Tag Archives: less
#436470 Retail Robots Are on the Rise—at Every ...
The robots are coming! The robots are coming! On our sidewalks, in our skies, in our every store… Over the next decade, robots will enter the mainstream of retail.
As countless robots work behind the scenes to stock shelves, serve customers, and deliver products to our doorstep, the speed of retail will accelerate.
These changes are already underway. In this blog, we’ll elaborate on how robots are entering the retail ecosystem.
Let’s dive in.
Robot Delivery
On August 3rd, 2016, Domino’s Pizza introduced the Domino’s Robotic Unit, or “DRU” for short. The first home delivery pizza robot, the DRU looks like a cross between R2-D2 and an oversized microwave.
LIDAR and GPS sensors help it navigate, while temperature sensors keep hot food hot and cold food cold. Already, it’s been rolled out in ten countries, including New Zealand, France, and Germany, but its August 2016 debut was critical—as it was the first time we’d seen robotic home delivery.
And it won’t be the last.
A dozen or so different delivery bots are fast entering the market. Starship Technologies, for instance, a startup created by Skype founders Janus Friis and Ahti Heinla, has a general-purpose home delivery robot. Right now, the system is an array of cameras and GPS sensors, but upcoming models will include microphones, speakers, and even the ability—via AI-driven natural language processing—to communicate with customers. Since 2016, Starship has already carried out 50,000 deliveries in over 100 cities across 20 countries.
Along similar lines, Nuro—co-founded by Jiajun Zhu, one of the engineers who helped develop Google’s self-driving car—has a miniature self-driving car of its own. Half the size of a sedan, the Nuro looks like a toaster on wheels, except with a mission. This toaster has been designed to carry cargo—about 12 bags of groceries (version 2.0 will carry 20)—which it’s been doing for select Kroger stores since 2018. Domino’s also partnered with Nuro in 2019.
As these delivery bots take to our streets, others are streaking across the sky.
Back in 2016, Amazon came first, announcing Prime Air—the e-commerce giant’s promise of drone delivery in 30 minutes or less. Almost immediately, companies ranging from 7-Eleven and Walmart to Google and Alibaba jumped on the bandwagon.
While critics remain doubtful, the head of the FAA’s drone integration department recently said that drone deliveries may be “a lot closer than […] the skeptics think. [Companies are] getting ready for full-blown operations. We’re processing their applications. I would like to move as quickly as I can.”
In-Store Robots
While delivery bots start to spare us trips to the store, those who prefer shopping the old-fashioned way—i.e., in person—also have plenty of human-robot interaction in store. In fact, these robotics solutions have been around for a while.
In 2010, SoftBank introduced Pepper, a humanoid robot capable of understanding human emotion. Pepper is cute: 4 feet tall, with a white plastic body, two black eyes, a dark slash of a mouth, and a base shaped like a mermaid’s tail. Across her chest is a touch screen to aid in communication. And there’s been a lot of communication. Pepper’s cuteness is intentional, as it matches its mission: help humans enjoy life as much as possible.
Over 12,000 Peppers have been sold. She serves ice cream in Japan, greets diners at a Pizza Hut in Singapore, and dances with customers at a Palo Alto electronics store. More importantly, Pepper’s got company.
Walmart uses shelf-stocking robots for inventory control. Best Buy uses a robo-cashier, allowing select locations to operate 24-7. And Lowe’s Home Improvement employs the LoweBot—a giant iPad on wheels—to help customers find the items they need while tracking inventory along the way.
Warehouse Bots
Yet the biggest benefit robots provide might be in-warehouse logistics.
In 2012, when Amazon dished out $775 million for Kiva Systems, few could predict that just 6 years later, 45,000 Kiva robots would be deployed at all of their fulfillment centers, helping process a whopping 306 items per second during the Christmas season.
And many other retailers are following suit.
Order jeans from the Gap, and soon they’ll be sorted, packed, and shipped with the help of a Kindred robot. Remember the old arcade game where you picked up teddy bears with a giant claw? That’s Kindred, only her claw picks up T-shirts, pants, and the like, placing them in designated drop-off zones that resemble tiny mailboxes (for further sorting or shipping).
The big deal here is democratization. Kindred’s robot is cheap and easy to deploy, allowing smaller companies to compete with giants like Amazon.
Final Thoughts
For retailers interested in staying in business, there doesn’t appear to be much choice in the way of robotics.
By 2024, the US minimum wage is projected to be $15 an hour (the House of Representatives has already passed the bill, but the wage hike is meant to unfold gradually between now and 2025), and many consider that number far too low.
Yet, as human labor costs continue to climb, robots won’t just be coming, they’ll be here, there, and everywhere. It’s going to become increasingly difficult for store owners to justify human workers who call in sick, show up late, and can easily get injured. Robots work 24-7. They never take a day off, never need a bathroom break, health insurance, or parental leave.
Going forward, this spells a growing challenge of technological unemployment (a blog topic I will cover in the coming month). But in retail, robotics usher in tremendous benefits for companies and customers alike.
And while professional re-tooling initiatives and the transition of human capital from retail logistics to a booming experience economy take hold, robotic retail interaction and last-mile delivery will fundamentally transform our relationship with commerce.
This blog comes from The Future is Faster Than You Think—my upcoming book, to be released Jan 28th, 2020. To get an early copy and access up to $800 worth of pre-launch giveaways, sign up here!
Join Me
(1) A360 Executive Mastermind: If you’re an exponentially and abundance-minded entrepreneur who would like coaching directly from me, consider joining my Abundance 360 Mastermind, a highly selective community of 360 CEOs and entrepreneurs who I coach for 3 days every January in Beverly Hills, Ca. Through A360, I provide my members with context and clarity about how converging exponential technologies will transform every industry. I’m committed to running A360 for the course of an ongoing 25-year journey as a “countdown to the Singularity.”
If you’d like to learn more and consider joining our 2020 membership, apply here.
(2) Abundance-Digital Online Community: I’ve also created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is Singularity University’s ‘onramp’ for exponential entrepreneurs — those who want to get involved and play at a higher level. Click here to learn more.
(Both A360 and Abundance-Digital are part of Singularity University — your participation opens you to a global community.)
Image Credit: Image by imjanuary from Pixabay Continue reading
#436403 Why Your 5G Phone Connection Could Mean ...
Will getting full bars on your 5G connection mean getting caught out by sudden weather changes?
The question may strike you as hypothetical, nonsensical even, but it is at the core of ongoing disputes between meteorologists and telecommunications companies. Everyone else, including you and I, are caught in the middle, wanting both 5G’s faster connection speeds and precise information about our increasingly unpredictable weather. So why can’t we have both?
Perhaps we can, but because of the way 5G networks function, it may take some special technology—specifically, artificial intelligence.
The Bandwidth Worries
Around the world, the first 5G networks are already being rolled out. The networks use a variety of frequencies to transmit data to and from devices at speeds up to 100 times faster than existing 4G networks.
One of the bandwidths used is between 24.25 and 24.45 gigahertz (GHz). In a recent FCC auction, telecommunications companies paid a combined $2 billion for the 5G usage rights for this spectrum in the US.
However, meteorologists are concerned that transmissions near the lower end of that range can interfere with their ability to accurately measure water vapor in the atmosphere. Wired reported that acting chief of the National Oceanic and Atmospheric Administration (NOAA), Neil Jacobs, told the US House Subcommittee on the Environment that 5G interference could substantially cut the amount of weather data satellites can gather. As a result, forecast accuracy could drop by as much as 30 percent.
Among the consequences could be less time to prepare for hurricanes, and it may become harder to predict storms’ paths. Due to the interconnectedness of weather patterns, measurement issues in one location can affect other areas too. Lack of accurate atmospheric data from the US could, for example, lead to less accurate forecasts for weather patterns over Europe.
The Numbers Game
Water vapor emits a faint signal at 23.8 GHz. Weather satellites measure the signals, and the data is used to gauge atmospheric humidity levels. Meteorologists have expressed concern that 5G signals in the same range can disturb those readings. The issue is that it would be nigh on impossible to tell whether a signal is water vapor or an errant 5G signal.
Furthermore, 5G disturbances in other frequency bands could make forecasting even more difficult. Rain and snow emit frequencies around 36-37 GHz. 50.2-50.4 GHz is used to measure atmospheric temperatures, and 86-92 GHz clouds and ice. All of the above are under consideration for international 5G signals. Some have warned that the wider consequences could set weather forecasts back to the 1980s.
Telecommunications companies and interest organizations have argued back, saying that weather sensors aren’t as susceptible to interference as meteorologists fear. Furthermore, 5G devices and signals will produce much less interference with weather forecasts than organizations like NOAA predict. Since very little scientific research has been carried out to examine the claims of either party, we seem stuck in a ‘wait and see’ situation.
To offset some of the possible effects, the two groups have tried to reach a consensus on a noise buffer between the 5G transmissions and water-vapor signals. It could be likened to limiting the noise from busy roads or loud sound systems to avoid bothering neighboring buildings.
The World Meteorological Organization was looking to establish a -55 decibel watts buffer. In Europe, regulators are locked in on a -42 decibel watts buffer for 5G base stations. For comparison, the US Federal Communications Commission has advocated for a -20 decibel watts buffer, which would, in reality, allow more than 150 times more noise than the European proposal.
How AI Could Help
Much of the conversation about 5G’s possible influence on future weather predictions is centered around mobile phones. However, the phones are far from the only systems that will be receiving and transmitting signals on 5G. Self-driving cars and the Internet of Things are two other technologies that could soon be heavily reliant on faster wireless signals.
Densely populated areas are likely going to be the biggest emitters of 5G signals, leading to a suggestion to only gather water-vapor data over oceans.
Another option is to develop artificial intelligence (AI) approaches to clean or process weather data. AI is playing an increasing role in weather forecasting. For example, in 2016 IBM bought The Weather Company for $2 billion. The goal was to combine the two companies’ models and data in IBM’s Watson to create more accurate forecasts. AI would also be able to predict increases or drops in business revenues due to weather changes. Monsanto has also been investing in AI for forecasting, in this case to provide agriculturally-related weather predictions.
Smartphones may also provide a piece of the weather forecasting puzzle. Studies have shown how data from thousands of smartphones can help to increase the accuracy of storm predictions, as well as the force of storms.
“Weather stations cost a lot of money,” Cliff Mass, an atmospheric scientist at the University of Washington in Seattle, told Inside Science, adding, “If there are already 20 million smartphones, you might as well take advantage of the observation system that’s already in place.”
Smartphones may not be the solution when it comes to finding new ways of gathering the atmospheric data on water vapor that 5G could disrupt. But it does go to show that some technologies open new doors, while at the same time, others shut them.
Image Credit: Image by Free-Photos from Pixabay Continue reading
#436258 For Centuries, People Dreamed of a ...
This is part six of a six-part series on the history of natural language processing.
In February of this year, OpenAI, one of the foremost artificial intelligence labs in the world, announced that a team of researchers had built a powerful new text generator called the Generative Pre-Trained Transformer 2, or GPT-2 for short. The researchers used a reinforcement learning algorithm to train their system on a broad set of natural language processing (NLP) capabilities, including reading comprehension, machine translation, and the ability to generate long strings of coherent text.
But as is often the case with NLP technology, the tool held both great promise and great peril. Researchers and policy makers at the lab were concerned that their system, if widely released, could be exploited by bad actors and misappropriated for “malicious purposes.”
The people of OpenAI, which defines its mission as “discovering and enacting the path to safe artificial general intelligence,” were concerned that GPT-2 could be used to flood the Internet with fake text, thereby degrading an already fragile information ecosystem. For this reason, OpenAI decided that it would not release the full version of GPT-2 to the public or other researchers.
GPT-2 is an example of a technique in NLP called language modeling, whereby the computational system internalizes a statistical blueprint of a text so it’s able to mimic it. Just like the predictive text on your phone—which selects words based on words you’ve used before—GPT-2 can look at a string of text and then predict what the next word is likely to be based on the probabilities inherent in that text.
GPT-2 can be seen as a descendant of the statistical language modeling that the Russian mathematician A. A. Markov developed in the early 20th century (covered in part three of this series).
GPT-2 used cutting-edge machine learning algorithms to do linguistic analysis with over 1.5 million parameters.
What’s different with GPT-2, though, is the scale of the textual data modeled by the system. Whereas Markov analyzed a string of 20,000 letters to create a rudimentary model that could predict the likelihood of the next letter of a text being a consonant or a vowel, GPT-2 used 8 million articles scraped from Reddit to predict what the next word might be within that entire dataset.
And whereas Markov manually trained his model by counting only two parameters—vowels and consonants—GPT-2 used cutting-edge machine learning algorithms to do linguistic analysis with over 1.5 million parameters, burning through huge amounts of computational power in the process.
The results were impressive. In their blog post, OpenAI reported that GPT-2 could generate synthetic text in response to prompts, mimicking whatever style of text it was shown. If you prompt the system with a line of William Blake’s poetry, it can generate a line back in the Romantic poet’s style. If you prompt the system with a cake recipe, you get a newly invented recipe in response.
Perhaps the most compelling feature of GPT-2 is that it can answer questions accurately. For example, when OpenAI researchers asked the system, “Who wrote the book The Origin of Species?”—it responded: “Charles Darwin.” While only able to respond accurately some of the time, the feature does seem to be a limited realization of Gottfried Leibniz’s dream of a language-generating machine that could answer any and all human questions (described in part two of this series).
After observing the power of the new system in practice, OpenAI elected not to release the fully trained model. In the lead up to its release in February, there had been heightened awareness about “deepfakes”—synthetic images and videos, generated via machine learning techniques, in which people do and say things they haven’t really done and said. Researchers at OpenAI worried that GPT-2 could be used to essentially create deepfake text, making it harder for people to trust textual information online.
Responses to this decision varied. On one hand, OpenAI’s caution prompted an overblown reaction in the media, with articles about the “dangerous” technology feeding into the Frankenstein narrative that often surrounds developments in AI.
Others took issue with OpenAI’s self-promotion, with some even suggesting that OpenAI purposefully exaggerated GPT-2s power in order to create hype—while contravening a norm in the AI research community, where labs routinely share data, code, and pre-trained models. As machine learning researcher Zachary Lipton tweeted, “Perhaps what's *most remarkable* about the @OpenAI controversy is how *unremarkable* the technology is. Despite their outsize attention & budget, the research itself is perfectly ordinary—right in the main branch of deep learning NLP research.”
OpenAI stood by its decision to release only a limited version of GPT-2, but has since released larger models for other researchers and the public to experiment with. As yet, there has been no reported case of a widely distributed fake news article generated by the system. But there have been a number of interesting spin-off projects, including GPT-2 poetry and a webpage where you can prompt the system with questions yourself.
Mimicking humans on Reddit, the bots have long conversations about a variety of topics, including conspiracy theories and
Star Wars movies.
There’s even a Reddit group populated entirely with text produced by GPT-2-powered bots. Mimicking humans on Reddit, the bots have long conversations about a variety of topics, including conspiracy theories and Star Wars movies.
This bot-powered conversation may signify the new condition of life online, where language is increasingly created by a combination of human and non-human agents, and where maintaining the distinction between human and non-human, despite our best efforts, is increasingly difficult.
The idea of using rules, mechanisms, and algorithms to generate language has inspired people in many different cultures throughout history. But it’s in the online world that this powerful form of wordcraft may really find its natural milieu—in an environment where the identity of speakers becomes more ambiguous, and perhaps, less relevant. It remains to be seen what the consequences will be for language, communication, and our sense of human identity, which is so bound up with our ability to speak in natural language.
This is the sixth installment of a six-part series on the history of natural language processing. Last week’s post explained how an innocent Microsoft chatbot turned instantly racist on Twitter.
You can also check out our prior series on the untold history of AI. Continue reading