existing teleoperation systems often can’t effectively match the operator’s motions to that of a robot. In addition, conventional systems provide no physical feedback to the human teleoperator about what the robot is doing. Their new approach addresses these two limitations, and to see how it would work in practice, they built Little HERMES.

Image: Science Robotics

The main components of MIT’s bipedal robot Little HERMES: (A) Custom actuators designed to withstand impact and capable of producing high torque. (B) Lightweight limbs with low inertia and fast leg swing. (C) Impact-robust and lightweight foot sensors with three-axis contact force sensor. (D) Ruggedized IMU to estimates the robot’s torso posture, angular rate, and linear acceleration. (E) Real-time computer sbRIO 9606 from National Instruments for robot control. (F) Two three-cell lithium-polymer batteries in series. (G) Rigid and lightweight frame to minimize the robot mass.

Early this year, the MIT researchers wrote an in-depth article for IEEE Spectrum about the project, which includes Little HERMES and also its big brother, HERMES (for Highly Efficient Robotic Mechanisms and Electromechanical System). In that article, they describe the two main components of the system:

[…] We are building a telerobotic system that has two parts: a humanoid capable of nimble, dynamic behaviors, and a new kind of two-way human-machine interface that sends your motions to the robot and the robot’s motions to you. So if the robot steps on debris and starts to lose its balance, the operator feels the same instability and instinctively reacts to avoid falling. We then capture that physical response and send it back to the robot, which helps it avoid falling, too. Through this human-robot link, the robot can harness the operator’s innate motor skills and split-second reflexes to keep its footing.

You could say we’re putting a human brain inside the machine.

Image: Science Robotics

The human-machine interface built by the MIT researchers for controlling Little HERMES is different from conventional ones in that it relies on the operator’s reflexes to improve the robot’s stability. The researchers call it the balance-feedback interface, or BFI. The main modules of the BFI include: (A) Custom interface attachments for torso and feet designed to capture human motion data at high speed (1 kHz). (B) Two underactuated modules to track the position and orientation of the torso and apply forces to the operator. (C) Each actuation module has three DoFs, one of which is a push/pull rod actuated by a DC brushless motor. (D) A series of linkages with passive joints connected to the operator’s feet and track their spatial translation. (E) Real-time controller cRIO 9082 from National Instruments to close the BFI control loop. (F) Force plate to estimated the operator’s center of pressure position and measure the shear and normal components of the operator’s net contact force.

Here’s more footage of the experiments, showing Little HERMES stepping and jumping in place, walking a few steps forward and backward, and balancing. Watch until the end to see a compilation of unsuccessful stepping experiments. Poor Little HERMES!

In the new Science Robotics paper, the MIT researchers explain how they solved one of the key challenges in making their teleoperation system effective:

The challenge of this strategy lies in properly mapping human body motion to the machine while simultaneously informing the operator how closely the robot is reproducing the movement. Therefore, we propose a solution for this bilateral feedback policy to control a bipedal robot to take steps, jump, and walk in synchrony with a human operator. Such dynamic synchronization was achieved by (i) scaling the core components of human locomotion data to robot proportions in real time and (ii) applying feedback forces to the operator that are proportional to the relative velocity between human and robot.

Little HERMES is now taking its first steps, quite literally, but the researchers say they hope to use robotic legs with similar design as part of a more advanced humanoid. One possibility they’ve envisioned is a fast-moving quadruped robot that could run through various kinds of terrain and then transform into a bipedal robot that would use its hands to perform dexterous manipulations. This could involve merging some of the robots the MIT researchers have built in their lab, possibly creating hybrids between Cheetah and HERMES, or Mini Cheetah and Little HERMES. We can’t wait to see what the resulting robots will look like.

[ Science Robotics ] Continue reading

Posted in Human Robots

#436079 Video Friday: This Humanoid Robot Will ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

Northeast Robotics Colloquium – October 12, 2019 – Philadelphia, Pa., USA
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.

What’s better than a robotics paper with “dynamic” in the title? A robotics paper with “highly dynamic” in the title. From Sangbae Kim’s lab at MIT, the latest exploits of Mini Cheetah:

Yes I’d very much like one please. Full paper at the link below.

[ Paper ] via [ MIT ]

A humanoid robot serving you ice cream—on his own ice cream bike: What a delicious vision!

[ Roboy ]

The Roomba “i” series and “s” series vacuums have just gotten an update that lets you set “keep out” zones, which is super useful. Tell your robot where not to go!

I feel bad, that Roomba was probably just hungry 🙁

[ iRobot ]

We wrote about Voliro’s tilt-rotor hexcopter a couple years ago, and now it’s off doing practical things, like spray painting a building pretty much the same color that it was before.

[ Voliro ]

Thanks Mina!

Here’s a clever approach for bin-picking problematic objects, like shiny things: Just grab a whole bunch, and then sort out what you need on a nice robot-friendly table.

It might take a little bit longer, but what do you care, you’re probably off sipping a cocktail with a little umbrella in it on a beach somewhere.

[ Harada Lab ]

A unique combination of the IRB 1200 and YuMi industrial robots that use vision, AI and deep learning to recognize and categorize trash for recycling.

[ ABB ]

Measuring glacial movements in-situ is a challenging, but necessary task to model glaciers and predict their future evolution. However, installing GPS stations on ice can be dangerous and expensive when not impossible in the presence of large crevasses. In this project, the ASL develops UAVs for dropping and recovering lightweight GPS stations over inaccessible glaciers to record the ice flow motion. This video shows the results of first tests performed at Gorner glacier, Switzerland, in July 2019.

[ EPFL ]

Turns out Tertills actually do a pretty great job fighting weeds.

Plus, they leave all those cute lil’ Tertill tracks.

[ Franklin Robotics ]

The online autonomous navigation and semantic mapping experiment presented [below] is conducted with the Cassie Blue bipedal robot at the University of Michigan. The sensors attached to the robot include an IMU, a 32-beam LiDAR and an RGB-D camera. The whole online process runs in real-time on a Jetson Xavier and a laptop with an i7 processor.

The resulting map is so precise that it looks like we are doing real-time SLAM (simultaneous localization and mapping). In fact, the map is based on dead-reckoning via the InvEKF.

[ GTSAM ] via [ University of Michigan ]

UBTECH has announced an upgraded version of its Meebot, which is 30 percent bigger and comes with more sensors and programmable eyes.

[ UBTECH ]

ABB’s research team will be working with medical staff, scientist and engineers to develop non-surgical medical robotics systems, including logistics and next-generation automated laboratory technologies. The team will develop robotics solutions that will help eliminate bottlenecks in laboratory work and address the global shortage of skilled medical staff.

[ ABB ]

In this video, Ian and Chris go through Misty’s SDK, discussing the languages we’ve included, the tools that make it easy for you to get started quickly, a quick rundown of how to run the skills you build, plus what’s ahead on the Misty SDK roadmap.

[ Misty Robotics ]

My guess is that this was not one of iRobot’s testing environments for the Roomba.

You know, that’s actually super impressive. And maybe if they threw one of the self-emptying Roombas in there, it would be a viable solution to the entire problem.

[ How Farms Work ]

Part of WeRobotics’ Flying Labs network, Panama Flying Labs is a local knowledge hub catalyzing social good and empowering local experts. Through training and workshops, demonstrations and missions, the Panama Flying Labs team leverages the power of drones, data, and AI to promote entrepreneurship, build local capacity, and confront the pressing social challenges faced by communities in Panama and across Central America.

[ Panama Flying Labs ]

Go on a virtual flythrough of the NIOSH Experimental Mine, one of two courses used in the recent DARPA Subterranean Challenge Tunnel Circuit Event held 15-22 August, 2019. The data used for this partial flythrough tour were collected using 3D LIDAR sensors similar to the sensors commonly used on autonomous mobile robots.

[ SubT ]

Special thanks to PBS, Mark Knobil, Joe Seamans and Stan Brandorff and many others who produced this program in 1991.

It features Reid Simmons (and his 1 year old son), David Wettergreen, Red Whittaker, Mac Macdonald, Omead Amidi, and other Field Robotics Center alumni building the planetary walker prototype called Ambler. The team gets ready for an important demo for NASA.

[ CMU RI ]

As art and technology merge, roboticist Madeline Gannon explores the frontiers of human-robot interaction across the arts, sciences and society, and explores what this could mean for the future.

[ Sonar+D ] Continue reading

Posted in Human Robots

#435828 Video Friday: Boston Dynamics’ ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

RoboBusiness 2019 – October 1-3, 2019 – Santa Clara, Calif., USA
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.

You’ve almost certainly seen the new Spot and Atlas videos from Boston Dynamics, if for no other reason than we posted about Spot’s commercial availability earlier this week. But what, are we supposed to NOT include them in Video Friday anyway? Psh! Here you go:

[ Boston Dynamics ]

Eight deadly-looking robots. One Giant Nut trophy. Tonight is the BattleBots season finale, airing on Discovery, 8 p.m. ET, or check your local channels.

[ BattleBots ]

Thanks Trey!

Speaking of battling robots… Having giant robots fight each other is one of those things that sounds really great in theory, but doesn’t work out so well in reality. And sadly, MegaBots is having to deal with reality, which means putting their giant fighting robot up on eBay.

As of Friday afternoon, the current bid is just over $100,000 with a week to go.

[ MegaBots ]

Michigan Engineering has figured out the secret formula to getting 150,000 views on YouTube: drone plus nail gun.

[ Michigan Engineering ]

Michael Burke from the University of Edinburgh writes:

We’ve been learning to scoop grapefruit segments using a PR2, by “feeling” the difference between peel and pulp. We use joint torque measurements to predict the probability that the knife is in the peel or pulp, and use this to apply feedback control to a nominal cutting trajectory learned from human demonstration, so that we remain in a position of maximum uncertainty about which medium we’re cutting. This means we slice along the boundary between the two mediums. It works pretty well!

[ Paper ] via [ Robust Autonomy and Decisions Group ]

Thanks Michael!

Hey look, it’s Jan with eight EMYS robot heads. Hi, Jan! Hi, EMYSes!

[ EMYS ]

We’re putting the KRAKEN Arm through its paces, demonstrating that it can unfold from an Express Rack locker on the International Space Station and access neighboring lockers in NASA’s FabLab system to enable transfer of materials and parts between manufacturing, inspection, and storage stations. The KRAKEN arm will be able to change between multiple ’end effector’ tools such as grippers and inspection sensors – those are in development so they’re not shown in this video.

[ Tethers Unlimited ]

UBTECH’s Alpha Mini Robot with Smart Robot’s “Maatje” software is offering healthcare service to children at Praktijk Intraverte Multidisciplinary Institution in Netherlands.

This institution is using Alpha Mini in counseling children’s behavior. Alpha Mini can move and talk to children and offers games and activities to stimulate and interact with them. Alpha Mini talks, helps and motivates children thereby becoming more flexible in society.

[ UBTECH ]

Some impressive work here from Anusha Nagabandi, Kurt Konoglie, Sergey Levine, Vikash Kumar at Google Brain, training a dexterous multi-fingered hand to do that thing with two balls that I’m really bad at.

Dexterous multi-fingered hands can provide robots with the ability to flexibly perform a wide range of manipulation skills. However, many of the more complex behaviors are also notoriously difficult to control: Performing in-hand object manipulation, executing finger gaits to move objects, and exhibiting precise fine motor skills such as writing, all require finely balancing contact forces, breaking and reestablishing contacts repeatedly, and maintaining control of unactuated objects. In this work, we demonstrate that our method of online planning with deep dynamics models (PDDM) addresses both of these limitations; we show that improvements in learned dynamics models, together with improvements in online model-predictive control, can indeed enable efficient and effective learning of flexible contact-rich dexterous manipulation skills — and that too, on a 24-DoF anthropomorphic hand in the real world, using just 2-4 hours of purely real-world data to learn to simultaneously coordinate multiple free-floating objects.

[ PDDM ]

Thanks Vikash!

CMU’s Ballbot has a deceptively light touch that’s ideal for leading people around.

A paper on this has been submitted to IROS 2019.

[ CMU ]

The Autonomous Robots Lab at the University of Nevada is sharing some of the work they’ve done on path planning and exploration for aerial robots during the DARPA SubT Challenge.

[ Autonomous Robots Lab ]

More proof that anything can be a drone if you staple some motors to it. Even 32 feet of styrofoam insulation.

[ YouTube ]

Whatever you think of military drones, we can all agree that they look cool.

[ Boeing ]

I appreciate the fact that iCub has eyelids, I really do, but sometimes, it ends up looking kinda sleepy in research videos.

[ EPFL LASA ]

Video shows autonomous flight of a lightweight aerial vehicle outdoors and indoors on the campus of Carnegie Mellon University. The vehicle is equipped with limited onboard sensing from a front-facing camera and a proximity sensor. The aerial autonomy is enabled by utilizing a 3D prior map built in Step 1.

[ CMU ]

The Stanford Space Robotics Facility allows researchers to test innovative guidance and navigation algorithms on a realistic frictionless, underactuated system.

[ Stanford ASL ]

In this video, Ian and CP discuss Misty’s many capabilities including robust locomotion, obstacle avoidance, 3D mapping/SLAM, face detection and recognition, sound localization, hardware extensibility, photo and video capture, and programmable personality. They also talk about some of the skills he’s built using these capabilities (and others) and how those skills can be expanded upon by you.

[ Misty Robotics ]

This week’s CMU RI Seminar comes from Aaron Parness at Caltech and NASA JPL, on “Robotic Grippers for Planetary Applications.”

The previous generation of NASA missions to the outer solar system discovered salt water oceans on Europa and Enceladus, each with more liquid water than Earth – compelling targets to look for extraterrestrial life. Closer to home, JAXA and NASA have imaged sky-light entrances to lava tube caves on the Moon more than 100 m in diameter and ESA has characterized the incredibly varied and complex terrain of Comet 67P. While JPL has successfully landed and operated four rovers on the surface of Mars using a 6-wheeled rocker-bogie architecture, future missions will require new mobility architectures for these extreme environments. Unfortunately, the highest value science targets often lie in the terrain that is hardest to access. This talk will explore robotic grippers that enable missions to these extreme terrains through their ability to grip a wide variety of surfaces (shapes, sizes, and geotechnical properties). To prepare for use in space where repair or replacement is not possible, we field-test these grippers and robots in analog extreme terrain on Earth. Many of these systems are enabled by advances in autonomy. The talk will present a rapid overview of my work and a detailed case study of an underactuated rock gripper for deflecting asteroids.

[ CMU ]

Rod Brooks gives some of the best robotics talks ever. He gave this one earlier this week at UC Berkeley, on “Steps Toward Super Intelligence and the Search for a New Path.”

[ UC Berkeley ] Continue reading

Posted in Human Robots

#435791 To Fly Solo, Racing Drones Have a Need ...

Drone racing’s ultimate vision of quadcopters weaving nimbly through obstacle courses has attracted far less excitement and investment than self-driving cars aimed at reshaping ground transportation. But the U.S. military and defense industry are betting on autonomous drone racing as the next frontier for developing AI so that it can handle high-speed navigation within tight spaces without human intervention.

The autonomous drone challenge requires split-second decision-making with six degrees of freedom instead of a car’s mere two degrees of road freedom. One research team developing the AI necessary for controlling autonomous racing drones is the Robotics and Perception Group at the University of Zurich in Switzerland. In late May, the Swiss researchers were among nine teams revealed to be competing in the two-year AlphaPilot open innovation challenge sponsored by U.S. aerospace company Lockheed Martin. The winning team will walk away with up to $2.25 million for beating other autonomous racing drones and a professional human drone pilot in head-to-head competitions.

“I think it is important to first point out that having an autonomous drone to finish a racing track at high speeds or even beating a human pilot does not imply that we can have autonomous drones [capable of] navigating in real-world, complex, unstructured, unknown environments such as disaster zones, collapsed buildings, caves, tunnels or narrow pipes, forests, military scenarios, and so on,” says Davide Scaramuzza, a professor of robotics and perception at the University of Zurich and ETH Zurich. “However, the robust and computationally efficient state estimation algorithms, control, and planning algorithms developed for autonomous drone racing would represent a starting point.”

The nine teams that made the cut—from a pool of 424 AlphaPilot applicants—will compete in four 2019 racing events organized under the Drone Racing League’s Artificial Intelligence Robotic Racing Circuit, says Keith Lynn, program manager for AlphaPilot at Lockheed Martin. To ensure an apples-to-apples comparison of each team’s AI secret sauce, each AlphaPilot team will upload its AI code into identical, specially-built drones that have the NVIDIA Xavier GPU at the core of the onboard computing hardware.

“Lockheed Martin is offering mentorship to the nine AlphaPilot teams to support their AI tech development and innovations,” says Lynn. The company “will be hosting a week-long Developers Summit at MIT in July, dedicated to workshopping and improving AlphaPilot teams’ code,” he added. He notes that each team will retain the intellectual property rights to its AI code.

The AlphaPilot challenge takes inspiration from older autonomous drone racing events hosted by academic researchers, Scaramuzza says. He credits Hyungpil Moon, a professor of robotics and mechanical engineering at Sungkyunkwan University in South Korea, for having organized the annual autonomous drone racing competition at the International Conference on Intelligent Robots and Systems since 2016.

It’s no easy task to create and train AI that can perform high-speed flight through complex environments by relying on visual navigation. One big challenge comes from how drones can accelerate sharply, take sharp turns, fly sideways, do zig-zag patterns and even perform back flips. That means camera images can suddenly appear tilted or even upside down during drone flight. Motion blur may occur when a drone flies very close to structures at high speeds and camera pixels collect light from multiple directions. Both cameras and visual software can also struggle to compensate for sudden changes between light and dark parts of an environment.

To lend AI a helping hand, Scaramuzza’s group recently published a drone racing dataset that includes realistic training data taken from a drone flown by a professional pilot in both indoor and outdoor spaces. The data, which includes complicated aerial maneuvers such as back flips, flight sequences that cover hundreds of meters, and flight speeds of up to 83 kilometers per hour, was presented at the 2019 IEEE International Conference on Robotics and Automation.

The drone racing dataset also includes data captured by the group’s special bioinspired event cameras that can detect changes in motion on a per-pixel basis within microseconds. By comparison, ordinary cameras need milliseconds (each millisecond being 1,000 microseconds) to compare motion changes in each image frame. The event cameras have already proven capable of helping drones nimbly dodge soccer balls thrown at them by the Swiss lab’s researchers.

The Swiss group’s work on the racing drone dataset received funding in part from the U.S. Defense Advanced Research Projects Agency (DARPA), which acts as the U.S. military’s special R&D arm for more futuristic projects. Specifically, the funding came from DARPA’s Fast Lightweight Autonomy program that envisions small autonomous drones capable of flying at high speeds through cluttered environments without GPS guidance or communication with human pilots.

Such speedy drones could serve as military scouts checking out dangerous buildings or alleys. They could also someday help search-and-rescue teams find people trapped in semi-collapsed buildings or lost in the woods. Being able to fly at high speed without crashing into things also makes a drone more efficient at all sorts of tasks by making the most of limited battery life, Scaramuzza says. After all, most drone battery life gets used up by the need to hover in flight and doesn’t get drained much by flying faster.

Even if AI manages to conquer the drone racing obstacle courses, that would be the end of the beginning of the technology’s development. What would still be required? Scaramuzza specifically singled out the need to handle low-visibility conditions involving smoke, dust, fog, rain, snow, fire, hail, as some of the biggest challenges for vision-based algorithms and AI in complex real-life environments.

“I think we should develop and release datasets containing smoke, dust, fog, rain, fire, etc. if we want to allow using autonomous robots to complement human rescuers in saving people lives after an earthquake or natural disaster in the future,” Scaramuzza says. Continue reading

Posted in Human Robots

#435775 Jaco Is a Low-Power Robot Arm That Hooks ...

We usually think of robots as taking the place of humans in various tasks, but robots of all kinds can also enhance human capabilities. This may be especially true for people with disabilities. And while the Cybathlon competition showed what's possible when cutting-edge research robotics is paired with expert humans, that competition isn't necessarily reflective of the kind of robotics available to most people today.

Kinova Robotics's Jaco arm is an assistive robotic arm designed to be mounted on an electric wheelchair. With six degrees of freedom plus a three-fingered gripper, the lightweight carbon fiber arm is frequently used in research because it's rugged and versatile. But from the start, Kinova created it to add autonomy to the lives of people with mobility constraints.

Earlier this year, Kinova shared the story of Mary Nelson, an 11-year-old girl with spinal muscular atrophy, who uses her Jaco arm to show her horse in competition. Spinal muscular atrophy is a neuromuscular disorder that impairs voluntary muscle movement, including muscles that help with respiration, and Mary depends on a power chair for mobility.

We wanted to learn more about how Kinova designs its Jaco arm, and what that means for folks like Mary, so we spoke with both Kinova and Mary's parents to find out how much of a difference a robot arm can make.

IEEE Spectrum: How did Mary interact with the world before having her arm, and what was involved in the decision to try a robot arm in general? And why then Kinova's arm specifically?

Ryan Nelson: Mary interacts with the world much like you and I do, she just uses different tools to do so. For example, she is 100 percent independent using her computer, iPad, and phone, and she prefers to use a mouse. However, she cannot move a standard mouse, so she connects her wheelchair to each device with Bluetooth to move the mouse pointer/cursor using her wheelchair joystick.

For years, we had a Manfrotto magic arm and super clamp attached to her wheelchair and she used that much like the robotic arm. We could put a baseball bat, paint brush, toys, etc. in the super clamp so that Mary could hold the object and interact as physically able children do. Mary has always wanted to be more independent, so we knew the robotic arm was something she must try. We had seen videos of the Kinova arm on YouTube and on their website, so we reached out to them to get a trial.

Can you tell us about the Jaco arm, and how the process of designing an assistive robot arm is different from the process of designing a conventional robot arm?

Nathaniel Swenson, Director of U.S. Operations — Assistive Technologies at Kinova: Jaco is our flagship robotic arm. Inspired by our CEO's uncle and its namesake, Jacques “Jaco” Forest, it was designed as assistive technology with power wheelchair users in mind.

The primary differences between Jaco and our other robots, such as the new Gen3, which was designed to meet the needs of academic and industry research teams, are speed and power consumption. Other robots such as the Gen3 can move faster and draw slightly more power because they aren't limited by the battery size of power wheelchairs. Depending on the use case, they might not interact directly with a human being in the research setting and can safely move more quickly. Jaco is designed to move at safe speeds and make direct contact with the end user and draw very little power directly from their wheelchair.

The most important consideration in the design process of an assistive robot is the safety of the end user. Jaco users operate their robots through their existing drive controls to assist them in daily activities such as eating, drinking, and opening doors and they don't have to worry about the robot draining their chair's batteries throughout the day. The elegant design that results from meeting the needs of our power chair users has benefited subsequent iterations, [of products] such as the Gen3, as well: Kinova's robots are lightweight, extremely efficient in their power consumption, and safe for direct human-robot interaction. This is not true of conventional industrial robots.

What was the learning process like for Mary? Does she feel like she's mastered the arm, or is it a continuous learning process?

Ryan Nelson: The learning process was super quick for Mary. However, she amazes us every day with the new things that she can do with the arm. Literally within minutes of installing the arm on her chair, Mary had it figured out and was shaking hands with the Kinova rep. The control of the arm is super intuitive and the Kinova reps say that SMA (Spinal Muscular Atrophy) children are perfect users because they are so smart—they pick it up right away. Mary has learned to do many fine motor tasks with the arm, from picking up small objects like a pencil or a ruler, to adjusting her glasses on her face, to doing science experiments.

Photo: The Nelson Family

Mary uses a headset microphone to amplify her voice, and she will use the arm and finger to adjust the microphone in front of her mouth after she is done eating (also a task she mastered quickly with the arm). Additionally, Mary will use the arms to reach down and adjust her feet or leg by grabbing them with the arm and moving them to a more comfortable position. All of these examples are things she never really asked us to do, but something she needed and just did on her own, with the help of the arm.

What is the most common feedback that you get from new users of the arm? How about from experienced users who have been using the arm for a while?

Nathaniel Swenson: New users always tell us how excited they are to see what they can accomplish with their new Jaco. From day one, they are able to do things that they have longed to do without assistance from a caregiver: take a drink of water or coffee, scratch an itch, push the button to open an “accessible” door or elevator, or even feed their baby with a bottle.

The most common feedback I hear from experienced users is that Jaco has changed their life. Our experienced users like Mary are rock stars: everywhere they go, people get excited to see what they'll do next. The difference between a new user and an experienced user could be as little as two weeks. People who operate power wheelchairs every day are already expert drivers and we just add a new “gear” to their chair: robot mode. It's fun to see how quickly new users master the intuitive Jaco control modes.

What changes would you like to see in the next generation of Jaco arm?

Ryan Nelson: Titanium fingers! Make it lift heavier objects, hold heavier items like a baseball bat, machine gun, flame thrower, etc., and Mary literally said this last night: “I wish the arm moved fast enough to play the piano.”

Nathaniel Swenson: I love the idea of titanium fingers! Jaco's fingers are made from a flexible polymer and designed to avoid harm. This allows the fingers to bend or dislocate, rather than break, but it also means they are not as durable as a material like titanium. Increased payload, the ability to manipulate heavier objects, requires increased power consumption. We've struck a careful balance between providing enough strength to accomplish most medically necessary Activities of Daily Living and efficient use of the power chair's batteries.

We take Isaac Asimov's Laws of Robotics pretty seriously. When we start to combine machine guns, flame throwers, and artificial intelligence with robots, I get very nervous!

I wish the arm moved fast enough to play the piano, too! I am also a musician and I share Mary's dream of an assistive robot that would enable her to make music. In the meantime, while we work on that, please enjoy this beautiful violin piece by Manami Ito and her one-of-a-kind violin prosthesis:

To what extent could more autonomy for the arm be helpful for users? What would be involved in implementing that?

Nathaniel Swenson: Artificial intelligence, machine learning, and deep learning will introduce greater autonomy in future iterations of assistive robots. This will enable them to perform more complex tasks that aren't currently possible, and enable them to accomplish routine tasks more quickly and with less input than the current manual control requires.

For assistive robots, implementation of greater autonomy involves a focus on end-user safety and improvements in the robot's awareness of its environment. Autonomous robots that work in close proximity with humans need vision. They must be able to see to avoid collisions and they use haptic feedback to tell the robot how much force is being exerted on objects. All of these technologies exist, but the largest obstacle to bringing them to the assistive technology market is to prove to the health insurance companies who will fund them that they are both safe and medically necessary. Continue reading

Posted in Human Robots