Tag Archives: Light

#438886 This Week’s Awesome Tech Stories From ...

ARTIFICIAL INTELLIGENCE
This Chip for AI Works Using Light, Not Electrons
Will Knight | Wired
“As demand for artificial intelligence grows, so does hunger for the computer power needed to keep AI running. Lightmatter, a startup born at MIT, is betting that AI’s voracious hunger will spawn demand for a fundamentally different kind of computer chip—one that uses light to perform key calculations. ‘Either we invent new kinds of computers to continue,’ says Lightmatter CEO Nick Harris, ‘or AI slows down.’i”

BIOTECH
With This CAD for Genomes, You Can Design New Organisms
Eliza Strickland | IEEE Spectrum
“Imagine being able to design a new organism as easily as you can design a new integrated circuit. That’s the ultimate vision behind the computer-aided design (CAD) program being developed by the GP-write consortium. ‘We’re taking the same things we’d do for design automation in electronics, and applying them to biology,’ says Doug Densmore, an associate professor of electrical and computer engineering at Boston University.”

BIOLOGY
Hey, So These Sea Slugs Decapitate Themselves and Grow New Bodies
Matt Simon | Wired
“That’s right: It pulled a Deadpool. Just a few hours after its self-decapitation, the head began dragging itself around to feed. After a day, the neck wound had closed. After a week, it started to regenerate a heart. In less than a month, the whole body had grown back, and the disembodied slug was embodied once more.”

INTERNET
Move Over, Deep Nostalgia, This AI App Can Make Kim Jong-un Sing ‘I Will Survive’
Helen Sullivan | The Guardian
“If you’ve ever wanted to know what it might be like to see Kim Jong-un let loose at karaoke, your wish has been granted, thanks to an app that lets users turn photographs of anyone—or anything remotely resembling a face—into uncanny AI-powered videos of them lip syncing famous songs.”

ENERGY
GM Unveils Plans for Lithium-Metal Batteries That Could Boost EV Range
Steve Dent | Engadget
“GM has released more details about its next-generation Ultium batteries, including plans for lithium-metal (Li-metal) technology to boost performance and energy density. The automaker announced that it has signed an agreement to work with SolidEnergy Systems (SES), an MIT spinoff developing prototype Li-metal batteries with nearly double the capacity of current lithium-ion cells.”

TECHNOLOGY
Xi’s Gambit: China Plans for a World Without American Technology
Paul Mozur and Steven Lee Myers | The New York Times
“China is freeing up tens of billions of dollars for its tech industry to borrow. It is cataloging the sectors where the United States or others could cut off access to crucial technologies. And when its leaders released their most important economic plans last week, they laid out their ambitions to become an innovation superpower beholden to none.”

SCIENCE
Imaginary Numbers May Be Essential for Describing Reality
Charlie Wood | Wired
“…physicists may have just shown for the first time that imaginary numbers are, in a sense, real. A group of quantum theorists designed an experiment whose outcome depends on whether nature has an imaginary side. Provided that quantum mechanics is correct—an assumption few would quibble with—the team’s argument essentially guarantees that complex numbers are an unavoidable part of our description of the physical universe.”

PHILOSOPHY
What Is Life? Its Vast Diversity Defies Easy Definition
Carl Zimmer | Quanta
“i‘It is commonly said,’ the scientists Frances Westall and André Brack wrote in 2018, ‘that there are as many definitions of life as there are people trying to define it.’ …As an observer of science and of scientists, I find this behavior strange. It is as if astronomers kept coming up with new ways to define stars. …With scientists adrift in an ocean of definitions, philosophers rowed out to offer lifelines.”

Image Credit: Kir Simakov / Unsplash Continue reading

Posted in Human Robots

#438807 Visible Touch: How Cameras Can Help ...

The dawn of the robot revolution is already here, and it is not the dystopian nightmare we imagined. Instead, it comes in the form of social robots: Autonomous robots in homes and schools, offices and public spaces, able to interact with humans and other robots in a socially acceptable, human-perceptible way to resolve tasks related to core human needs.

To design social robots that “understand” humans, robotics scientists are delving into the psychology of human communication. Researchers from Cornell University posit that embedding the sense of touch in social robots could teach them to detect physical interactions and gestures. They describe a way of doing so by relying not on touch but on vision.

A USB camera inside the robot captures shadows of hand gestures on the robot’s surface and classifies them with machine-learning software. They call this method ShadowSense, which they define as a modality between vision and touch, bringing “the high resolution and low cost of vision-sensing to the close-up sensory experience of touch.”

Touch-sensing in social or interactive robots is usually achieved with force sensors or capacitive sensors, says study co-author Guy Hoffman of the Sibley School of Mechanical and Aerospace Engineering at Cornell University. The drawback to his group’s approach has been that, even to achieve coarse spatial resolution, many sensors are needed in a small area.

However, working with non-rigid, inflatable robots, Hoffman and his co-researchers installed a consumer-grade USB camera to which they attached a fisheye lens for a wider field of vision.

“Given that the robot is already hollow, and has a soft and translucent skin, we could do touch interaction by looking at the shadows created by people touching the robot,” says Hoffman. They used deep neural networks to interpret the shadows. “And we were able to do it with very high accuracy,” he says. The robot was able to interpret six different gestures, including one- or two-handed touch, pointing, hugging and punching, with an accuracy of 87.5 to 96 percent, depending on the lighting.

This is not the first time that computer vision has been used for tactile sensing, though the scale and application of ShadowSense is unique. “Photography has been used for touch mainly in robotic grasping,” says Hoffman. By contrast, Hoffman and collaborators wanted to develop a sense that could be “felt” across the whole of the device.

The potential applications for ShadowSense include mobile robot guidance using touch, and interactive screens on soft robots. A third concerns privacy, especially in home-based social robots. “We have another paper currently under review that looks specifically at the ability to detect gestures that are further away [from the robot’s skin],” says Hoffman. This way, users would be able to cover their robot’s camera with a translucent material and still allow it to interpret actions and gestures from shadows. Thus, even though it’s prevented from capturing a high-resolution image of the user or their surrounding environment, using the right kind of training datasets, the robot can continue to monitor some kinds of non-tactile activities.

In its current iteration, Hoffman says, ShadowSense doesn’t do well in low-light conditions. Environmental noise, or shadows from surrounding objects, also interfere with image classification. Relying on one camera also means a single point of failure. “I think if this were to become a commercial product, we would probably [have to] work a little bit better on image detection,” says Hoffman.

As it was, the researchers used transfer learning—reusing a pre-trained deep-learning model in a new problem—for image analysis. “One of the problems with multi-layered neural networks is that you need a lot of training data to make accurate predictions,” says Hoffman. “Obviously, we don’t have millions of examples of people touching a hollow, inflatable robot. But we can use pre-trained networks trained on general images, which we have billions of, and we only retrain the last layers of the network using our own dataset.” Continue reading

Posted in Human Robots

#438749 Folding Drone Can Drop Into Inaccessible ...

Inspecting old mines is a dangerous business. For humans, mines can be lethal: prone to rockfalls and filled with noxious gases. Robots can go where humans might suffocate, but even robots can only do so much when mines are inaccessible from the surface.

Now, researchers in the UK, led by Headlight AI, have developed a drone that could cast a light in the darkness. Named Prometheus, this drone can enter a mine through a borehole not much larger than a football, before unfurling its arms and flying around the void. Once down there, it can use its payload of scanning equipment to map mines where neither humans nor robots can presently go. This, the researchers hope, could make mine inspection quicker and easier. The team behind Prometheus published its design in November in the journal Robotics.

Mine inspection might seem like a peculiarly specific task to fret about, but old mines can collapse, causing the ground to sink and damaging nearby buildings. It’s a far-reaching threat: the geotechnical engineering firm Geoinvestigate, based in Northeast England, estimates that around 8 percent of all buildings in the UK are at risk from any of the thousands of abandoned coal mines near the country’s surface. It’s also a threat to transport, such as road and rail. Indeed, Prometheus is backed by Network Rail, which operates Britain’s railway infrastructure.

Such grave dangers mean that old mines need periodic check-ups. To enter depths that are forbidden to traditional wheeled robots—such as those featured in the DARPA SubT Challenge—inspectors today drill boreholes down into the mine and lower scanners into the darkness.

But that can be an arduous and often fruitless process. Inspecting the entirety of a mine can take multiple boreholes, and that still might not be enough to chart a complete picture. Mines are jagged, labyrinthine places, and much of the void might lie out of sight. Furthermore, many old mines aren’t well-mapped, so it’s hard to tell where best to enter them.

Prometheus can fly around some of those challenges. Inspectors can lower Prometheus, tethered to a docking apparatus, down a single borehole. Once inside the mine, the drone can undock and fly around, using LIDAR scanners—common in mine inspection today—to generate a 3D map of the unknown void. Prometheus can fly through the mine autonomously, using infrared data to plot out its own course.

Other drones exist that can fly underground, but they’re either too small to carry a relatively heavy payload of scanning equipment, or too large to easily fit down a borehole. What makes Prometheus unique is its ability to fold its arms, allowing it to squeeze down spaces its counterparts cannot.

It’s that ability to fold and enter a borehole that makes Prometheus remarkable, says Jason Gross, a professor of mechanical and aerospace engineering at West Virginia University. Gross calls Prometheus “an exciting idea,” but he does note that it has a relatively short flight window and few abilities beyond scanning.

The researchers have conducted a number of successful test flights, both in a basement and in an old mine near Shrewsbury, England. Not only was Prometheus able to map out its space, the drone was able to plot its own course in an unknown area.

The researchers’ next steps, according to Puneet Chhabra, co-founder of Headlight AI, will be to test Prometheus’s ability to unfold in an actual mine. Following that, researchers plan to conduct full-scale test flights by the end of 2021. Continue reading

Posted in Human Robots

#438553 New Drone Software Handles Motor ...

Good as some drones are becoming at obstacle avoidance, accidents do still happen. And as far as robots go, drones are very much on the fragile side of things. Any sort of significant contact between a drone and almost anything else usually results in a catastrophic, out-of-control spin followed by a death plunge to the ground. Bad times. Bad, expensive times.

A few years ago, we saw some interesting research into software that can keep the most common drone form factor, the quadrotor, aloft and controllable even after the failure of one motor. The big caveat to that software was that it relied on GPS for state estimation, meaning that without a GPS signal, the drone is unable to get the information it needs to keep itself under control. In a paper recently accepted to RA-L, researchers at the University of Zurich report that they have developed a vision-based system that brings state estimation completely on-board. The upshot: potentially any drone with some software and a camera can keep itself safe even under the most challenging conditions.

A few years ago, we wrote about first author Sihao Sun’s work on high speed controlled flight of a quadrotor with a non-functional motor. But that innovation relied on an external motion capture system. Since then, Sun has moved from Tu Delft to Davide Scaramuzza’s lab at UZH, and it looks like he’s been able to combine his work on controlled spinning flight with the Robotics and Perception Group’s expertise in vision. Now, a downward-facing camera is all it takes for a spinning drone to remain stable and controllable:

Remember, this software isn’t just about guarding against motor failure. Drone motors themselves don’t just up and fail all that often, either with respect to their software or hardware. But they do represent the most likely point of failure for any drone, usually because when you run into something, what ultimately causes your drone to crash is damage to a motor or a propeller that causes loss of control.

The reason that earlier solutions relied on GPS was because the spinning drone needs a method of state estimation—that is, in order to be closed-loop controllable, the drone needs to have a reasonable understanding of what its position is and how that position is changing over time. GPS is an easy way to take care of this, but GPS is also an external system that doesn’t work everywhere. Having a state estimation system that’s completely internal to the drone itself is much more fail safe, and Sun got his onboard system to work through visual feature tracking with a downward-facing camera, even as the drone is spinning at over 20 rad/s.

While the system works well enough with a regular downward-facing camera—something that many consumer drones are equipped with for stabilization purposes—replacing it with an event camera (you remember event cameras, right?) makes the performance even better, especially in low light.

For more details on this, including what you’re supposed to do with a rapidly spinning partially disabled quadrotor (as well as what it’ll take to make this a standard feature on consumer hardware), we spoke with Sihao Sun via email.

IEEE Spectrum: what usually happens when a drone spinning this fast lands? Is there any way to do it safely?

Sihao Sun: Our experience shows that we can safely land the drone while it is spinning. When the range sensor measurements are lower than a threshold (around 10 cm, indicating that the drone is close to the ground), we switch off the rotors. During the landing procedure, despite the fast spinning motion, the thrust direction oscillates around the gravity vector, thus the drone touches the ground with its legs without damaging other components.

Can your system handle more than one motor failure?

Yes, the system can also handle the failure of two opposing rotors. However, if two adjacent rotors or more than two rotors fail, our method cannot save the quadrotor. Some research has shown that it is possible to control a quadrotor with only one remaining rotor. But the drone requires a very special inertial property, which is hard to satisfy in real applications.

How different is your system's performance from a similar system that relies on GPS, in a favorable environment?

In a favorable environment, our system outperforms those relying on GPS signals because it obtains better position estimates. Since a damaged quadrotor spins fast, the accelerometer readings are largely affected by centrifugal forces. When the GPS signal is lost or degraded, a drone relying on GPS needs to integrate these biased accelerometer measurements for position estimation, leading to large position estimation errors. Feeding these erroneous estimates to the flight controller can easily crash the drone.

When you say that your solution requires “only onboard sensors and computation,” are those requirements specialized, or would they be generally compatible with the current generation of recreational and commercial quadrotors?

We use an NVIDIA Jetson TX2 to run our solution, which includes two parts: the control algorithm and the vision-based state estimation algorithm. The control algorithm is lightweight; thus, we believe that it is compatible with the current generation of quadrotors. On the other hand, the vision-based state estimation requires relatively more computational resources, which may not be affordable for cheap recreational platforms. But this is not an issue for commercial quadrotors because many of them have more powerful processors than a TX2.

What else can event cameras be used for, in recreational or commercial applications?

Many drone applications can benefit from event cameras, especially those in high-speed or low-light conditions, such as autonomous drone racing, cave exploration, drone delivery during night time, etc. Event cameras also consume very little power, which is a significant advantage for energy-critical missions, such as planetary aerial vehicles for Mars explorations. Regarding space applications, we are currently collaborating with JPL to explore the use of event cameras to address the key limitations of standard cameras for the next Mars helicopter.

[ UZH RPG ] Continue reading

Posted in Human Robots

#438014 Meet Blueswarm, a Smart School of ...

Anyone who’s seen an undersea nature documentary has marveled at the complex choreography that schooling fish display, a darting, synchronized ballet with a cast of thousands.

Those instinctive movements have inspired researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), and the Wyss Institute for Biologically Inspired Engineering. The results could improve the performance and dependability of not just underwater robots, but other vehicles that require decentralized locomotion and organization, such as self-driving cars and robotic space exploration.

The fish collective called Blueswarm was created by a team led by Radhika Nagpal, whose lab is a pioneer in self-organizing systems. The oddly adorable robots can sync their movements like biological fish, taking cues from their plastic-bodied neighbors with no external controls required. Nagpal told IEEE Spectrum that this marks a milestone, demonstrating complex 3D behaviors with implicit coordination in underwater robots.

“Insights from this research will help us develop future miniature underwater swarms that can perform environmental monitoring and search in visually-rich but fragile environments like coral reefs,” Nagpal said. “This research also paves a way to better understand fish schools, by synthetically recreating their behavior.”

The research is published in Science Robotics, with Florian Berlinger as first author. Berlinger said the “Bluedot” robots integrate a trio of blue LED lights, a lithium-polymer battery, a pair of cameras, a Raspberry Pi computer and four controllable fins within a 3D-printed hull. The fish-lens cameras detect LED’s of their fellow swimmers, and apply a custom algorithm to calculate distance, direction and heading.

Based on that simple production and detection of LED light, the team proved that Blueswarm could self-organize behaviors, including aggregation, dispersal and circle formation—basically, swimming in a clockwise synchronization. Researchers also simulated a successful search mission, an autonomous Finding Nemo. Using their dispersion algorithm, the robot school spread out until one could detect a red light in the tank. Its blue LEDs then flashed, triggering the aggregation algorithm to gather the school around it. Such a robot swarm might prove valuable in search-and-rescue missions at sea, covering miles of open water and reporting back to its mates.

“Each Bluebot implicitly reacts to its neighbors’ positions,” Berlinger said. The fish—RoboCod, perhaps?—also integrate a Wifi module to allow uploading new behaviors remotely. The lab’s previous efforts include a 1,000-strong army of “Kilobots,” and a robotic construction crew inspired by termites. Both projects operated in two-dimensional space. But a 3D environment like air or water posed a tougher challenge for sensing and movement.

In nature, Berlinger notes, there’s no scaly CEO to direct the school’s movements. Nor do fish communicate their intentions. Instead, so-called “implicit coordination” guides the school’s collective behavior, with individual members executing high-speed moves based on what they see their neighbors doing. That decentralized, autonomous organization has long fascinated scientists, including in robotics.

“In these situations, it really benefits you to have a highly autonomous robot swarm that is self-sufficient. By using implicit rules and 3D visual perception, we were able to create a system with a high degree of autonomy and flexibility underwater where things like GPS and WiFi are not accessible.”

Berlinger adds the research could one day translate to anything that requires decentralized robots, from self-driving cars and Amazon warehouse vehicles to exploration of faraway planets, where poor latency makes it impossible to transmit commands quickly. Today’s semi-autonomous cars face their own technical hurdles in reliably sensing and responding to their complex environments, including when foul weather obscures onboard sensors or road markers, or when they can’t fix position via GPS. An entire subset of autonomous-car research involves vehicle-to-vehicle (V2V) communications that could give cars a hive mind to guide individual or collective decisions— avoiding snarled traffic, driving safely in tight convoys, or taking group evasive action during a crash that’s beyond their sensory range.

“Once we have millions of cars on the road, there can’t be one computer orchestrating all the traffic, making decisions that work for all the cars,” Berlinger said.

The miniature robots could also work long hours in places that are inaccessible to humans and divers, or even large tethered robots. Nagpal said the synthetic swimmers could monitor and collect data on reefs or underwater infrastructure 24/7, and work into tiny places without disturbing fragile equipment or ecosystems.

“If we could be as good as fish in that environment, we could collect information and be non-invasive, in cluttered environments where everything is an obstacle,” Nagpal said. Continue reading

Posted in Human Robots