Tag Archives: lightweight
#437735 Robotic Chameleon Tongue Snatches Nearby ...
Chameleons may be slow-moving lizards, but their tongues can accelerate at astounding speeds, snatching insects before they have any chance of fleeing. Inspired by this remarkable skill, researchers in South Korea have developed a robotic tongue that springs forth quickly to snatch up nearby items.
They envision the tool, called Snatcher, being used by drones and robots that need to collect items without getting too close to them. “For example, a quadrotor with this manipulator will be able to snatch distant targets, instead of hovering and picking up,” explains Gwang-Pil Jung, a researcher at Seoul National University of Science and Technology (SeoulTech) who co-designed the new device.
There has been other research into robotic chameleon tongues, but what’s unique about Snatcher is that it packs chameleon-tongue fast snatching performance into a form factor that’s portable—the total size is 12 x 8.5 x 8.5 centimeters and it weighs under 120 grams. Still, it’s able to fast snatch up to 30 grams from 80 centimeters away in under 600 milliseconds.
Image: SeoulTech
The fast snatching deployable arm is powered by a wind-up spring attached to a motor (a series elastic actuator) combined with an active clutch. The clutch is what allows the single spring to drive both the shooting and the retracting.
To create Snatcher, Jung and a colleague at SeoulTech, Dong-Jun Lee, set about developing a spring-like device that’s controlled by an active clutch combined with a single series elastic actuator. Powered by a wind-up spring, a steel tapeline—analogous to a chameleon’s tongue—passes through two geared feeders. The clutch is what allows the single spring unwinding in one direction to drive both the shooting and the retracting, by switching a geared wheel between driving the forward feeder or the backward feeder.
The end result is a lightweight snatching device that can retrieve an object 0.8 meters away within 600 milliseconds. Jung notes that some other, existing devices designed for retrieval are capable of accomplishing the task quicker, at about 300 milliseconds, but these designs tend to be bulky. A more detailed description of Snatcher was published July 21 in IEEE Robotics and Automation Letters.
Photo: Dong-Jun Lee and Gwang-Pil Jung/SeoulTech
Snatcher’s relative small size means that it can be installed on a DJI Phantom drone. The researchers want to find out if their system can help make package delivery or retrieval faster and safer.
“Our final goal is to install the Snatcher to a commercial drone and achieve meaningful work, such as grasping packages,” says Jung. One of the challenges they still need to address is how to power the actuation system more efficiently. “To solve this issue, we are finding materials having high energy density.” Another improvement is designing a chameleon tongue-like gripper, replacing the simple hook that’s currently used to pick up objects. “We are planning to make a bi-stable gripper to passively grasp a target object as soon as the gripper contacts the object,” says Jung.
< Back to IEEE Journal Watch Continue reading
#437695 Video Friday: Even Robots Know That You ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):
CLAWAR 2020 – August 24-26, 2020 – [Online Conference]
Other Than Human – September 3-10, 2020 – Stockholm, Sweden
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online Conference]
IROS 2020 – October 25-29, 2020 – Las Vegas, Nev., USA
CYBATHLON 2020 – November 13-14, 2020 – [Online Event]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today's videos.
From the Robotics and Perception Group at UZH comes Flightmare, a simulation environment for drones that combines a slick rendering engine with a robust physics engine that can run as fast as your system can handle.
Flightmare is composed of two main components: a configurable rendering engine built on Unity and a flexible physics engine for dynamics simulation. Those two components are totally decoupled and can run independently from each other. Flightmare comes with several desirable features: (i) a large multi-modal sensor suite, including an interface to extract the 3D point-cloud of the scene; (ii) an API for reinforcement learning which can simulate hundreds of quadrotors in parallel; and (iii) an integration with a virtual-reality headset for interaction with the simulated environment. Flightmare can be used for various applications, including path-planning, reinforcement learning, visual-inertial odometry, deep learning, human-robot interaction, etc.
[ Flightmare ]
Quadruped robots yelling at people to maintain social distancing is really starting to become a thing, for better or worse.
We introduce a fully autonomous surveillance robot based on a quadruped platform that can promote social distancing in complex urban environments. Specifically, to achieve autonomy, we mount multiple cameras and a 3D LiDAR on the legged robot. The robot then uses an onboard real-time social distancing detection system to track nearby pedestrian groups. Next, the robot uses a crowd-aware navigation algorithm to move freely in highly dynamic scenarios. The robot finally uses a crowd aware routing algorithm to effectively promote social distancing by using human-friendly verbal cues to send suggestions to overcrowded pedestrians.
[ Project ]
Thanks Fan!
The Personal Robotics Group at Oregon State University is looking at UV germicidal irradiation for surface disinfection with a Fetch Manipulator Robot.
Fetch Robot disinfecting dance party woo!
[ Oregon State ]
How could you not take a mask from this robot?
[ Reachy ]
This work presents the design, development and autonomous navigation of the alpha-version of our Resilient Micro Flyer, a new type of collision-tolerant small aerial robot tailored to traversing and searching within highly confined environments including manhole-sized tubes. The robot is particularly lightweight and agile, while it implements a rigid collision-tolerant design which renders it resilient during forcible interaction with the environment. Furthermore, the design of the system is enhanced through passive flaps ensuring smoother and more compliant collision which was identified to be especially useful in very confined settings.
[ ARL ]
Pepper can make maps and autonomously navigate, which is interesting, but not as interesting as its posture when it's wandering around.
Dat backing into the charging dock tho.
[ Pepper ]
RatChair a strategy for displacing big objects by attaching relatively small vibration sources. After learning how several random bursts of vibration affect its pose, an optimization algorithm discovers the optimal sequence of vibration patterns required to (slowly but surely) move the object to a specified position.
This is from 2015, why isn't all of my furniture autonomous yet?!
[ KAIST ]
The new SeaDrone Pro is designed to be the underwater equivalent of a quadrotor. This video is a rendering, but we've been assured that it does actually exist.
[ SeaDrone ]
Thanks Eduardo!
Porous Loops is a lightweight composite facade panel that shows the potential of 3D printing of mineral foams for building scale applications.
[ ETH ]
Thanks Fan!
Here's an interesting idea for a robotic gripper- it's what appears to be a snap bracelet coupled to a pneumatic actuator that allows the snap bracelet to be reset.
[ Georgia Tech ]
Graze is developing a commercial robotic lawnmower. They're also doing a sort of crowdfunded investment thing, which probably explains the painfully overproduced nature of the following video:
A couple things about this: the hard part, which the video skips over almost entirely, is the mapping, localization, and understanding where to mow and where not to mow. The pitch deck seems to suggest that this is mostly done through computer vision, a thing that's perhaps easy to do under controlled ideal conditions, but difficult to apply to a world full lawns that are all different. The commercial aspect is interesting because golf courses are likely as standardized as you can get, but the emphasis here on how much money they can make without really addressing any of the technical stuff makes me raise an eyebrow or two.
[ Graze ]
The record & playback X-series arm demo allows the user to record the arm's movements while motors are torqued off. Then, the user may torque the motor's on and watch the movements they just made playback!
[ Interbotix ]
Shadow Robot has a new teleop system for its hand. I'm guessing that it's even trickier to use than it looks.
[ Shadow Robot ]
Quanser Interactive Labs is a collection of virtual hardware-based laboratory activities that supplement traditional or online courses. Same as working with physical systems in the lab, students work with virtual twins of Quanser's most popular plants, develop their mathematical models, implement and simulate the dynamic behavior of these systems, design controllers, and validate them on a high-fidelity 3D real-time virtual models. The virtual systems not only look like the real ones, they also behave, can be manipulated, measured, and controlled like real devices. And finally, when students go to the lab, they can deploy their virtually-validated designs on actual physical equipment.
[ Quanser ]
This video shows robot-assisted heart surgery. It's amazing to watch if you haven't seen this sort of thing before, but be aware that there is a lot of blood.
This video demonstrates a fascinating case of robotic left atrial myxoma excision, narrated by Joel Dunning, Middlesbrough, UK. The Robotic platform provides superior visualisation and enhanced dexterity, through keyhole incisions. Robotic surgery is an integral part of our Minimally Invasive Cardiothoracic Surgery Program.
[ Tristan D. Yan ]
Thanks Fan!
In this talk, we present our work on learning control policies directly in simulation that are deployed onto real drones without any fine tuning. The presentation covers autonomous drone racing, drone acrobatics, and uncertainty estimation in deep networks.
[ RPG ] Continue reading
#437643 Video Friday: Matternet Launches Urban ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):
IROS 2020 – October 25-25, 2020 – [Online]
Bay Area Robotics Symposium – November 20, 2020 – [Online]
ACRA 2020 – December 8-10, 2020 – [Online]
Let us know if you have suggestions for next week, and enjoy today's videos.
Sixteen teams chose their roster of virtual robots and sensor payloads, some based on real-life subterranean robots, and submitted autonomy and mapping algorithms that SubT Challenge officials then tested across eight cave courses in the cloud-based SubT Simulator. Their robots traversed the cave environments autonomously, without any input or adjustments from human operators. The Cave Circuit Virtual Competition teams earned points by correctly finding, identifying, and localizing up to 20 artifacts hidden in the cave courses within five-meter accuracy.
[ SubT ]
This year, the KUKA Innovation Award’s international jury of experts received a total of more than 40 ideas. The five finalist teams had time until November to implement their ideas. A KUKA LBR Med lightweight robot – the first robotic component to be certified for integration into a medical device – has been made available to them for this purpose. Beyond this, the teams have received a training for the hardware and coaching from KUKA experts throughout the competition. At virtual.MEDICA from 16-19.11.2020, the finalists presented their concepts to an international audience of experts and to the Innovation Award jury.
The winner of the KUKA Innovation Award 2020, worth 20,000 euros, is Team HIFUSK from the Scuola Superiore Sant'Anna in Italy.
[ KUKA Innovation Award ]
Like everything else the in-person Cybathlon event was cancelled, but the competition itself took place, just a little more distributed than it would have been otherwise.
[ Cybathlon ]
Matternet, developer of the world's leading urban drone logistics platform, today announced the launch of operations at Labor Berlin Charité Vivantes in Germany. The program kicked-off November 17, 2020 with permanent operations expected to take flight next year, creating the first urban BVLOS [Beyond Visual Line of Sight] medical drone delivery network in the European Union. The drone network expects to significantly improve the timeliness and efficiency of Labor Berlin’s diagnostics services by providing an option to avoid roadway delays, which will improve patient experience with potentially life-saving benefits and lower costs.
Routine BVLOS over an urban area? Impressive.
[ Matternet ]
Robots playing diabolo!
Thanks Thilo!
[ OMRON Sinic X]
Anki's tech has been repackaged into this robot that serves butter:
[ Butter Robot ]
Berkshire Grey just announced our Picking With Purpose Program in which we’ve partnered our robotic automation solutions with food rescue organizations City Harvest and The Greater Boston Food Bank to pick, pack, and distribute food to families in need in time for Thanksgiving. Berkshire Grey donated about 40,000 pounds of food, used one of our robotic automation systems to pick and pack that food into meal boxes for families in need, and our team members volunteered to run the system. City Harvest and The Greater Boston Food Bank are distributing the 4,000 meal boxes we produced. This is just the beginning. We are building a sponsorship program to make Picking With Purpose an ongoing initiative.
[ Berkshire Grey ]
Thanks Peter!
We posted a video previously of Cassie learning to skip, but here's a much more detailed look (accompanying an ICRA submission) that includes some very impressive stair descending.
[ DRL ]
From garage inventors to university students and entrepreneurs, NASA is looking for ideas on how to excavate the Moon’s icy regolith, or dirt, and deliver it to a hypothetical processing plant at the lunar South Pole. The NASA Break the Ice Lunar Challenge, a NASA Centennial Challenge, is now open for registration. The competition will take place over two phases and will reward new ideas and approaches for a system architecture capable of excavating and moving icy regolith and water on the lunar surface.
[ NASA ]
Adaptation to various scene configurations and object properties, stability and dexterity in robotic grasping manipulation is far from explored. This work presents an origami-based shape morphing fingertip design to actively tackle the grasping stability and dexterity problems. The proposed fingertip utilizes origami as its skeleton providing degrees of freedom at desired positions and motor-driven four-bar-linkages as its transmission components to achieve a compact size of the fingertip.
[ Paper ]
“If Roboy crashes… you die.”
[ Roboy ]
Traditionally lunar landers, as well as other large space exploration vehicles, are powered by solar arrays or small nuclear reactors. Rovers and small robots, however, are not big enough to carry their own dedicated power supplies and must be tethered to their larger counterparts via electrical cables. Tethering severely restricts mobility, and cables are prone to failure due to lunar dust (regolith) interfering with electrical contact points. Additionally, as robots become smaller and more complex, they are fitted with additional sensors that require more power, further exacerbating the problem. Lastly, solar arrays are not viable for charging during the lunar night. WiBotic is developing rapid charging systems and energy monitoring base stations for lunar robots, including the CubeRover – a shoebox-sized robot designed by Astrobotic – that will operate autonomously and charge wirelessly on the Moon.
[ WiBotic ]
Watching pick and place robots is my therapy.
[ Soft Robotics ]
It's really, really hard to beat liquid fuel for energy storage, as Quaternium demonstrates with their hybrid drone.
[ Quaternium ]
Thanks Gregorio!
State-of-the-art quadrotor simulators have a rigid and highly-specialized structure: either are they really fast, physically accurate, or photo-realistic. In this work, we propose a novel quadrotor simulator: Flightmare.
[ Flightmare ]
Drones that chuck fire-fighting balls into burning buildings, sure!
[ LARICS ]
If you missed ROS World, that's okay, because all of the talks are now online. Here's the opening keynote from Vivian Chu and Diligent robotics, along with a couple fun lightning talks.
[ ROS World 2020 ]
This week's CMU RI Seminar is by Chelsea Finn from Stanford University, on Data Scalability for Robot Learning.
Recent progress in robot learning has demonstrated how robots can acquire complex manipulation skills from perceptual inputs through trial and error, particularly with the use of deep neural networks. Despite these successes, the generalization and versatility of robots across environment conditions, tasks, and objects remains a major challenge. And, unfortunately, our existing algorithms and training set-ups are not prepared to tackle such challenges, which demand large and diverse sets of tasks and experiences. In this talk, I will discuss two central challenges that pertain to data scalability: first, acquiring large datasets of diverse and useful interactions with the world, and second, developing algorithms that can learn from such datasets. Then, I will describe multiple approaches that we might take to rethink our algorithms and data pipelines to serve these goals. This will include algorithms that allow a real robot to explore its environment in a targeted manner with minimal supervision, approaches that can perform robot reinforcement learning with videos of human trial-and-error experience, and visual model-based RL approaches that are not bottlenecked by their capacity to model everything about the world.
[ CMU RI ] Continue reading