Tag Archives: Light

#437990 Video Friday: Record-Breaking Drone Show ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

HRI 2021 – March 8-11, 2021 – [Online]
RoboSoft 2021 – April 12-16, 2021 – [Online]
Let us know if you have suggestions for next week, and enjoy today's videos.

A new parent STAR robot is presented. The parent robot has a tail on which the child robot can climb. By collaborating together, the two robots can reach locations that neither can reach on its own.

The parent robot can also supply the child robot with energy by recharging its batteries. The parent STAR can dispatch and recuperate the child STAR automatically (when aligned). The robots are fitted with sensors and controllers and have automatic capabilities but make no decisions on their own.

[ Bio-Inspired and Medical Robotics Lab ]

How TRI trains its robots.

[ TRI ]

The only thing more satisfying than one SCARA robot is two SCARA robots working together.

[ Fanuc ]

I'm not sure that this is strictly robotics, but it's so cool that it's worth a watch anyway.

[ Shinoda & Makino Lab ]

Flying insects heavily rely on optical flow for visual navigation and flight control. Roboticists have endowed small flying robots with optical flow control as well, since it requires just a tiny vision sensor. However, when using optical flow, the robots run into two problems that insects appear to have overcome. Firstly, since optical flow only provides mixed information on distances and velocities, using it for control leads to oscillations when getting closer to obstacles. Secondly, since optical flow provides very little information on obstacles in the direction of motion, it is hardest to detect obstacles that the robot is actually going to collide with! We propose a solution to these problems by means of a learning process.

[ Nature ]

A new Guinness World Record was set on Friday in north China for the longest animation performed by 600 unmanned aerial vehicles (UAVs).

[ Xinhua ]

Translucency is prevalent in everyday scenes. As such, perception of transparent objects is essential for robots to perform manipulation. In this work, we propose LIT, a two-stage method for transparent object pose estimation using light-field sensing and photorealistic rendering.

[ University of Michigan ] via [ Fetch Robotics ]

This paper reports the technological progress and performance of team “CERBERUS” after participating in the Tunnel and Urban Circuits of the DARPA Subterranean Challenge.

And here's a video report on the SubT Urban Beta Course performance:

[ CERBERUS ]

Congrats to Energy Robotics on 2 million euros in seed funding!

[ Energy Robotics ]

Thanks Stefan!

In just 2 minutes, watch HEBI robotics spending 23 minutes assembling a robot arm.

HEBI Robotics is hosting a webinar called 'Redefining the Robotic Arm' next week, which you can check out at the link below.

[ HEBI Robotics ]

Thanks Hardik!

Achieving versatile robot locomotion requires motor skills which can adapt to previously unseen situations. We propose a Multi-Expert Learning Architecture (MELA) that learns to generate adaptive skills from a group of representative expert skills. During training, MELA is first initialised by a distinct set of pre-trained experts, each in a separate deep neural network (DNN). Then by learning the combination of these DNNs using a Gating Neural Network (GNN), MELA can acquire more specialised experts and transitional skills across various locomotion modes.

[ Paper ]

Since the dawn of history, advances in science and technology have pursued “power” and “accuracy.” Initially, “hardness” in machines and materials was sought for reliable operations. In our area of Science of Soft Robots, we have combined emerging academic fields aimed at “softness” to increase the exposure and collaboration of researchers in different fields.

[ Science of Soft Robots ]

A team from the Laboratory of Robotics and IoT for Smart Precision Agriculture and Forestry at INESC TEC – Technology and Science are creating a ROS stack solution using Husky UGV for precision field crop agriculture.

[ Clearpath Robotics ]

Associate Professor Christopher J. Hasson in the Department of Physical Therapy is the director Neuromotor Systems Laboratory at Northeastern University. There he is working with a robotic arm to provide enhanced assistance to physical therapy patients, while maintaining the intimate therapist and patient relationship.

[ Northeastern ]

Mobile Robotic telePresence (MRP) systems aim to support enhanced collaboration between remote and local members of a given setting. But MRP systems also put the remote user in positions where they frequently rely on the help of local partners. Getting or ‘recruiting’ such help can be done with various verbal and embodied actions ranging in explicitness. In this paper, we look at how such recruitment occurs in video data drawn from an experiment where pairs of participants (one local, one remote) performed a timed searching task.

[ Microsoft Research ]

A presentation [from Team COSTAR] for the American Geophysical Union annual fall meeting on the application of robotic multi-sensor 3D Mapping for scientific exploration of caves. Lidar-based 3D maps are combined with visual/thermal/spectral/gas sensors to provide rich 3D context for scientific measurements map.

[ COSTAR ] Continue reading

Posted in Human Robots

#437971 Video Friday: Teleport Yourself Into ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

HRI 2021 – March 8-11, 2021 – [Online]
RoboSoft 2021 – April 12-16, 2021 – [Online]
Let us know if you have suggestions for next week, and enjoy today's videos.

Samsung announced some new prototype robots at CES this week. It's a fancy video, but my guess is that the actual autonomy here is minimal at best.

[ Samsung ]

Some very impressive reactive agility from Ghost Robotics' little quadruped.

[ Ghost Robotics ]

Toyota Research Institute (TRI) is researching how to bring together the instinctive reflexes of professional drivers and automated driving technology that uses the calculated foresight of a supercomputer. Using a Toyota GR Supra, TRI will learn from some of the most skilled drivers in the world to develop sophisticated vehicle control algorithms. The project’s goal is to design a new level of active safety technology for the Toyota Guardian™ approach of amplifying human driving abilities and helping keep people safe.

[ TRI ]

The end of this video features one of the most satisfying-sounding drone outtakes I've ever heard,

[ ASL ]

Reachy can now run the first humanoid VR teleoperation app available on the market. This app allows you to place yourself in the body of a humanoid robot, in VR, wherever you are in the world, to remotely operate it and carry out complex tasks. With this new functionality, Reachy is able to learn from the demonstration of the humans who control it, which makes application development even easier.

[ Pollen Robotics ]

Thanks Elsa!

Boston Dynamics has inspired some dancing robot videos recently, including this from Marco Tempest.

[ Marco Tempest ]

MOFLIN is an AI Pet created from a totally new concept. It possesses emotional capabilities that evolve like living animals. With its warm soft fur, cute sounds, and adorable movement, you’d want to love it forever. We took a nature inspired approach and developed a unique algorithm that allows MOFLIN to learn and grow by constantly using its interactions to determine patterns and evaluate its surroundings from its sensors. MOFLIN will choose from an infinite number of mobile and sound pattern combinations to respond and express its feelings. To put it in simple terms, it’s like you’re interacting with a living pet.

I like the minimalist approach. I dislike the “it’s like you’re interacting with a living pet” bit.

[ Kickstarter ]

There's a short gif of these warehouse robots going around, but here's the full video.

[ BionicHIVE ]

Vstone's Robovie-Z proves that you don't need fancy hardware for effective teleworking.

[ Vstone ]

All dual-arm robots are required, at some point, to play pool.

[ ABB ]

Volkswagen Group Components gives us a first glimpse of the real prototypes. This is one of the visionary charging concepts that Volkswagen hopes will expand the charging infrastructure over the next few years. Its task: fully autonomous charging of vehicles in restricted parking areas, like underground car parks.

To charge several vehicles at the same time, the mobile robot moves a trailer, essentially a mobile energy storage unit, to the vehicle, connects it up and then uses this energy storage unit to charge the battery of the electric vehicle. The energy storage unit stays with the vehicle during the charging process. In the meantime, the robot charges other electric vehicles.

[ Volkswagen ]

I've got a lot of questions about Moley Robotics' kitchen. But I would immediately point out that the system appears to do no prep work, which (at least for me) is the time-consuming and stressful part of cooking.

[ Moley Robotics ]

Blueswarm is a collective of fish-inspired miniature underwater robots that can achieve a wide variety of 3D collective behaviors – synchrony, aggregation/dispersion, milling, search – using only implicit communication mediated through the production and sensing of blue light. We envision this platform for investigating collective AI, underwater coordination, and fish-inspired locomotion and sensing.

[ Science Robotics ]

A team of Malaysian researchers are transforming pineapple leaves into strong materials that can be used to build frames for unmanned aircraft or drones.

[ Reuters ]

The future of facility disinfecting is here, protect your customers, and create peace of mind. Our drone sanitization spraying technology is up to 100% more efficient and effective than conventional manual spray sterilization processes.

[ Draganfly ]

Robots are no long a future technology, as small robots can be purchased today to be utilized for educational purposes. See what goes into making a modern robot come to life.

[ Huggbees ]

How does a robot dog learn how to dance? Adam and the Tested team examine and dive into Boston Dynamics' Choreographer software that was behind Spot's recent viral dancing video.

[ Tested ]

For years, engineers have had to deal with “the tyranny of the fairing,” that anything you want to send into space has to fit into the protective nosecone on top of the rocket. A field of advanced design has been looking for new ways to improve our engineering, using the centuries-old artform to dream bigger.

[ JPL ] Continue reading

Posted in Human Robots

#437964 How Explainable Artificial Intelligence ...

The field of artificial intelligence has created computers that can drive cars, synthesize chemical compounds, fold proteins, and detect high-energy particles at a superhuman level.

However, these AI algorithms cannot explain the thought processes behind their decisions. A computer that masters protein folding and also tells researchers more about the rules of biology is much more useful than a computer that folds proteins without explanation.

Therefore, AI researchers like me are now turning our efforts toward developing AI algorithms that can explain themselves in a manner that humans can understand. If we can do this, I believe that AI will be able to uncover and teach people new facts about the world that have not yet been discovered, leading to new innovations.

Learning From Experience
One field of AI, called reinforcement learning, studies how computers can learn from their own experiences. In reinforcement learning, an AI explores the world, receiving positive or negative feedback based on its actions.

This approach has led to algorithms that have independently learned to play chess at a superhuman level and prove mathematical theorems without any human guidance. In my work as an AI researcher, I use reinforcement learning to create AI algorithms that learn how to solve puzzles such as the Rubik’s Cube.

Through reinforcement learning, AIs are independently learning to solve problems that even humans struggle to figure out. This has got me and many other researchers thinking less about what AI can learn and more about what humans can learn from AI. A computer that can solve the Rubik’s Cube should be able to teach people how to solve it, too.

Peering Into the Black Box
Unfortunately, the minds of superhuman AIs are currently out of reach to us humans. AIs make terrible teachers and are what we in the computer science world call “black boxes.”

AI simply spits out solutions without giving reasons for its solutions. Computer scientists have been trying for decades to open this black box, and recent research has shown that many AI algorithms actually do think in ways that are similar to humans. For example, a computer trained to recognize animals will learn about different types of eyes and ears and will put this information together to correctly identify the animal.

The effort to open up the black box is called explainable AI. My research group at the AI Institute at the University of South Carolina is interested in developing explainable AI. To accomplish this, we work heavily with the Rubik’s Cube.

The Rubik’s Cube is basically a pathfinding problem: Find a path from point A—a scrambled Rubik’s Cube—to point B—a solved Rubik’s Cube. Other pathfinding problems include navigation, theorem proving and chemical synthesis.

My lab has set up a website where anyone can see how our AI algorithm solves the Rubik’s Cube; however, a person would be hard-pressed to learn how to solve the cube from this website. This is because the computer cannot tell you the logic behind its solutions.

Solutions to the Rubik’s Cube can be broken down into a few generalized steps—the first step, for example, could be to form a cross while the second step could be to put the corner pieces in place. While the Rubik’s Cube itself has over 10 to the 19th power possible combinations, a generalized step-by-step guide is very easy to remember and is applicable in many different scenarios.

Approaching a problem by breaking it down into steps is often the default manner in which people explain things to one another. The Rubik’s Cube naturally fits into this step-by-step framework, which gives us the opportunity to open the black box of our algorithm more easily. Creating AI algorithms that have this ability could allow people to collaborate with AI and break down a wide variety of complex problems into easy-to-understand steps.

A step-by-step refinement approach can make it easier for humans to understand why AIs do the things they do. Forest Agostinelli, CC BY-ND

Collaboration Leads to Innovation
Our process starts with using one’s own intuition to define a step-by-step plan thought to potentially solve a complex problem. The algorithm then looks at each individual step and gives feedback about which steps are possible, which are impossible and ways the plan could be improved. The human then refines the initial plan using the advice from the AI, and the process repeats until the problem is solved. The hope is that the person and the AI will eventually converge to a kind of mutual understanding.

Currently, our algorithm is able to consider a human plan for solving the Rubik’s Cube, suggest improvements to the plan, recognize plans that do not work and find alternatives that do. In doing so, it gives feedback that leads to a step-by-step plan for solving the Rubik’s Cube that a person can understand. Our team’s next step is to build an intuitive interface that will allow our algorithm to teach people how to solve the Rubik’s Cube. Our hope is to generalize this approach to a wide range of pathfinding problems.

People are intuitive in a way unmatched by any AI, but machines are far better in their computational power and algorithmic rigor. This back and forth between man and machine utilizes the strengths from both. I believe this type of collaboration will shed light on previously unsolved problems in everything from chemistry to mathematics, leading to new solutions, intuitions and innovations that may have, otherwise, been out of reach.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: Serg Antonov / Unsplash Continue reading

Posted in Human Robots

#437924 How a Software Map of the Entire Planet ...

i
“3D map data is the scaffolding of the 21st century.”

–Edward Miller, Founder, Scape Technologies, UK

Covered in cameras, sensors, and a distinctly spaceship looking laser system, Google’s autonomous vehicles were easy to spot when they first hit public roads in 2015. The key hardware ingredient is a spinning laser fixed to the roof, called lidar, which provides the car with a pair of eyes to see the world. Lidar works by sending out beams of light and measuring the time it takes to bounce off objects back to the source. By timing the light’s journey, these depth-sensing systems construct fully 3D maps of their surroundings.

3D maps like these are essentially software copies of the real world. They will be crucial to the development of a wide range of emerging technologies including autonomous driving, drone delivery, robotics, and a fast-approaching future filled with augmented reality.

Like other rapidly improving technologies, lidar is moving quickly through its development cycle. What was an expensive technology on the roof of a well-funded research project is now becoming cheaper, more capable, and readily available to consumers. At some point, lidar will come standard on most mobile devices and is now available to early-adopting owners of the iPhone 12 Pro.

Consumer lidar represents the inevitable shift from wealthy tech companies generating our world’s map data, to a more scalable crowd-sourced approach. To develop the repository for their Street View Maps product, Google reportedly spent $1-2 billion sending cars across continents photographing every street. Compare that to a live-mapping service like Waze, which uses crowd-sourced user data from its millions of users to generate accurate and real-time traffic conditions. Though these maps serve different functions, one is a static, expensive, unchanging map of the world while the other is dynamic, real-time, and constructed by users themselves.

Soon millions of people may be scanning everything from bedrooms to neighborhoods, resulting in 3D maps of significant quality. An online search for lidar room scans demonstrates just how richly textured these three-dimensional maps are compared to anything we’ve had before. With lidar and other depth-sensing systems, we now have the tools to create exact software copies of everywhere and everything on earth.

At some point, likely aided by crowdsourcing initiatives, these maps will become living breathing, real-time representations of the world. Some refer to this idea as a “digital twin” of the planet. In a feature cover story, Kevin Kelly, the cofounder of Wired magazine, calls this concept the “mirrorworld,” a one-to-one software map of everything.

So why is that such a big deal? Take augmented reality as an example.

Of all the emerging industries dependent on such a map, none are more invested in seeing this concept emerge than those within the AR landscape. Apple, for example, is not-so-secretly developing a pair of AR glasses, which they hope will deliver a mainstream turning point for the technology.

For Apple’s AR devices to work as anticipated, they will require virtual maps of the world, a concept AR insiders call the “AR cloud,” which is synonymous with the “mirrorworld” concept. These maps will be two things. First, they will be a tool that creators use to place AR content in very specific locations; like a world canvas to paint on. Second, they will help AR devices both locate and understand the world around them so they can render content in a believable way.

Imagine walking down a street wanting to check the trading hours of a local business. Instead of pulling out your phone to do a tedious search online, you conduct the equivalent of a visual google search simply by gazing at the store. Albeit a trivial example, the AR cloud represents an entirely non-trivial new way of managing how we organize the world’s information. Access to knowledge can be shifted away from the faraway monitors in our pocket, to its relevant real-world location.

Ultimately this describes a blurring of physical and digital infrastructure. Our public and private spaces will thus be comprised equally of both.

No example demonstrates this idea better than Pokémon Go. The game is straightforward enough; users capture virtual characters scattered around the real world. Today, the game relies on traditional GPS technology to place its characters, but GPS is accurate only to within a few meters of a location. For a car navigating on a highway or locating Pikachus in the world, that level of precision is sufficient. For drone deliveries, driverless cars, or placing a Pikachu in a specific location, say on a tree branch in a park, GPS isn’t accurate enough. As astonishing as it may seem, many experimental AR cloud concepts, even entirely mapped cities, are location specific down to the centimeter.

Niantic, the $4 billion publisher behind Pokémon Go, is aggressively working on developing a crowd-sourced approach to building better AR Cloud maps by encouraging their users to scan the world for them. Their recent acquisition of 6D.ai, a mapping software company developed by the University of Oxford’s Victor Prisacariu through his work at Oxford’s Active Vision Lab, indicates Niantic’s ambition to compete with the tech giants in this space.

With 6D.ai’s technology, Niantic is developing the in-house ability to generate their own 3D maps while gaining better semantic understanding of the world. By going beyond just knowing there’s a temporary collection of orange cones in a certain location, for example, the game may one day understand the meaning behind this; that a temporary construction zone means no Pokémon should spawn here to avoid drawing players to this location.

Niantic is not the only company working on this. Many of the big tech firms you would expect have entire teams focused on map data. Facebook, for example, recently acquired the UK-based Scape technologies, a computer vision startup mapping entire cities with centimeter precision.

As our digital maps of the world improve, expect a relentless and justified discussion of privacy concerns as well. How will society react to the idea of a real-time 3D map of their bedroom living on a Facebook or Amazon server? Those horrified by the use of facial recognition AI being used in public spaces are unlikely to find comfort in the idea of a machine-readable world subject to infinite monitoring.

The ability to build high-precision maps of the world could reshape the way we engage with our planet and promises to be one of the biggest technology developments of the next decade. While these maps may stay hidden as behind-the-scenes infrastructure powering much flashier technologies that capture the world’s attention, they will soon prop up large portions of our technological future.

Keep that in mind when a car with no driver is sharing your road.

Image credit: sergio souza / Pexels Continue reading

Posted in Human Robots

#437896 Solar-based Electronic Skin Generates ...

Replicating the human sense of touch is complicated—electronic skins need to be flexible, stretchable, and sensitive to temperature, pressure and texture; they need to be able to read biological data and provide electronic readouts. Therefore, how to power electronic skin for continuous, real-time use is a big challenge.

To address this, researchers from Glasgow University have developed an energy-generating e-skin made out of miniaturized solar cells, without dedicated touch sensors. The solar cells not only generate their own power—and some surplus—but also provide tactile capabilities for touch and proximity sensing. An early-view paper of their findings was published in IEEE Transactions on Robotics.

When exposed to a light source, the solar cells on the s-skin generate energy. If a cell is shadowed by an approaching object, the intensity of the light, and therefore the energy generated, reduces, dropping to zero when the cell makes contact with the object, confirming touch. In proximity mode, the light intensity tells you how far the object is with respect to the cell. “In real time, you can then compare the light intensity…and after calibration find out the distances,” says Ravinder Dahiya of the Bendable Electronics and Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, where the study was carried out. The team used infra-red LEDs with the solar cells for proximity sensing for better results.

To demonstrate their concept, the researchers wrapped a generic 3D-printed robotic hand in their solar skin, which was then recorded interacting with its environment. The proof-of-concept tests showed an energy surplus of 383.3 mW from the palm of the robotic arm. “The eSkin could generate more than 100 W if present over the whole body area,” they reported in their paper.

“If you look at autonomous, battery-powered robots, putting an electronic skin [that] is consuming energy is a big problem because then it leads to reduced operational time,” says Dahiya. “On the other hand, if you have a skin which generates energy, then…it improves the operational time because you can continue to charge [during operation].” In essence, he says, they turned a challenge—how to power the large surface area of the skin—into an opportunity—by turning it into an energy-generating resource.

Dahiya envisages numerous applications for BEST’s innovative e-skin, given its material-integrated sensing capabilities, apart from the obvious use in robotics. For instance, in prosthetics: “[As] we are using [a] solar cell as a touch sensor itself…we are also [making it] less bulkier than other electronic skins.” This, he adds, will help create prosthetics that are of optimal weight and size, thus making it easier for prosthetics users. “If you look at electronic skin research, the the real action starts after it makes contact… Solar skin is a step ahead, because it will start to work when the object is approaching…[and] have more time to prepare for action.” This could effectively reduce the time lag that is often seen in brain–computer interfaces.

There are also possibilities in the automation sector, particularly in electrical and interactive vehicles. A car covered with solar e-skin, because of its proximity-sensing capabilities, would be able to “see” an approaching obstacle or a person. It isn’t “seeing” in the biological sense, Dahiya clarifies, but from the point of view of a machine. This can be integrated with other objects, not just cars, for a variety of uses. “Gestures can be recognized as well…[which] could be used for gesture-based control…in gaming or in other sectors.”

In the lab, tests were conducted with a single source of white light at 650 lux, but Dahiya feels there are interesting possibilities if they could work with multiple light sources that the e-skin could differentiate between. “We are exploring different AI techniques [for that],” he says, “processing the data in an innovative way [so] that we can identify the the directions of the light sources as well as the object.”

The BEST team’s achievement brings us closer to a flexible, self-powered, cost-effective electronic skin that can touch as well as “see.” At the moment, however, there are still some challenges. One of them is flexibility. In their prototype, they used commercial solar cells made of amorphous silicon, each 1cm x 1cm. “They are not flexible, but they are integrated on a flexible substrate,” Dahiya says. “We are currently exploring nanowire-based solar cells…[with which] we we hope to achieve good performance in terms of energy as well as sensing functionality.” Another shortcoming is what Dahiya calls “the integration challenge”—how to make the solar skin work with different materials. Continue reading

Posted in Human Robots