Tag Archives: learning

#437608 Video Friday: Agility Robotics Raises ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

IROS 2020 – October 25-29, 2020 – [Online]
ROS World 2020 – November 12, 2020 – [Online]
CYBATHLON 2020 – November 13-14, 2020 – [Online]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

Digit is now in full commercial production and we’re excited to announce a $20M funding rounding round co-led by DCVC and Playground Global!

Digits for everyone!

[ Agility Robotics ]

A flexible rover that has both ability to travel long distances and rappel down hard-to-reach areas of scientific interest has undergone a field test in the Mojave Desert in California to showcase its versatility. Composed of two Axel robots, DuAxel is designed to explore crater walls, pits, scarps, vents and other extreme terrain on the moon, Mars and beyond.

This technology demonstration developed at NASA’s Jet Propulsion Laboratory in Southern California showcases the robot’s ability to split in two and send one of its halves — a two-wheeled Axle robot — over an otherwise inaccessible slope, using a tether as support and to supply power.

The rappelling Axel can then autonomously seek out areas to study, safely overcome slopes and rocky obstacles, and then return to dock with its other half before driving to another destination. Although the rover doesn’t yet have a mission, key technologies are being developed that might, one day, help us explore the rocky planets and moons throughout the solar system.

[ JPL ]

A rectangular robot as tiny as a few human hairs can travel throughout a colon by doing back flips, Purdue University engineers have demonstrated in live animal models. Why the back flips? Because the goal is to use these robots to transport drugs in humans, whose colons and other organs have rough terrain. Side flips work, too. Why a back-flipping robot to transport drugs? Getting a drug directly to its target site could remove side effects, such as hair loss or stomach bleeding, that the drug may otherwise cause by interacting with other organs along the way.

[ Purdue ]

This video shows the latest results in the whole-body locomotion control of the humanoid robot iCub achieved by the Dynamic Interaction Control line at IIT-Istituto Italiano di Tecnologia in Genova (Italy). In particular, the iCub now keeps the balance while walking and receiving pushes from an external user. The implemented control algorithms also ensure the robot to remain compliant during locomotion and human-robot interaction, a fundamental property to lower the possibility to harm humans that share the robot surrounding environment.

This is super impressive, considering that iCub was only able to crawl and was still tethered not too long ago. Also, it seems to be blinking properly now, so it doesn’t look like it’s always sleepy.

[ IIT ]

This video shows a set of new tests we performed on Bolt. We conducted tests on 5 different scenarios, 1) walking forward/backward 2) uneven surface 3) soft surface 4) push recovery 5) slippage recovery. Thanks to our feedback control based on Model Predictive Control, the robot can perform walking in the presence of all these uncertainties. We will open-source all the codes in a near future.

[ ODRI ]

The title of this video is “Can you throw your robot into a lake?” The title of this video should be, “Can you throw your robot into a lake and drive it out again?”

[ Norlab ]

AeroVironment Successfully Completes Sunglider Solar HAPS Stratospheric Test Flight, Surpassing 60,000 Feet Altitude and Demonstrating Broadband Mobile Connectivity.

[ AeroVironment ]

We present CoVR, a novel robotic interface providing strong kinesthetic feedback (100 N) in a room-scale VR arena. It consists of a physical column mounted on a 2D Cartesian ceiling robot (XY displacements) with the capacity of (1) resisting to body-scaled users actions such as pushing or leaning; (2) acting on the users by pulling or transporting them as well as (3) carrying multiple potentially heavy objects (up to 80kg) that users can freely manipulate or make interact with each other.

[ DeepAI ]

In a new video, personnel from Swiss energy supply company Kraftwerke Oberhasli AG (KWO) explain how they were able to keep employees out of harm’s way by using Flyability’s Elios 2 to collect visual data while building a new dam.

[ Flyability ]

Enjoy our Ascento robot fail compilation! With every failure we experience, we learn more and we can improve our robot for its next iteration, which will come soon… Stay tuned for more!

FYI posting a robot fails video will pretty much guarantee you a spot in Video Friday!

[ Ascento ]

Humans are remarkably good at using chopsticks. The Guinness World Record witnessed a person using chopsticks to pick up 65 M&Ms in just a minute. We aim to collect demonstrations from humans and to teach robot to use chopsticks.

[ UW Personal Robotics Lab ]

A surprising amount of personality from these Yaskawa assembly robots.

[ Yaskawa ]

This paper presents the system design, modeling, and control of the Aerial Robotic Chain Manipulator. This new robot design offers the potential to exert strong forces and moments to the environment, carry and lift significant payloads, and simultaneously navigate through narrow corridors. The presented experimental studies include a valve rotation task, a pick-and-release task, and the verification of load oscillation suppression to demonstrate the stability and performance of the system.

[ ARL ]

Whether animals or plants, whether in the water, on land or in the air, nature provides the model for many technical innovations and inventions. This is summed up in the term bionics, which is a combination of the words ‘biology‘ and ‘electronics’. At Festo, learning from nature has a long history, as our Bionic Learning Network is based on using nature as the source for future technologies like robots, assistance systems or drive solutions.

[ Festo ]

Dogs! Selfies! Thousands of LEGO bricks! This video has it all.

[ LEGO ]

An IROS workshop talk on “Cassie and Mini Cheetah Autonomy” by Maani Ghaffari and Jessy Grizzle from the University of Michigan.

[ Michigan Robotics ]

David Schaefer’s Cozmo robots are back with this mind-blowing dance-off!

What you just saw represents hundreds of hours of work, David tells us: “I wrote over 10,000 lines of code to create the dance performance as I had to translate the beats per minute of the song into motor rotations in order to get the right precision needed to make the moves look sharp. The most challenging move was the SpongeBob SquareDance as any misstep would send the Cozmos crashing into each other. LOL! Fortunately for me, Cozmo robots are pretty resilient.”

[ Life with Cozmo ]

Thanks David!

This week’s GRASP on Robotics seminar is by Sangbae Kim from MIT, on “Robots with Physical Intelligence.”

While industrial robots are effective in repetitive, precise kinematic tasks in factories, the design and control of these robots are not suited for physically interactive performance that humans do easily. These tasks require ‘physical intelligence’ through complex dynamic interactions with environments whereas conventional robots are designed primarily for position control. In order to develop a robot with ‘physical intelligence’, we first need a new type of machines that allow dynamic interactions. This talk will discuss how the new design paradigm allows dynamic interactive tasks. As an embodiment of such a robot design paradigm, the latest version of the MIT Cheetah robots and force-feedback teleoperation arms will be presented.

[ GRASP ]

This week’s CMU Ri Seminar is by Kevin Lynch from Northwestern, on “Robotics and Biosystems.”

Research at the Center for Robotics and Biosystems at Northwestern University encompasses bio-inspiration, neuromechanics, human-machine systems, and swarm robotics, among other topics. In this talk I will give an overview of some of our recent work on in-hand manipulation, robot locomotion on yielding ground, and human-robot systems.

[ CMU RI ] Continue reading

Posted in Human Robots

#437583 Video Friday: Attack of the Hexapod ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

IROS 2020 – October 25-25, 2020 – [Online]
ROS World 2020 – November 12, 2020 – [Online]
CYBATHLON 2020 – November 13-14, 2020 – [Online]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

Happy Halloween from HEBI Robotics!

Thanks Hardik!

[ HEBI Robotics ]

Happy Halloween from Berkshire Grey!

[ Berkshire Grey ]

These are some preliminary results of our lab’s new work on using reinforcement learning to train neural networks to imitate common bipedal gait behaviors, without using any motion capture data or reference trajectories. Our method is described in an upcoming submission to ICRA 2021. Work by Jonah Siekmann and Yesh Godse.

[ OSU DRL ]

The northern goshawk is a fast, powerful raptor that flies effortlessly through forests. This bird was the design inspiration for the next-generation drone developed by scientifics of the Laboratory of Intelligent Systems of EPFL led by Dario Floreano. They carefully studied the shape of the bird’s wings and tail and its flight behavior, and used that information to develop a drone with similar characteristics.

The engineers already designed a bird-inspired drone with morphing wing back in 2016. In a step forward, their new model can adjust the shape of its wing and tail thanks to its artificial feathers. Flying this new type of drone isn’t easy, due to the large number of wing and tail configurations possible. To take full advantage of the drone’s flight capabilities, Floreano’s team plans to incorporate artificial intelligence into the drone’s flight system so that it can fly semi-automatically. The team’s research has been published in Science Robotics.

[ EPFL ]

Oopsie.

[ Roborace ]

We’ve covered MIT’s Roboats in the past, but now they’re big enough to keep a couple of people afloat.

Self-driving boats have been able to transport small items for years, but adding human passengers has felt somewhat intangible due to the current size of the vessels. Roboat II is the “half-scale” boat in the growing body of work, and joins the previously developed quarter-scale Roboat, which is 1 meter long. The third installment, which is under construction in Amsterdam and is considered to be “full scale,” is 4 meters long and aims to carry anywhere from four to six passengers.

[ MIT ]

With a training technique commonly used to teach dogs to sit and stay, Johns Hopkins University computer scientists showed a robot how to teach itself several new tricks, including stacking blocks. With the method, the robot, named Spot, was able to learn in days what typically takes a month.

[ JHU ]

Exyn, a pioneer in autonomous aerial robot systems for complex, GPS-denied industrial environments, today announced the first dog, Kody, to successfully fly a drone at Number 9 Coal Mine, in Lansford, PA. Selected to carry out this mission was the new autonomous aerial robot, the ExynAero.

Yes, this is obviously a publicity stunt, and Kody is only flying the drone in the sense that he’s pushing the launch button and then taking a nap. But that’s also the point— drone autonomy doesn’t get much fuller than this, despite the challenge of the environment.

[ Exyn ]

In this video object instance segmentation and shape completion are combined with classical regrasp planning to perform pick-place of novel objects. It is demonstrated with a UR5, Robotiq 85 parallel-jaw gripper, and Structure depth sensor with three rearrangement tasks: bin packing (minimize the height of the packing), placing bottles onto coasters, and arrange blocks from tallest to shortest (according to the longest edge). The system also accounts for uncertainty in the segmentation/completion by avoiding grasping or placing on parts of the object where perceptual uncertainty is predicted to be high.

[ Paper ] via [ Northeastern ]

Thanks Marcus!

U can’t touch this!

[ University of Tokyo ]

We introduce a way to enable more natural interaction between humans and robots through Mixed Reality, by using a shared coordinate system. Azure Spatial Anchors, which already supports colocalizing multiple HoloLens and smartphone devices in the same space, has now been extended to support robots equipped with cameras. This allows humans and robots sharing the same space to interact naturally: humans can see the plan and intention of the robot, while the robot can interpret commands given from the person’s perspective. We hope that this can be a building block in the future of humans and robots being collaborators and coworkers.

[ Microsoft ]

Some very high jumps from the skinniest quadruped ever.

[ ODRI ]

In this video we present recent efforts to make our humanoid robot LOLA ready for multi-contact locomotion, i.e. additional hand-environment support for extra stabilization during walking.

[ TUM ]

Classic bike moves from Dr. Guero.

[ Dr. Guero ]

For a robotics company, iRobot is OLD.

[ iRobot ]

The Canadian Space Agency presents Juno, a preliminary version of a rover that could one day be sent to the Moon or Mars. Juno can navigate autonomously or be operated remotely. The Lunar Exploration Analogue Deployment (LEAD) consisted in replicating scenarios of a lunar sample return mission.

[ CSA ]

How exactly does the Waymo Driver handle a cat cutting across its driving path? Jonathan N., a Product Manager on our Perception team, breaks it all down for us.

Now do kangaroos.

[ Waymo ]

Jibo is hard at work at MIT playing games with kids.

Children’s creativity plummets as they enter elementary school. Social interactions with peers and playful environments have been shown to foster creativity in children. Digital pedagogical tools often lack the creativity benefits of co-located social interaction with peers. In this work, we leverage a social embodied robot as a playful peer and designed Escape!Bot, a game involving child-robot co-play, where the robot is a social agent that scaffolds for creativity during gameplay.

[ Paper ]

It’s nice when convenience stores are convenient even for the folks who have to do the restocking.

Who’s moving the crates around, though?

[ Telexistence ]

Hi, fans ! Join the ROS World 2020, opening November 12th , and see the footage of ROBOTIS’ ROS platform robots 🙂

[ ROS World 2020 ]

ML/RL methods are often viewed as a magical black box, and while that’s not true, learned policies are nonetheless a valuable tool that can work in conjunction with the underlying physics of the robot. In this video, Agility CTO Jonathan Hurst – wearing his professor hat at Oregon State University – presents some recent student work on using learned policies as a control method for highly dynamic legged robots.

[ Agility Robotics ]

Here’s an ICRA Legged Robots workshop talk from Marco Hutter at ETH Zürich, on Autonomy for ANYmal.

Recent advances in legged robots and their locomotion skills has led to systems that are skilled and mature enough for real-world deployment. In particular, quadrupedal robots have reached a level of mobility to navigate complex environments, which enables them to take over inspection or surveillance jobs in place like offshore industrial plants, in underground areas, or on construction sites. In this talk, I will present our research work with the quadruped ANYmal and explain some of the underlying technologies for locomotion control, environment perception, and mission autonomy. I will show how these robots can learn and plan complex maneuvers, how they can navigate through unknown environments, and how they are able to conduct surveillance, inspection, or exploration scenarios.

[ RSL ] Continue reading

Posted in Human Robots

#437562 Video Friday: Aquanaut Robot Takes to ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

IROS 2020 – October 25-25, 2020 – [Online]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Bay Area Robotics Symposium – November 20, 2020 – [Online]
ACRA 2020 – December 8-10, 2020 – [Online]
Let us know if you have suggestions for next week, and enjoy today's videos.

To prepare the Perseverance rover for its date with Mars, NASA’s Mars 2020 mission team conducted a wide array of tests to help ensure a successful entry, descent and landing at the Red Planet. From parachute verification in the world’s largest wind tunnel, to hazard avoidance practice in Death Valley, California, to wheel drop testing at NASA’s Jet Propulsion Laboratory and much more, every system was put through its paces to get ready for the big day. The Perseverance rover is scheduled to land on Mars on February 18, 2021.

[ JPL ]

Awesome to see Aquanaut—the “underwater transformer” we wrote about last year—take to the ocean!

Also their new website has SHARKS on it.

[ HMI ]

Nature has inspired engineers at UNSW Sydney to develop a soft fabric robotic gripper which behaves like an elephant's trunk to grasp, pick up and release objects without breaking them.

[ UNSW ]

Collaborative robots offer increased interaction capabilities at relatively low cost but, in contrast to their industrial counterparts, they inevitably lack precision. We address this problem by relying on a dual-arm system with laser-based sensing to measure relative poses between objects of interest and compensate for pose errors coming from robot proprioception.

[ Paper ]

Developed by NAVER LABS, with Korea University of Technology & Education (Koreatech), the robot arm now features an added waist, extending the available workspace, as well as a sensor head that can perceive objects. It has also been equipped with a robot hand “BLT Gripper” that can change to various grasping methods.

[ NAVER Labs ]

In case you were still wondering why SoftBank acquired Aldebaran and Boston Dynamics:

[ RobotStart ]

DJI's new Mini 2 drone is here with a commercial so hip it makes my teeth scream.

[ DJI ]

Using simple materials, such as plastic struts and cardboard rolls, the first prototype of the RBO Hand 3 is already capable of grasping a large range of different objects thanks to its opposable thumb.

The RBO Hand 3 performs an edge grasp before handing-over the object to a person. The hand actively exploits constraints in the environment (the tabletop) for grasping the object. Thanks to its compliance, this interaction is safe and robust.

[ TU Berlin ]

Flyability's Elios 2 helped researchers inspect Reactor Five at the Chernobyl nuclear disaster site in order to determine whether any uranium was present. Prior to this mission, Reactor Five had not been investigated since the disaster in April of 1986.

[ Flyability ]

Thanks Zacc!

SOTO 2 is here! Together with our development partners from the industry, we have greatly enhanced the SOTO prototype over the last two years. With the new version of the robot, Industry 4.0 will become a great deal more real: SOTO brings materials to the assembly line, just-in-time and completely autonomously.

[ Magazino ]

A drone that can fly sustainably for long distances over land and water, and can land almost anywhere, will be able to serve a wide range of applications. There are already drones that fly using ‘green’ hydrogen, but they either fly very slowly or cannot land vertically. That’s why researchers at TU Delft, together with the Royal Netherlands Navy and the Netherlands Coastguard, developed a hydrogen-powered drone that is capable of vertical take-off and landing whilst also being able to fly horizontally efficiently for several hours, much like regular aircraft. The drone uses a combination of hydrogen and batteries as its power source.

[ MAVLab ]

The National Nuclear User Facility for Hot Robotics (NNUF-HR) is an EPSRC funded facility to support UK academia and industry to deliver ground-breaking, impactful research in robotics and artificial intelligence for application in extreme and challenging nuclear environments.

[ NNUF ]

At the Karolinska University Laboratory in Sweden, an innovation project based around an ABB collaborative robot has increased efficiency and created a better working environment for lab staff.

[ ABB ]

What I find interesting about DJI's enormous new agricultural drone is that it's got a spinning obstacle detecting sensor that's a radar, not a lidar.

Also worth noting is that it seems to detect the telephone pole, but not the support wire that you can see in the video feed, although the visualization does make it seem like it can spot the power lines above.

[ DJI ]

Josh Pieper has spend the last year building his own quadruped, and you can see what he's been up to in just 12 minutes.

[ mjbots ]

Thanks Josh!

Dr. Ryan Eustice, TRI Senior Vice President of Automated Driving, delivers a keynote speech — “The Road to Vehicle Automation, a Toyota Guardian Approach” — to SPIE's Future Sensing Technologies 2020. During the presentation, Eustice provides his perspective on the current state of automated driving, summarizes TRI's Guardian approach — which amplifies human drivers, rather than replacing them — and summarizes TRI's recent developments in core AD capabilities.

[ TRI ]

Two excellent talks this week from UPenn GRASP Lab, from Ruzena Bajcsy and Vijay Kumar.

A panel discussion on the future of robotics and societal challenges with Dr. Ruzena Bajcsy as a Roboticist and Founder of the GRASP Lab.

In this talk I will describe the role of the White House Office of Science and Technology Policy in supporting science and technology research and education, and the lessons I learned while serving in the office. I will also identify a few opportunities at the intersection of technology and policy and broad societal challenges.

[ UPenn ]

The IROS 2020 “Perception, Learning, and Control for Autonomous Agile Vehicles” workshop is all online—here's the intro, but you can click through for a playlist that includes videos of the entire program, and slides are available as well.

[ NYU ] Continue reading

Posted in Human Robots

#437554 Ending the COVID-19 Pandemic

Photo: F.J. Jimenez/Getty Images

The approach of a new year is always a time to take stock and be hopeful. This year, though, reflection and hope are more than de rigueur—they’re rejuvenating. We’re coming off a year in which doctors, engineers, and scientists took on the most dire public threat in decades, and in the new year we’ll see the greatest results of those global efforts. COVID-19 vaccines are just months away, and biomedical testing is being revolutionized.

At IEEE Spectrum we focus on the high-tech solutions: Can artificial intelligence (AI) be used to diagnose COVID-19 using cough recordings? Can mathematical modeling determine whether preventive measures against COVID-19 work? Can big data and AI provide accurate pandemic forecasting?

Consider our story “AI Recognizes COVID-19 in the Sound of a Cough,” reported by Megan Scudellari in our Human OS blog. Using a cellphone-recorded cough, machine-learning models can now detect coronavirus with 90 percent accuracy, even in people with no symptoms. It’s a remarkable research milestone. This AI model sifts through hundreds of factors to distinguish the COVID-19 cough from those of bronchitis, whooping cough, and asthma.

But while such high-tech triumphs give us hope, the no-tech solutions are mostly what we have to work with. Soon, as our Numbers Don’t Lie columnist, Vaclav Smil, pointed out in a recent email, we will have near-instantaneous home testing, and we will have an ability to use big data to crunch every move and every outbreak. But we are nowhere near that yet. So let’s use, as he says, some old-fashioned kindergarten epidemiology, the no-tech measures, while we work to get there:

Masks: Wear them. If we all did so, we could cut transmission by two-thirds, perhaps even 80 percent.

Hands: Wash them.

Social distancing: If we could all stay home for two weeks, we could see enormous declines in COVID-19 transmission.

These are all time-tested solutions, proven effective ages ago in countless outbreaks of diseases including typhoid and cholera. They’re inexpensive and easy to prescribe, and the regimens are easy to follow.

The conflict between public health and individual rights and privacy, however, is less easy to resolve. Even during the pandemic of 1918–19, there was widespread resistance to mask wearing and social distancing. Fifty million people died—675,000 in the United States alone. Today, we are up to 240,000 deaths in the United States, and the end is not in sight. Antiflu measures were framed in 1918 as a way to protect the troops fighting in World War I, and people who refused to wear masks were called out as “dangerous slackers.” There was a world war, and yet it was still hard to convince people of the need for even such simple measures.

Personally, I have found the resistance to these easy fixes startling. I wouldn’t want maskless, gloveless doctors taking me through a surgical procedure. Or waltzing in from lunch without washing their hands. I’m sure you wouldn’t, either.

Science-based medicine has been one of the world’s greatest and most fundamental advances. In recent years, it has been turbocharged by breakthroughs in genetics technologies, advanced materials, high-tech diagnostics, and implants and other electronics-based interventions. Such leaps have already saved untold lives, but there’s much more to be done. And there will be many more pandemics ahead for humanity.

< Back to IEEE COVID-19 Resources Continue reading

Posted in Human Robots

#437543 This Is How We’ll Engineer Artificial ...

Take a Jeopardy! guess: this body part was once referred to as the “consummation of all perfection as an instrument.”

Answer: “What is the human hand?”

Our hands are insanely complex feats of evolutionary engineering. Densely-packed sensors provide intricate and ultra-sensitive feelings of touch. Dozens of joints synergize to give us remarkable dexterity. A “sixth sense” awareness of where our hands are in space connects them to the mind, making it possible to open a door, pick up a mug, and pour coffee in total darkness based solely on what they feel.

So why can’t robots do the same?

In a new article in Science, Dr. Subramanian Sundaram at Boston and Harvard University argues that it’s high time to rethink robotic touch. Scientists have long dreamed of artificially engineering robotic hands with the same dexterity and feedback that we have. Now, after decades, we’re at the precipice of a breakthrough thanks to two major advances. One, we better understand how touch works in humans. Two, we have the mega computational powerhouse called machine learning to recapitulate biology in silicon.

Robotic hands with a sense of touch—and the AI brain to match it—could overhaul our idea of robots. Rather than charming, if somewhat clumsy, novelties, robots equipped with human-like hands are far more capable of routine tasks—making food, folding laundry—and specialized missions like surgery or rescue. But machines aren’t the only ones to gain. For humans, robotic prosthetic hands equipped with accurate, sensitive, and high-resolution artificial touch is the next giant breakthrough to seamlessly link a biological brain to a mechanical hand.

Here’s what Sundaram laid out to get us to that future.

How Does Touch Work, Anyway?
Let me start with some bad news: reverse engineering the human hand is really hard. It’s jam-packed with over 17,000 sensors tuned to mechanical forces alone, not to mention sensors for temperature and pain. These force “receptors” rely on physical distortions—bending, stretching, curling—to signal to the brain.

The good news? We now have a far clearer picture of how biological touch works. Imagine a coin pressed into your palm. The sensors embedded in the skin, called mechanoreceptors, capture that pressure, and “translate” it into electrical signals. These signals pulse through the nerves on your hand to the spine, and eventually make their way to the brain, where they gets interpreted as “touch.”

At least, that’s the simple version, but one too vague and not particularly useful for recapitulating touch. To get there, we need to zoom in.

The cells on your hand that collect touch signals, called tactile “first order” neurons (enter Star Wars joke) are like upside-down trees. Intricate branches extend from their bodies, buried deep in the skin, to a vast area of the hand. Each neuron has its own little domain called “receptor fields,” although some overlap. Like governors, these neurons manage a semi-dedicated region, so that any signal they transfer to the higher-ups—spinal cord and brain—is actually integrated from multiple sensors across a large distance.

It gets more intricate. The skin itself is a living entity that can regulate its own mechanical senses through hydration. Sweat, for example, softens the skin, which changes how it interacts with surrounding objects. Ever tried putting a glove onto a sweaty hand? It’s far more of a struggle than a dry one, and feels different.

In a way, the hand’s tactile neurons play a game of Morse Code. Through different frequencies of electrical beeps, they’re able to transfer information about an object’s size, texture, weight, and other properties, while also asking the brain for feedback to better control the object.

Biology to Machine
Reworking all of our hands’ greatest features into machines is absolutely daunting. But robots have a leg up—they’re not restricted to biological hardware. Earlier this year, for example, a team from Columbia engineered a “feeling” robotic finger using overlapping light emitters and sensors in a way loosely similar to receptor fields. Distortions in light were then analyzed with deep learning to translate into contact location and force.

Although a radical departure from our own electrical-based system, the Columbia team’s attempt was clearly based on human biology. They’re not alone. “Substantial progress is being made in the creation of soft, stretchable electronic skins,” said Sundaram, many of which can sense forces or pressure, although they’re currently still limited.

What’s promising, however, is the “exciting progress in using visual data,” said Sundaram. Computer vision has gained enormously from ubiquitous cameras and large datasets, making it possible to train powerful but data-hungry algorithms such as deep convolutional neural networks (CNNs).

By piggybacking on their success, we can essentially add “eyes” to robotic hands, a superpower us humans can’t imagine. Even better, CNNs and other classes of algorithms can be readily adopted for processing tactile data. Together, a robotic hand could use its eyes to scan an object, plan its movements for grasp, and use touch for feedback to adjust its grip. Maybe we’ll finally have a robot that easily rescues the phone sadly dropped into a composting toilet. Or something much grander to benefit humanity.

That said, relying too heavily on vision could also be a downfall. Take a robot that scans a wide area of rubble for signs of life during a disaster response. If touch relies on sight, then it would have to keep a continuous line-of-sight in a complex and dynamic setting—something computer vision doesn’t do well in, at least for now.

A Neuromorphic Way Forward
Too Debbie Downer? I got your back! It’s hard to overstate the challenges, but what’s clear is that emerging machine learning tools can tackle data processing challenges. For vision, it’s distilling complex images into “actionable control policies,” said Sundaram. For touch, it’s easy to imagine the same. Couple the two together, and that’s a robotic super-hand in the making.

Going forward, argues Sundaram, we need to closely adhere to how the hand and brain process touch. Hijacking our biological “touch machinery” has already proved useful. In 2019, one team used a nerve-machine interface for amputees to control a robotic arm—the DEKA LUKE arm—and sense what the limb and attached hand were feeling. Pressure on the LUKE arm and hand activated an implanted neural interface, which zapped remaining nerves in a way that the brain processes as touch. When the AI analyzed pressure data similar to biological tactile neurons, the person was able to better identify different objects with their eyes closed.

“Neuromorphic tactile hardware (and software) advances will strongly influence the future of bionic prostheses—a compelling application of robotic hands,” said Sundaram, adding that the next step is to increase the density of sensors.

Two additional themes made the list of progressing towards a cyborg future. One is longevity, in that sensors on a robot need to be able to reliably produce large quantities of high-quality data—something that’s seemingly mundane, but is a practical limitation.

The other is going all-in-one. Rather than just a pressure sensor, we need something that captures the myriad of touch sensations. From feather-light to a heavy punch, from vibrations to temperatures, a tree-like architecture similar to our hands would help organize, integrate, and otherwise process data collected from those sensors.

Just a decade ago, mind-controlled robotics were considered a blue sky, stretch-goal neurotechnological fantasy. We now have a chance to “close the loop,” from thought to movement to touch and back to thought, and make some badass robots along the way.

Image Credit: PublicDomainPictures from Pixabay Continue reading

Posted in Human Robots