Tag Archives: LED

#435779 This Robot Ostrich Can Ride Around on ...

Proponents of legged robots say that they make sense because legs are often required to go where humans go. Proponents of wheeled robots say, “Yeah, that’s great but watch how fast and efficient my robot is, compared to yours.” Some robots try and take advantage of wheels and legs with hybrid designs like whegs or wheeled feet, but a simpler and more versatile solution is to do what humans do, and just take advantage of wheels when you need them.

We’ve seen a few experiments with this. The University of Michigan managed to convince Cassie to ride a Segway, with mostly positive (but occasionally quite negative) results. A Segway, and hoverboard-like systems, can provide wheeled mobility for legged robots over flat terrain, but they can’t handle things like stairs, which is kind of the whole point of having a robot with legs anyway.

Image: UC Berkeley

From left, a Segway, a hovercraft, and hovershoes, with complexity in terms of user control increasing from left to right.

At UC Berkeley’s Hybrid Robotics Lab, led by Koushil Sreenath, researchers have taken things a step further. They are teaching their Cassie bipedal robot (called Cassie Cal) to wheel around on a pair of hovershoes. Hovershoes are like hoverboards that have been chopped in half, resulting in a pair of motorized single-wheel skates. You balance on the skates, and control them by leaning forwards and backwards and left and right, which causes each skate to accelerate or decelerate in an attempt to keep itself upright. It’s not easy to get these things to work, even for a human, but by adding a sensor package to Cassie the UC Berkeley researchers have managed to get it to zip around campus fully autonomously.

Remember, Cassie is operating autonomously here—it’s performing vSLAM (with an Intel RealSense) and doing all of its own computation onboard in real time. Watching it jolt across that cracked sidewalk is particularly impressive, especially considering that it only has pitch control over its ankles and can’t roll its feet to maintain maximum contact with the hovershoes. But you can see the advantage that this particular platform offers to a robot like Cassie, including the ability to handle stairs. Stairs in one direction, anyway.

It’s a testament to the robustness of UC Berkeley’s controller that they were willing to let the robot operate untethered and outside, and it sounds like they’re thinking long-term about how legged robots on wheels would be real-world useful:

Our feedback control and autonomous system allow for swift movement through urban environments to aid in everything from food delivery to security and surveillance to search and rescue missions. This work can also help with transportation in large factories and warehouses.

For more details, we spoke with the UC Berkeley students (Shuxiao Chen, Jonathan Rogers, and Bike Zhang) via email.

IEEE Spectrum: How representative of Cassie’s real-world performance is what we see in the video? What happens when things go wrong?

Cassie’s real-world performance is similar to what we see in the video. Cassie can ride the hovershoes successfully all around the campus. Our current controller allows Cassie to robustly ride the hovershoes and rejects various perturbations. At present, one of the failure modes is when the hovershoe rolls to the side—this happens when it goes sideways down a step or encounters a large obstacle on one side of it, causing it to roll over. Under these circumstances, Cassie doesn’t have sufficient control authority (due to the thin narrow feet) to get the hovershoe back on its wheel.

The Hybrid Robotics Lab has been working on robots that walk over challenging terrain—how do wheeled platforms like hovershoes fit in with that?

Surprisingly, this research is related to our prior work on walking on discrete terrain. While locomotion using legs is efficient when traveling over rough and discrete terrain, wheeled locomotion is more efficient when traveling over flat continuous terrain. Enabling legged robots to ride on various micro-mobility platforms will offer multimodal locomotion capabilities, improving the efficiency of locomotion over various terrains.

Our current research furthers the locomotion ability for bipedal robots over continuous terrains by using a wheeled platform. In the long run, we would like to develop multi-modal locomotion strategies based on our current and prior work to allow legged robots to robustly and efficiently locomote in our daily life.

Photo: UC Berkeley

In their experiments, the UC Berkeley researchers say Cassie proved quite capable of riding the hovershoes over rough and uneven terrain, including going down stairs.

How long did it take to train Cassie to use the hovershoes? Are there any hovershoe skills that Cassie is better at than an average human?

We spent about eight months to develop our whole system, including a controller, a path planner, and a vision system. This involved developing mathematical models of Cassie and the hovershoes, setting up a dynamical simulation, figuring out how to interface and communicate with various sensors and Cassie, and doing several experiments to slowly improve performance. In contrast, a human with a good sense of balance needs a few hours to learn to use the hovershoes. A human who has never used skates or skis will probably need a longer time.

A human can easily turn in place on the hovershoes, while Cassie cannot do this motion currently due to our algorithm requiring a non-zero forward speed in order to turn. However, Cassie is much better at riding the hovershoes over rough and uneven terrain including riding the hovershoes down some stairs!

What would it take to make Cassie faster or more agile on the hovershoes?

While Cassie can currently move at a decent pace on the hovershoes and navigate obstacles, Cassie’s ability to avoid obstacles at rapid speeds is constrained by the sensing, the controller, and the onboard computation. To enable Cassie to dynamically weave around obstacles at high speeds exhibiting agile motions, we need to make progress on different fronts.

We need planners that take into account the entire dynamics of the Cassie-Hovershoe system and rapidly generate dynamically-feasible trajectories; we need controllers that tightly coordinate all the degrees-of-freedom of Cassie to dynamically move while balancing on the hovershoes; we need sensors that are robust to motion-blur artifacts caused due to fast turns; and we need onboard computation that can execute our algorithms at real-time speeds.

What are you working on next?

We are working on enabling more aggressive movements for Cassie on the hovershoes by fully exploiting Cassie’s dynamics. We are working on approaches that enable us to easily go beyond hovershoes to other challenging micro-mobility platforms. We are working on enabling Cassie to step onto and off from wheeled platforms such as hovershoes. We would like to create a future of multi-modal locomotion strategies for legged robots to enable them to efficiently help people in our daily life.

“Feedback Control for Autonomous Riding of Hovershoes by a Cassie Bipedal Robot,” by Shuxiao Chen, Jonathan Rogers, Bike Zhang, and Koushil Sreenath from the Hybrid Robotics Lab at UC Berkeley, has been submitted to IEEE Robotics and Automation Letters with option to be presented at the 2019 IEEE RAS International Conference on Humanoid Robots. Continue reading

Posted in Human Robots

#435731 Video Friday: NASA Is Sending This ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

MARSS 2019 – July 1-5, 2019 – Helsinki, Finland
ICRES 2019 – July 29-30, 2019 – London, UK
DARPA SubT Tunnel Circuit – August 15-22, 2019 – Pittsburgh, PA, USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

The big news today is that NASA is sending a robot to Saturn’s moon Titan. A flying robot. The Dragonfly mission will launch in 2026 and arrive in 2034, but you knew that already, because last January, we posted a detailed article about the concept from the Applied Physics Lab at Johns Hopkins University. And now it’s not a concept anymore, yay!

Again, read all the details plus an interview in 2018 article.

[ NASA ]

A robotic gripping arm that uses engineered bacteria to “taste” for a specific chemical has been developed by engineers at the University of California, Davis, and Carnegie Mellon University. The gripper is a proof-of-concept for biologically-based soft robotics.

The new device uses a biosensing module based on E. coli bacteria engineered to respond to the chemical IPTG by producing a fluorescent protein. The bacterial cells reside in wells with a flexible, porous membrane that allows chemicals to enter but keeps the cells inside. This biosensing module is built into the surface of a flexible gripper on a robotic arm, so the gripper can “taste” the environment through its fingers.

When IPTG crosses the membrane into the chamber, the cells fluoresce and electronic circuits inside the module detect the light. The electrical signal travels to the gripper’s control unit, which can decide whether to pick something up or release it.

[ UC Davis ]

The Toyota Research Institute (TRI) is taking on the hard problems in manipulation research toward making human-assist robots reliable and robust. Dr. Russ Tedrake, TRI Vice President of Robotics Research, explains how we are exploring the challenges and addressing the reliability gap by using a robot loading dishes in a dishwasher as an example task.

[ TRI ]

The Tactile Telerobot is the world’s first haptic telerobotic system that transmits realistic touch feedback to an operator located anywhere in the world. It is the product of joint collaboration between Shadow Robot Company, HaptX, and SynTouch. All Nippon Airways funded the project’s initial research and development.

What’s really unique about this is the HaptX tactile feedback system, which is something we’ve been following for several years now. It’s one of the most magical tech experiences I’ve ever had, and you can read about it here and here.

[ HaptX ]

Thanks Andrew!

I love how snake robots can emulate some of the fanciest moves of real snakes, and then also do bonkers things that real snakes never do.

[ Matsuno Lab ]

Here are a couple interesting videos from the Human-Robot Interaction Lab at Tufts.

A robot is instructed to perform an action and cannot do it due to lack of sensors. But when another robot is placed nearby, it can execute the instruction by tacitly tapping into the other robot’s mind and using that robot’s sensors for its own actions. Yes, it’s automatic, and yes, it’s the BORG!

Two Nao robots are instructed to perform a dance and are able to do it right after instruction. Moreover, they can switch roles immediately, and even a third different PR2 robot can perform the dance right away, demonstrating the ability of our DIARC architecture to learn quickly and share the knowledge with any type of robot running the architecture.

Compared to Nao, PR2 just sounds… depressed.

[ HRI Lab ]

This work explores the problem of robot tool construction – creating tools from parts available in the environment. We advance the state-of-the-art in robotic tool construction by introducing an approach that enables the robot to construct a wider range of tools with greater computational efficiency. Specifically, given an action that the robot wishes to accomplish and a set of building parts available to the robot, our approach reasons about the shape of the parts and potential ways of attaching them, generating a ranking of part combinations that the robot then uses to construct and test the target tool. We validate our approach on the construction of five tools using a physical 7-DOF robot arm.

[ RAIL Lab ] via [ RSS ]

We like Magazino’s approach to warehouse picking- constrain the problem to something you can reliably solve, like shoeboxes.

Magazino has announced a new pricing model for their robots. You pay 55k euros for the robot itself, and then after that, all you pay to keep the robot working is 6 cents per pick, so the robot is only costing you money for the work that it actually does.

[ Magazino ]

Thanks Florin!

Human-Robot Collaborations are happening across factories worldwide, yet very few are using it for smaller businesses, due to high costs or the difficulty of customization. Elephant Robotics, a new player from Shenzhen, the Silicon Valley of Asia, has set its sight on helping smaller businesses gain access to smart robotics. They created a Catbot (a collaborative robotic arm) that will offer high efficiency and flexibility to various industries.

The Catbot is set to help from education projects, photography, massaging, to being a personal barista or co-playing a table game. The customizations are endless. To increase the flexibility of usage, the Catbot is extremely easy to program from a high precision task up to covering hefty ground projects.

[ Elephant Robotics ]

Thanks Johnson!

Dronistics, an EPFL spin-off, has been testing out their enclosed delivery drone in the Dominican Republic through a partnership with WeRobotics.

[ WeRobotics ]

QTrobot is an expressive humanoid robot designed to help children with autism spectrum disorder and children with special educational needs in learning new skills. QTrobot uses simple and exaggerated facial expressions combined by interactive games and stories, to help children improve their emotional skills. QTrobot helps children to learn about and better understand the emotions and teach them strategies to handle their emotions more effectively.

[ LuxAI ]

Here’s a typical day in the life of a Tertill solar-powered autonomous weed-destroying robot.

$300, now shipping from Franklin Robotics.

[ Tertill ]

PAL Robotics is excited to announce a new TIAGo with two arms, TIAGo++! After carefully listening to the robotics community needs, we used TIAGo’s modularity to integrate two 7-DoF arms to our mobile manipulator. TIAGo++ can help you swiftly accomplish your research goals, opening endless possibilities in mobile manipulation.

[ PAL Robotics ]

Thanks Jack!

You’ve definitely already met the Cobalt security robot, but Toyota AI Ventures just threw a pile of money at them and would therefore like you to experience this re-introduction:

[ Cobalt Robotics ] via [ Toyota AI ]

ROSIE is a mobile manipulator kit from HEBI Robotics. And if you don’t like ROSIE, the modular nature of HEBI’s hardware means that you can take her apart and make something more interesting.

[ HEBI Robotics ]

Learn about Kawasaki Robotics’ second addition to their line of duAro dual-arm collaborative robots, duAro2. This model offers an extended vertical reach (550 mm) and an increased payload capacity (3 kg/arm).

[ Kawasaki Robotics ]

Drone Delivery Canada has partnered with Peel Region Paramedics to pilot its proprietary drone delivery platform to enable rapid first responder technology via drone with the goal to reduce response time and potentially save lives.

[ Drone Delivery Canada ]

In this week’s episode of Robots in Depth, Per speaks with Harri Ketamo, from Headai.

Harri Ketamo talks about AI and how he aims to mimic human decision making with algorithms. Harri has done a lot of AI for computer games to create opponents that are entertaining to play against. It is easy to develop a very bad or a very good opponent, but designing an opponent that behaves like a human, is entertaining to play against and that you can beat is quite hard. He talks about how AI in computer games is a very important story telling tool and an important part of making a game entertaining to play.

This work led him into other parts of the AI field. Harri thinks that we sometimes have a problem separating what is real from what is the type of story telling he knows from gaming AI. He calls for critical analysis of AI and says that data has to be used to verify AI decisions and results.

[ Robots in Depth ]

Thanks Per! Continue reading

Posted in Human Robots

#435522 Harvard’s Smart Exo-Shorts Talk to the ...

Exosuits don’t generally scream “fashionable” or “svelte.” Take the mind-controlled robotic exoskeleton that allowed a paraplegic man to kick off the World Cup back in 2014. Is it cool? Hell yeah. Is it practical? Not so much.

Yapping about wearability might seem childish when the technology already helps people with impaired mobility move around dexterously. But the lesson of the ill-fated Google Glassholes, which includes an awkward dorky head tilt and an assuming voice command, clearly shows that wearable computer assistants can’t just work technologically—they have to look natural and allow the user to behave like as usual. They have to, in a sense, disappear.

To Dr. Jose Pons at the Legs + Walking Ability Lab in Chicago, exosuits need three main selling points to make it in the real world. One, they have to physically interact with their wearer and seamlessly deliver assistance when needed. Two, they should cognitively interact with the host to guide and control the robot at all times. Finally, they need to feel like a second skin—move with the user without adding too much extra mass or reducing mobility.

This week, a US-Korean collaboration delivered the whole shebang in a Lululemon-style skin-hugging package combined with a retro waist pack. The portable exosuit, weighing only 11 pounds, looks like a pair of spandex shorts but can support the wearer’s hip movement when needed. Unlike their predecessors, the shorts are embedded with sensors that let them know when the wearer is walking versus running by analyzing gait.

Switching between the two movement modes may not seem like much, but what naturally comes to our brains doesn’t translate directly to smart exosuits. “Walking and running have fundamentally different biomechanics, which makes developing devices that assist both gaits challenging,” the team said. Their algorithm, computed in the cloud, allows the wearer to easily switch between both, with the shorts providing appropriate hip support that makes the movement experience seamless.

To Pons, who was not involved in the research but wrote a perspective piece, the study is an exciting step towards future exosuits that will eventually disappear under the skin—that is, implanted neural interfaces to control robotic assistance or activate the user’s own muscles.

“It is realistic to think that we will witness, in the next several years…robust human-robot interfaces to command wearable robotics based on…the neural code of movement in humans,” he said.

A “Smart” Exosuit Hack
There are a few ways you can hack a human body to move with an exosuit. One is using implanted electrodes inside the brain or muscles to decipher movement intent. With heavy practice, a neural implant can help paralyzed people walk again or dexterously move external robotic arms. But because the technique requires surgery, it’s not an immediate sell for people who experience low mobility because of aging or low muscle tone.

The other approach is to look to biophysics. Rather than decoding neural signals that control movement, here the idea is to measure gait and other physical positions in space to decipher intent. As you can probably guess, accurately deciphering user intent isn’t easy, especially when the wearable tries to accommodate multiple gaits. But the gains are many: there’s no surgery involved, and the wearable is low in energy consumption.

Double Trouble
The authors decided to tackle an everyday situation. You’re walking to catch the train to work, realize you’re late, and immediately start sprinting.

That seemingly easy conversion hides a complex switch in biomechanics. When you walk, your legs act like an inverted pendulum that swing towards a dedicated center in a predictable way. When you run, however, the legs move more like a spring-loaded system, and the joints involved in the motion differ from a casual stroll. Engineering an assistive wearable for each is relatively simple; making one for both is exceedingly hard.

Led by Dr. Conor Walsh at Harvard University, the team started with an intuitive idea: assisted walking and running requires specialized “actuation” profiles tailored to both. When the user is moving in a way that doesn’t require assistance, the wearable needs to be out of the way so that it doesn’t restrict mobility. A quick analysis found that assisting hip extension has the largest impact, because it’s important to both gaits and doesn’t add mass to the lower legs.

Building on that insight, the team made a waist belt connected to two thigh wraps, similar to a climbing harness. Two electrical motors embedded inside the device connect the waist belt to other components through a pulley system to help the hip joints move. The whole contraption weighed about 11 lbs and didn’t obstruct natural movement.

Next, the team programmed two separate supporting profiles for walking and running. The goal was to reduce the “metabolic cost” for both movements, so that the wearer expends as little energy as needed. To switch between the two programs, they used a cloud-based classification algorithm to measure changes in energy fluctuation to figure out what mode—running or walking—the user is in.

Smart Booster
Initial trials on treadmills were highly positive. Six male volunteers with similar age and build donned the exosuit and either ran or walked on the treadmill at varying inclines. The algorithm performed perfectly at distinguishing between the two gaits in all conditions, even at steep angles.

An outdoor test with eight volunteers also proved the algorithm nearly perfect. Even on uneven terrain, only two steps out of all test trials were misclassified. In an additional trial on mud or snow, the algorithm performed just as well.

“The system allows the wearer to use their preferred gait for each speed,” the team said.

Software excellence translated to performance. A test found that the exosuit reduced the energy for walking by over nine percent and running by four percent. It may not sound like much, but the range of improvement is meaningful in athletic performance. Putting things into perspective, the team said, the metabolic rate reduction during walking is similar to taking 16 pounds off at the waist.

The Wearable Exosuit Revolution
The study’s lightweight exoshorts are hardly the only players in town. Back in 2017, SRI International’s spin-off, Superflex, engineered an Aura suit to support mobility in the elderly. The Aura used a different mechanism: rather than a pulley system, it incorporated a type of smart material that contracts in a manner similar to human muscles when zapped with electricity.

Embedded with a myriad of sensors for motion, accelerometers and gyroscopes, Aura’s smartness came from mini-computers that measure how fast the wearer is moving and track the user’s posture. The data were integrated and processed locally inside hexagon-shaped computing pods near the thighs and upper back. The pods also acted as the control center for sending electrical zaps to give the wearer a boost when needed.

Around the same time, a collaboration between Harvard’s Wyss Institute and ReWalk Robotics introduced a fabric-based wearable robot to assist a wearer’s legs for balance and movement. Meanwhile, a Swiss team coated normal fabric with electroactive material to weave soft, pliable artificial “muscles” that move with the skin.

Although health support is the current goal, the military is obviously interested in similar technologies to enhance soldiers’ physicality. Superflex’s Aura, for example, was originally inspired by technology born from DARPA’s Warrior Web Program, which aimed to reduce a soldier’s mechanical load.

That said, military gear has had a long history of trickling down to consumer use. Similar to the way camouflage, cargo pants, and GORE-TEX trickled down into the consumer ecosphere, it’s not hard to imagine your local Target eventually stocking intelligent exowear.

Image and Video Credit: Wyss Institute at Harvard University. Continue reading

Posted in Human Robots

#435474 Watch China’s New Hybrid AI Chip Power ...

When I lived in Beijing back in the 90s, a man walking his bike was nothing to look at. But today, I did a serious double-take at a video of a bike walking his man.

No kidding.

The bike itself looks overloaded but otherwise completely normal. Underneath its simplicity, however, is a hybrid computer chip that combines brain-inspired circuits with machine learning processes into a computing behemoth. Thanks to its smart chip, the bike self-balances as it gingerly rolls down a paved track before smoothly gaining speed into a jogging pace while navigating dexterously around obstacles. It can even respond to simple voice commands such as “speed up,” “left,” or “straight.”

Far from a circus trick, the bike is a real-world demo of the AI community’s latest attempt at fashioning specialized hardware to keep up with the challenges of machine learning algorithms. The Tianjic (天机*) chip isn’t just your standard neuromorphic chip. Rather, it has the architecture of a brain-like chip, but can also run deep learning algorithms—a match made in heaven that basically mashes together neuro-inspired hardware and software.

The study shows that China is readily nipping at the heels of Google, Facebook, NVIDIA, and other tech behemoths investing in developing new AI chip designs—hell, with billions in government investment it may have already had a head start. A sweeping AI plan from 2017 looks to catch up with the US on AI technology and application by 2020. By 2030, China’s aiming to be the global leader—and a champion for building general AI that matches humans in intellectual competence.

The country’s ambition is reflected in the team’s parting words.

“Our study is expected to stimulate AGI [artificial general intelligence] development by paving the way to more generalized hardware platforms,” said the authors, led by Dr. Luping Shi at Tsinghua University.

A Hardware Conundrum
Shi’s autonomous bike isn’t the first robotic two-wheeler. Back in 2015, the famed research nonprofit SRI International in Menlo Park, California teamed up with Yamaha to engineer MOTOBOT, a humanoid robot capable of driving a motorcycle. Powered by state-of-the-art robotic hardware and machine learning, MOTOBOT eventually raced MotoGPTM world champion Valentino Rossi in a nail-biting match-off.

However, the technological core of MOTOBOT and Shi’s bike vastly differ, and that difference reflects two pathways towards more powerful AI. One, exemplified by MOTOBOT, is software—developing brain-like algorithms with increasingly efficient architecture, efficacy, and speed. That sounds great, but deep neural nets demand so many computational resources that general-purpose chips can’t keep up.

As Shi told China Science Daily: “CPUs and other chips are driven by miniaturization technologies based on physics. Transistors might shrink to nanoscale-level in 10, 20 years. But what then?” As more transistors are squeezed onto these chips, efficient cooling becomes a limiting factor in computational speed. Tax them too much, and they melt.

For AI processes to continue, we need better hardware. An increasingly popular idea is to build neuromorphic chips, which resemble the brain from the ground up. IBM’s TrueNorth, for example, contains a massively parallel architecture nothing like the traditional Von Neumann structure of classic CPUs and GPUs. Similar to biological brains, TrueNorth’s memory is stored within “synapses” between physical “neurons” etched onto the chip, which dramatically cuts down on energy consumption.

But even these chips are limited. Because computation is tethered to hardware architecture, most chips resemble just one specific type of brain-inspired network called spiking neural networks (SNNs). Without doubt, neuromorphic chips are highly efficient setups with dynamics similar to biological networks. They also don’t play nicely with deep learning and other software-based AI.

Brain-AI Hybrid Core
Shi’s new Tianjic chip brought the two incompatibilities together onto a single piece of brainy hardware.

First was to bridge the deep learning and SNN divide. The two have very different computation philosophies and memory organizations, the team said. The biggest difference, however, is that artificial neural networks transform multidimensional data—image pixels, for example—into a single, continuous, multi-bit 0 and 1 stream. In contrast, neurons in SNNs activate using something called “binary spikes” that code for specific activation events in time.

Confused? Yeah, it’s hard to wrap my head around it too. That’s because SNNs act very similarly to our neural networks and nothing like computers. A particular neuron needs to generate an electrical signal (a “spike”) large enough to transfer down to the next one; little blips in signals don’t count. The way they transmit data also heavily depends on how they’re connected, or the network topology. The takeaway: SNNs work pretty differently than deep learning.

Shi’s team first recreated this firing quirk in the language of computers—0s and 1s—so that the coding mechanism would become compatible with deep learning algorithms. They then carefully aligned the step-by-step building blocks of the two models, which allowed them to tease out similarities into a common ground to further build on. “On the basis of this unified abstraction, we built a cross-paradigm neuron scheme,” they said.

In general, the design allowed both computational approaches to share the synapses, where neurons connect and store data, and the dendrites, the outgoing branches of the neurons. In contrast, the neuron body, where signals integrate, was left reconfigurable for each type of computation, as were the input branches. Each building block was combined into a single unified functional core (FCore), which acts like a deep learning/SNN converter depending on its specific setup. Translation: the chip can do both types of previously incompatible computation.

The Chip
Using nanoscale fabrication, the team arranged 156 FCores, containing roughly 40,000 neurons and 10 million synapses, onto a chip less than a fifth of an inch in length and width. Initial tests showcased the chip’s versatility, in that it can run both SNNs and deep learning algorithms such as the popular convolutional neural network (CNNs) often used in machine vision.

Compared to IBM TrueNorth, the density of Tianjic’s cores increased by 20 percent, speeding up performance ten times and increasing bandwidth at least 100-fold, the team said. When pitted against GPUs, the current hardware darling of machine learning, the chip increased processing throughput up to 100 times, while using just a sliver (1/10,000) of energy.

Although these stats are great, real-life performance is even better as a demo. Here’s where the authors gave their Tianjic brain a body. The team combined one chip with multiple specialized networks to process vision, balance, voice commands, and decision-making in real time. Object detection and target tracking, for example, relied on a deep neural net CNN, whereas voice commands and balance data were recognized using an SNN. The inputs were then integrated inside a neural state machine, which churned out decisions to downstream output modules—for example, controlling the handle bar to turn left.

Thanks to the chip’s brain-like architecture and bilingual ability, Tianjic “allowed all of the neural network models to operate in parallel and realized seamless communication across the models,” the team said. The result is an autonomous bike that rolls after its human, balances across speed bumps, avoids crashing into roadblocks, and answers to voice commands.

General AI?
“It’s a wonderful demonstration and quite impressive,” said the editorial team at Nature, which published the study on its cover last week.

However, they cautioned, when comparing Tianjic with state-of-the-art chips designed for a single problem toe-to-toe on that particular problem, Tianjic falls behind. But building these jack-of-all-trades hybrid chips is definitely worth the effort. Compared to today’s limited AI, what people really want is artificial general intelligence, which will require new architectures that aren’t designed to solve one particular problem.

Until people start to explore, innovate, and play around with different designs, it’s not clear how we can further progress in the pursuit of general AI. A self-driving bike might not be much to look at, but its hybrid brain is a pretty neat place to start.

*The name, in Chinese, means “heavenly machine,” “unknowable mystery of nature,” or “confidentiality.” Go figure.

Image Credit: Alexander Ryabintsev / Shutterstock.com Continue reading

Posted in Human Robots

#435313 This Week’s Awesome Stories From ...

ARTIFICIAL INTELLIGENCE
Microsoft Invests $1 Billion in OpenAI to Pursue Holy Grail of Artificial Intelligence
James Vincent | The Verge
“i‘The creation of AGI will be the most important technological development in human history, with the potential to shape the trajectory of humanity,’ said [OpenAI cofounder] Sam Altman. ‘Our mission is to ensure that AGI technology benefits all of humanity, and we’re working with Microsoft to build the supercomputing foundation on which we’ll build AGI.’i”

ROBOTICS
UPS Wants to Go Full-Scale With Its Drone Deliveries
Eric Adams | Wired
“If UPS gets its way, it’ll be known for vehicles other than its famous brown vans. The delivery giant is working to become the first commercial entity authorized by the Federal Aviation Administration to use autonomous delivery drones without any of the current restrictions that have governed the aerial testing it has done to date.”

SYNTHETIC BIOLOGY
Scientists Can Finally Build Feedback Circuits in Cells
Megan Molteni | Wired
“Network a few LOCKR-bound molecules together, and you’ve got a circuit that can control a cell’s functions the same way a PID computer program automatically adjusts the pitch of a plane. With the right key, you can make cells glow or blow themselves apart. You can send things to the cell’s trash heap or zoom them to another cellular zip code.”

ENERGY
Carbon Nanotubes Could Increase Solar Efficiency to 80 Percent
David Grossman | Popular Mechanics
“Obviously, that sort of efficiency rating is unheard of in the world of solar panels. But even though a proof of concept is a long way from being used in the real world, any further developments in the nanotubes could bolster solar panels in ways we haven’t seen yet.”

FUTURE
What Technology Is Most Likely to Become Obsolete During Your Lifetime?
Daniel Kolitz | Gizmodo
“Old technology seldom just goes away. Whiteboards and LED screens join chalk blackboards, but don’t eliminate them. Landline phones get scarce, but not phones. …And the technologies that seem to be the most outclassed may come back as a the cult objects of aficionados—the vinyl record, for example. All this is to say that no one can tell us what will be obsolete in fifty years, but probably a lot less will be obsolete than we think.”

NEUROSCIENCE
The Human Brain Project Hasn’t Lived Up to Its Promise
Ed Yong | The Atlantic
“The HBP, then, is in a very odd position, criticized for being simultaneously too grandiose and too narrow. None of the skeptics I spoke with was dismissing the idea of simulating parts of the brain, but all of them felt that such efforts should be driven by actual research questions. …Countless such projects could have been funded with the money channeled into the HBP, which explains much of the furor around the project.”

Image Credit: Aron Van de Pol / Unsplash Continue reading

Posted in Human Robots